Thomas Hagen
Thomas Hagen is Product Manager for the Enterprise Breeding System.
Thomas Hagen is Product Manager for the Enterprise Breeding System.
From October 21 to November 1, 2019, software developers and administrators from several breeding software projects met at the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico to work on delivering an integrated solution to crop breeders.
Efforts to improve crop breeding for lower- and middle-income countries involves delivering better varieties to farmers faster and for less cost. These efforts rely on a mastery of data and technology throughout the breeding process.
To realize this potential, the CGIAR Excellence in Breeding Platform (EiB) is developing an Enterprise Breeding System (EBS) as a single solution for breeders. EBS will integrate the disparate software projects developed by different institutions over the years. This will free breeders from the onerous task of managing their data through different apps and allow them to rapidly optimize their breeding schemes based on sound data and advanced analytics.
“None of us can do everything,” said Tom Hagen, CIMMYT-EiB breeding software product manager, “so what breeding programs are experiencing is in fact fragmented IT. How do we come together as IT experts to create a system through our collective efforts?”
For the EBS to succeed, it is essential that the system is both low-cost and easy to deploy. “The cost of the operating environment is absolutely key,” said Jens Riis-Jacobson, international systems and IT director at CIMMYT. “We are trying to serve developing country institutions that have very little hard currency to pay for breeding program operations.”
Stacked software
During the hackathon, twelve experts from software projects across CGIAR and public sector institutions used a technology called Docker to automatically stack the latest versions of their applications into a single configuration file. This file can be loaded into any operating environment in less than four minutes — whether it be a laptop, local server or in the cloud. Quickly loading the complete system into a cloud environment means EBS can eventually be available as a one-click, Software-as-a-Service solution. This means that institutions will not need sophisticated IT infrastructure or support staff to maintain the software.
“If everything goes as planned, the end users won’t know that we exist,” said Peter Selby, coordinator of the Breeding API (BrAPI) project, an online collective working on a common language for breeding applications to communicate with each other. Updates to individual apps will be automatically loaded, tested and pushed out to users.
As well as the benefits to breeders, this automated deployment pipeline should also result in better software. “We have too little time for development because we spend too much time in deployment and testing,” said Riis-Jacobson.
A cross-institution DevOps culture
Though important technical obstacles were overcome, the cultural aspect was perhaps the most significant outcome of the hackathon. The participants found that they shared the same goals, language and were able to define the common operating environment for their apps to work together in.
“It’s really important to keep the collaboration open,” said Roy Petrie, DevOps engineer at the Genomic and Open-Source Breeding Informatics Initiative (GOBii) based at the Boyce Thompson Institute, Cornell University. “Having a communications platform was the first thing.”
In the future, this could mean that teams synchronize their development timeline to consistently release updates with new versions of the EBS, suggested Franjel Consolacion, systems admin at CIMMYT.
“They are the next generation,” remarked Hagen. “This is the first time that this has happened in CGIAR informatics and it validated a key aspect of our strategy: that we can work together to assemble parts of a system and then deploy it as needed to different institutions.”
By early 2020, selected CIMMYT and International Rice Research Institute (IRRI) breeding teams will have access to a “minimal viable implementation” of the EBS, in which they can conduct all basic breeding tasks through a simple user interface. More functionality, breeding programs and crops from other institutions including national agricultural research programs will be added in phases over three years.
“Can we sustainably feed the nine to ten billion people in our planet in 30 years?” asked Kenneth M. Quinn, president of the World Food Prize Foundation. “This question becomes even more challenging with two current game changers: conflict and climate change.”
Food and agriculture experts met in Des Moines, Iowa, to discuss these issues at the Borlaug Dialogue and awarding of the 2019 World Food Prize.
The focus has shifted over the last few years from food to food systems, now including health and nutrition. “We need an integrated agri-food systems approach for food security, nutrition, nature conservation and human security,” said Bram Govaerts, director of the Integrated Development program at the International Maize and Wheat Improvement Center (CIMMYT).
Speakers agreed that to meet the current challenges of nutrition and climate change, we need a transformation of the global food system. “We have something very positive — this narrative of food system transformation,” said Ruben Echeverría, Director General of the International Center for Tropical Agriculture (CIAT).
In the discussions, speakers highlighted several areas that must be taken into consideration in this transformation.
Food security for peace and development
The theme of this year’s Borlaug Dialogue was “Pax Agricultura: Peace through agriculture.” Panels addressed the interconnected issues of food security, conflict and development.
In the keynote address, USAID Administrator Mark Green issued a call to action and challenged participants “to take on the food and economic insecurity issues that are emerging from this era’s unprecedented levels of displacement and forced migration.” Ambassadors, ministers and development experts gave examples of the interdependence of agriculture and peace, how droughts and floods could create conflict in a country, and how peace can be rebuilt through agriculture.
“Agriculture could root out the insurgency better than anything we did,” said Quinn about the Khmer Rouge surrender in Cambodia, where he served as an ambassador.
In the 1994 genocide in Rwanda, more than 1 million people died in 100 days. Geraldine Mukeshimana, Rwanda’s minister of Agriculture and Animal Resources, explained that in the country’s rebuilding process, all policies centered on agriculture.
“Almost no country has come out of poverty without an agricultural transformation,” said Rodger Voorhies, president of Global Growth and Opportunity at the Bill & Melinda Gates Foundation, in a fireside chat with 2009 World Food Prize Laureate Gebisa Ejera.
Agriculture is vital because without food, we cannot build institutions, processes or economies. “You cannot talk about human rights if you don’t have any food in your stomach,” said Chanthol Sun, Cambodia’s minister of Public Works and Transportation.
Josette Sheeran, president and CEO of Asia Society, echoed this thought, “Nothing is more important to human stability than access to food.”
In a luncheon keynote, Víctor M. Villalobos, Mexico’s Secretary of Agriculture and Rural Development, spoke about CIMMYT, the MasAgro project, and the need to improve food systems and agriculture to fight violence and forced migration. “Agriculture, prosperity and peace are inextricably linked together.”
How to make technological innovations work
Innovations and technology can support a global food system transformation and help to achieve the Sustainable Development Goals.
In a panel on food security in the next decade, speakers shared the agricultural technologies they are excited about: data, gene editing, synthetic biology, data science and precision farming.
Josephine Okot, managing director of Victoria Seeds Ltd said, “We must have mechanization.” She described the fact that Ugandan women farmers still rely on hand tools as a “disgrace to humanity.”
The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) organized a session where panelists discussed how to realize a transformation in food systems through next generation technologies, highlighting the role regulatory frameworks and policies play in the adoption of new technologies.
Making innovations work is about more than developing the product. “It takes a lot more than just a good seed to get a farmer to use it,” said 2019 World Food Prize Laureate Simon Groot. “It includes good distribution, good marketing, good training, etcetera.”
Technology adoption requires a human emphasis and cultural element in addition to technology development.
Breeding demand-driven crops for all
“The real enemy of farmers is lousy seeds,” said Simon Groot in his speech after receiving the World Food Prize.
CGIAR took the occasion of the World Food Prize to launch a new initiative, Crops to End Hunger. “We are looking for big solutions at CGIAR. Crops to End Hunger is one of them,” said CIMMYT Director General Martin Kropff. This program aims to meet the food, nutrition and income needs of producers and consumers, respond to market demands and increase resilience to challenges of the climate crisis.
“CGIAR released 417 new varieties last year. However, we can do more. Crops to End Hunger will rapidly excel breeding cycles,” said Elwyn Grainger-Jones, CGIAR Executive Director.
Felister Makini, deputy director general for Crops at Kenya Agricultural & Livestock Research Organization (KALRO), explained that focusing on the end users is what will have real impact. “It is important to develop technologies that are demand-driven so that farmers want to grow them and consumers want to buy and eat them.”
In a session to unpack the Crops to End Hunger initiative hosted by Corteva Agriscience and CGIAR, Marco Ferroni, Chair of the CGIAR System Management Board, said that CGIAR is shifting toward a more demand-driven agenda for plant breeding, where markets dictate what the research priorities should be.
“We must consider the human aspect in breeding,” said Michael Quinn, Director of the CGIAR Excellence in Breeding Platform (EiB). “This is where success will really come.”
Panelists discussed gender-conscious breeding, or taking both women and men’s desired traits into account.
The theme of gender was also emphasized by 2019 Norman Borlaug Field Award winner Hale Ann Tufan. She asked the Dialogue attendees to question gender biases and “not only to ‘take it to the farmer’ but take it to all farmers.”
Cover photo: Plenary session of the 2019 Borlaug Dialogue. (Photo: World Food Prize)
The International Maize and Wheat Improvement Center (CIMMYT) organized its first ever Maize Product Profile-based Breeding and Varietal Turnover workshop for eastern Africa in Nairobi, on August 29 and 30, 2019. The workshop, funded by USAID, was attended by maize breeders from national research institutes in Kenya, Uganda, Tanzania, Rwanda, Ethiopia and South Sudan, and by several partner seed companies including Seedco, Kenya Seeds, Western Seeds, Naseco and Meru Agro.
A product profile is defined as a list of “must-have” maize characteristics or traits that are the unique selling points for the target beneficiaries who are looking for these qualities. The breeders also consider additional traits in their breeding strategy, “value-added” or desirable traits that could be future unique selling points.
“A product profile is not a secret sauce” nor a checkbox to tick, explained Georges Kotch, a renowned expert in the seed industry and lead for Module 1 of the Excellence in Breeding (EiB) platform on product profiling. A product profile is a blueprint to help maize breeding programs ensure their new varieties released respond to a true need with a clear comparative advantage for seed companies and ultimately for maize farmers. This demand-driven process “starts with the end in mind” by understanding what the customers want. The end goal is to replace leading old varieties on the market with better ones that will improve farmers’ livelihoods, for example, with greater climate resilience and productivity.
Steering the breeding program through “healthy tensions”
Breeders may have had the tendency to focus on optimum yield for a certain agroecology, yet their priority traits may not reflect exactly the market or what farmers want. In addition to good yield, drought or disease resistance, grain color, taste, nutritional value, and appearance of plants and cobs are important in farmers’ choice of seed. Socio-economic research tools like participatory varietal selection (PVS) or willingness-to-pay experiments help us weigh the importance of each trait to trigger adoption.
There may be tensions between farmers’ needs, what suits seed companies like the seed reproducibility ratio, and what is possible and cost-effective from a breeder’s perspective. CIMMYT does not only look through the lens of economic return. The social impact new varieties could have is also considered, for example developing provitamin A or quality protein maize (QPM) as a solution to combat malnutrition even if there is not a major demand from private seed companies in Africa for nutritious maize.
Qualities valued by some actors may be overlooked by others. For example, some maize varieties have leafy ears with deceptively small cobs, which may protect the grain against pests but could be rejected by farmers.
It is important to have a wide array of expertise from breeding, market research and socio-economic analysis so that the different trait choices are weighed according to different lenses and a clear strategy for varietal turnover is defined.
High performing hybrids may not be enough for large-scale adoption
In southern Africa, climate experts warn that farmers could face drought every three years. CIMMYT has rightly prioritized drought tolerance (DT) over the last decade under the Stress Tolerant Maize for Africa initiative. Recently developed DT maize hybrids often outperform the popular varieties on the market, yet the varietal turnover has been slow in some regions. Farmers’ perceptions of what is a good maize may influence the success or rejection of a new variety. The risk for farmers and seed companies to try out a new variety is an important factor in adoption as well.
An appropriate seed marketing strategy is key, often seen only as the responsibility of private seed companies, but should be considered by public research as well.
CIMMYT has been selecting maize that can withstand drought during the critical phase just before and during the flowering stage, when the silks of the future cobs form. Even if rains stop at this stage, farmers growing DT maize will harvest some decent grain. If a long dry spell occurs just after planting, the crop will fail regardless of drought-tolerant breeding efforts. Farmers may then reject DT maize after such failure if the messaging is not clear.
Product profiling is a collaborative process, not an imposing one
Redefining the breeding strategy through product profiling is not set in stone. Kotch recommends annual review as a vehicle for constant improvement. B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE) explained that the product profiles could vary among various partners, as each partner looks at their own comparative advantage to reach success.
It is important to have everyone from the maize seed value chain on board to succeed. Regina Tende, maize breeder and entomologist at the Kenya Agricultural & Livestock Research Organization (KALRO), warned that regulatory bodies who review and authorize new varieties to reach the market must be integrated in the discussion “as their interest, primarily yield, may not be the final requirement for the target market.”
Seed systems specialists are also crucial to operationalize a successful breeding and delivery strategy, to address the different scaling bottlenecks and identify “the market changer.”
According to Kotch, CGIAR and national research organizations should avoid developing products too similar to the popular varieties on the market. Adoption occurs when something very different, for example new resistance to the devastating maize lethal necrosis, gives an innovation edge to seed companies. In Ethiopia, the replacement of an old popular variety BH660 by climate resilient BH661 was successful for various reasons including superior hybrid seed production with grey leaf spot resistance built in the seed parent population.
This demand-driven, multi-lens approach of product profiling including breeding, gender, socio-economic and policy dimensions will help to ensure that new varieties are more likely to be picked by farmers and partner seed companies, and increase the impact of CIMMYT’s Global Maize Program.
Since 1900, more than two billion people have been affected by drought worldwide, according to the Food and Agriculture Organization of the United Nations (FAO). Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.
A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.
The manual provides guidance for crop breeders, crop physiologists, agronomists, students and field technicians who are working on improving crop tolerance to drought stress. It will help ensure drought screening trials yield accurate and precise data for use by breeding programs.
Based on decades of CIMMYT’s research and experience, the manual covers aspects related to field site selection, effects of weather, crop management, maintaining uniform stress in trials, and duration of stress. It focuses on an approach that standardizes the required intensity, timing and uniformity of imposed drought stress during field trials.
Such a rigorous and accurate approach to drought screening allows for precision phenotyping. Careful management of imposed drought stress also allows the full variability in a population’s genotype to be expressed and identified during phenotyping, which means the full potential of the drought tolerance trait can be harnessed.
“Crop breeding programs using conventional or molecular breeding approaches to develop crops with drought tolerance rely heavily on high-quality phenotypic data generated from drought screening trials,” said author and CIMMYT scientist P.H. Zaidi. “By following the guidance in this manual, users can maximize their quality standards.”
The International Maize and Wheat Improvement Center (CIMMYT) has been a pioneer in developing and deploying protocols for drought stress phenotyping, selection strategy and breeding for drought tolerance. CIMMYT’s research on drought stress in maize began in the 1970s and has since remained a top priority for the organization. Drought-tolerant maize is now one of CIMMYT’s flagship products and is a key component of CIMMYT’s portfolio of products aimed to cope with the effects of climate change in the tropics.
Read the manual:
Pervez H. Zaidi, 2019. Management of drought stress in field phenotyping. CIMMYT, Mexico.
The information presented in the manual is based on the work on quantitative management of drought stress phenotyping under field conditions that received strong and consistent support from several donor agencies, especially Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), Germany’s GIZ and the CGIAR Research Program on Maize (MAIZE). The manual itself was funded by the CGIAR Excellence in Breeding (EiB) platform.
The low rate at which farmers adopt improved varieties is one of the biggest obstacles to overcoming food insecurity. The average maize variety grown by farmers in sub-Saharan Africa is 15 years old, even though maize breeders have been releasing more than 50 new varieties every year.
When it comes to climate change, for example, thanks to a plentiful arsenal of genetic diversity crop breeders are developing varieties adapted to increased heat and drought, but farmers continue to grow crops developed for the climate of yesterday.
One part of the answer is that it is not enough merely to create a variety resistant to heat, drought or flooding; complex dynamics are at play in crop markets and in farmers’ fields that must be reflected in the design of new varieties.
This where product manager Tawanda Mashonganyika comes in, working for the CGIAR Excellence in Breeding Platform (EiB) out of CIMMYT-Kenya, and one of the first to occupy such a role in the CGIAR system.
“This position is supposed to bring in a business kind of thinking in the way products and varieties are developed,” said Mashonganyika, who studied agricultural economics, agribusiness and value chains at the universities of Reading, U.K. and Queensland, Australia, and has professional experience with crops grown in Africa.
“You need to know who you are developing varieties for, who are your customers and clients, and you also need to design products so that they can have success on the market.”
Mashonganyika’s role is to support CGIAR and national agricultural research system (NARS) breeders to design new varieties focused on replacing older products in a specific market, as opposed to only breeding for an agro-ecological zone. Key to this approach is the involvement of experts from other disciplines such as gender, socioeconomics and nutrition, as well as people involved in the value chain itself, such as food processors, seed producers and farmers.
The outcome of this collaboration is a product profile: a written description of a new product with all the traits needed to replace the variety that currently dominates the target market. The profile serves as a common goal for CGIAR and NARS collaboration, and as a tool to communicate with donors. With the breeding program accountable for delivering a pipeline of new products designed for impact, they can ensure that these varieties also deliver traits such as biofortification to farmer’s fields.
Instead of breeding for all the traits that may be desirable in a new variety, what sets the product profile approach apart is that breeding programs can then focus resources on the traits that will have the greatest impact in the market, and therefore the field. This market-focused approach also enables better collaboration between breeders and experts from other disciplines:
“When you bring a cross-functional team together, you really need to give them an understanding of the desired goal of what we want to design and eventually put onto the market,” said Mashonganyika. “We put an emphasis on data-driven decisions, so it is not just a meeting of experts with different opinions; we always try to create a platform to say ‘we need to follow what the market is saying.’”
“[Non-breeding experts] are usually very excited to talk about the data that they have about markets, and the knowledge that they have about how gender or nutrition affects products on the market,” said Mashonganyika. “There are so many women farmers, especially in Africa, so when you begin to incorporate gender, we are increasing the scope of impact.”
Although actors such as seed producers or food processors may have no breeding expertise, Mashonganyika views their input as essential: “They are the ones that are at the mouthpiece of the market, they eventually take up the varieties and they multiply the seed, so they have very good information.”
One example is a collaboration with the National Agricultural Research Organization (NARO), Uganda, where representatives from private sector seed companies are being included to help breeders better understand their customers. “They give information about seed multiplication processes, and what makes a variety be considered for multiplication in seed systems.”
EiB has created a standardized tool to create product profiles, and 200 were submitted to the growing database in the first three months of the pilot period alone, including profiles submitted by 10 national agricultural research programs in Africa and Asia.
In addition to promoting the use of product profiles, a product manager is also involved ensuring communication and accountability throughout the development of new products.
“With product profiles we say a breeder should be accountable for delivering each product in a certain timeframe,” said Tawanda. “We always emphasize that a breeding program should have an annual product review process, because markets are dynamic, they are bound to change. This is a good habit to ensure that your products remain relevant and designed for impact.”
Although Mashonganyika is one of the first CGIAR product managers, a desire to see greater impact in the field is turning others in the same direction.
“I hope that in the near future we will see other CGIAR centers developing similar positions,” said Mashonganyika.
Qu Dongyu, China’s Vice Minister of Agriculture and Rural Affairs, and candidate for the position of Director-General of the Food and Agriculture Organization of the United Nations (FAO), visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico on March 16, 2019. He had already visited CIMMYT in 2006.
Vice minister Qu was greeted by students and CIMMYT scientists from China, the director general, the deputy director general and members of the management team. Qu and his delegation learned about CIMMYT’s latest initiatives and toured the campus.
CIMMYT’s director general Martin Kropff explained the organization’s strategic focus on agri-food systems: “Our mandate is on maize and wheat but we think broadly. Our researchers use a systems approach and work on using these two crops to improve peoples’ livelihoods, which is our ultimate goal.”
Qu expressed his career-long efforts for integrating multi-disciplinary approaches to tackle global challenges and said that he was “happy to see CIMMYT combining breeding — for which CIMMYT is famous — with value-added approaches to bring together science, farmers and industry.”
With innovation and the end user playing key roles in the vice minister’s agenda, Qu enjoyed learning about the Excellence in Breeding Platform’s target product profiles work and two-way communication channels from innovation hubs in Mexico.
During the visit, Qu was also introduced to CIMMYT’s small-scale machinery, which is used around the world to sustainably intensify production. CIMMYT often sources machines, such as seed planters and harvesters, from China to provide effective and efficient solutions that add tangible value for smallholders at an appropriate price point.
Bringing together advanced technology and inexpensive tools, CIMMYT pioneered the GreenSeeker, a handheld tool to advise farmers on the appropriate amount of nitrogen fertilizer to add to their crops. This tool gives farmers the double benefit of increased profitability and reduced negative environmental impacts. The director of CIMMYT’s Sustainable Intensification program, Bruno Gérard, showed a machine-mountable version of this tool, which could connect to a two-wheel tractor and automatically add the appropriate amount of fertilizer.
Gérard also explained CIMMYT’s efforts to develop mechanization as a service, pointing to the manual on developing mechanization service providers, jointly developed by CIMMYT and FAO: “Mechanization has the potential to improve environmental sustainability, farm productivity and reduce labor drudgery. If mechanization is to be adopted at scale and sustainably, in most cases it has to be provided through service provision to smallholder farmers.”
At the end of the visit, to underline the shared commitment to collaboration that began in the 1970s, Kropff and Qu signed a memorandum of understanding for the establishment of a China-CIMMYT joint laboratory for maize and wheat improvement.
The CGIAR Excellence in Breeding Platform (EiB) is looking to provide matching funding (up to US$ 35,000) for two projects with AbacusBio to characterize the users of new crop varieties and identify a value-weighted set of traits to be included as breeding targets in a product profile system.
The winning CGIAR crop breeding program will work directly with AbacusBio with EiB support to deliver on the projects.
This project represents an opportunity for CGIAR members of EiB to take a leap forward in the definition of client-focused variety replacement.
For more details on the project and how to apply, please refer to this page and the project proposal. Applications will be received January through February.
Around 115 members of the CGIAR breeding community, plus others representing national programs, universities, funders and the private sector, met for a three-day discussion of how to co-develop the next generation of advanced breeding programs that will improve the rate at which resource-poor farmers are able to adopt improved varieties that meet their needs.
The annual Excellence in Breeding Platform (EiB) Contributor’s meeting, held this year in Amsterdam from 13-15 November, caps a year of engagement with CGIAR Centers and national agricultural research system (NARS) partners around the world.
“Although breeding is one of the oldest functions in CGIAR, we have never had a meeting like this with scientists from all the centers,” said Michael Baum, director of Biodiversity and Crop Improvement at the International Center for Agricultural Research in the Dry Areas, (ICARDA). “Within CGIAR, plant breeding started as a science, but now we are looking at how to implement it not as a science but as an operation, as it is done in the private sector, so there are many new concepts.”
Key items on the agenda for November were new tools to develop product profiles and create improvement plans that will define the modernization agenda in each center and across the Platform itself, based in part on the Breeding Program Assessment Tool (BPAT) that most Centers completed in 2018.
The conversation was enriched by Paul Kimani (University of Nairobi) presenting on the Demand-led Variety Design project, which produced the book, “The Business of Plant Breeding.”
Ranjitha Puskur, gender research coordinator at the International Rice Research Institute (IRRI), started an animated discussion on how to incorporate gender into product design by thinking about customer segments.
Tim Byrne from AbacusBio introduced methods for identifying farmer preferences to be targeted by breeding programs.
In breakout sessions, contributors were able to have detailed discussions according to their various specializations: phenotyping, genotyping and bioinformatics/data management. The direct feedback from contributors will be incorporated into EiB workplans for training and tool development for the coming year.
A key outcome of the meeting was an agreement to finalize the product profile tool, to be made available to EiB members in early December 2018. The tool helps breeders to work with other specialisms, such as markets, socioeconomics and gender, to define the key traits needed in new products for farmers. This helps to focus breeding activities towards areas of greatest impact, supports NARS to play a greater role, and creates accountability and transparency for donors, in part by defining the geographic areas being targeted by programs.
“Breeding trees is different to the annual crops,” said Alice Muchugi, genebank manager at the World Agroforestry Centre (ICRAF), “but we are seeing what we can borrow from our colleagues. By uploading what we are doing in maps, for example, donors are able to perceive the specific challenges we are undertaking.”
“I think we have realized there are lot of challenges in common, and the Platform is helping us all work on those,” said Filippo Bassi, durum wheat breeder at ICARDA. “I like to see all the people around the room, if you look at the average age there is a big shift; the number of countries present also tells you a lot.”
Tabare Abadie, R&D external academic outreach lead at Corteva Agriscience, also saw the meeting as a good opportunity to meet a broader group of people. “One of the take homes I hear is [that] there are a lot of challenges, but also a lot of communication and understanding. For me as a contributor it’s an incentive to keep supporting EiB, because we have gone through those changes before [at Corteva], and we can provide some know-how and experience of what happens,” Abadie explained.
“There are still a lot of gaps to fill, but this is a good start,” said Thanda Dhliwayo, maize breeder at the International Maize and Wheat Improvement Center (CIMMYT). “We need to get everyone involved, from leadership down to the guys working in the field.”
Michael Quinn, director of the CGIAR Excellence in Breeding Platform, discusses the CGIAR’s initiative on crops to end hunger.
EL BATAN, Mexico (CIMMYT) – A new study examines the role of collective resource management in conflict.
Climate-induced migration can spur competition for resources such as cropland and freshwater, and stress or undermine existing social institutions according to the authors of the new study. The food security crisis and international ‘land grabs’ have drawn renewed attention to the role of natural resource competition in the livelihoods of the rural poor.
The study focuses on how collective action in natural resource competition can strengthen social-ecological resilience and mitigate conflict.
The scientists identified three action recommendations: using policy interventions to promote collectively managed natural resources, support natural resource management institutions to expand their ability to support collective action in response to competition and increase measures to affect the action arena by shifting incentives toward cooperative resolutions of resource conflicts and enhancing conflict resolution processes.
The authors note that stakeholders cannot write collective action into existence, but that collective natural resource management under effective guidance has been an effective peacebuilding mechanism.
Read the full study “Addressing conflict through collective action in natural resource management” and check out other recent publication by CIMMYT staff below:
DES MOINES, Iowa (CIMMYT) – Without proper control methods, the Fall Armyworm (FAW) menace could lead to maize yield losses estimated at $2.5 to $6.2 billion a year in just 12 of the 28 African countries where the pest has been confirmed, scientists from the Centre for Agriculture and Biosciences International, (CABI) reported recently.
The devastating insect-pest, which originated in the Americas, is capable of causing damage to more than 80 different plant species, although the pest prefers maize, a major food staple in sub-Saharan Africa on which millions of people depend.
Scientists estimate that Africa will need an investment of at least $150 to $200 million annually over at least the next five years to mitigate potential Fall Armyworm damage through the use of effective management options, and to undertake research on strategic areas for devising and deploying an integrated pest management strategy.
“Fall Armyworm is one of the world’s most deadly crop pests, effectively managing this insect-pest requires an urgent multi-disciplinary and multi-stakeholder response,” said B.M Prasanna, director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize.
Prasanna will be participating in the 2017 Borlaug Dialogue in Des Moines, Iowa, and will part of a panel discussion, on October 19, titled “Fall Armyworm: A clear and present danger to African Food Security” to discuss the strategic approach for managing the pest in Africa. This will follow a short presentation on October 18, by Pedro Sanchez, the 2002 World Food Prize laureate, on the status and impact of Fall Armyworm in Africa.
As part of an internationally coordinated strategic integrated pest management approach to tackle the FAW in Africa, CIMMYT and the U.S. Agency for International Development (USAID), together with experts from several national and international research organizations, are currently developing a comprehensive field manual. The manual will provide protocols and best management practices related to Fall Armyworm scouting, monitoring and surveillance; biological control; pesticides and pesticide risk management; host plant resistance; and sustainable agro-ecological management of Fall Armyworm, especially in the African context.
Regional training-of-trainers and awareness generation workshops are also being planned for November 2017 in southern and eastern Africa, and in West Africa in the first quarter of 2018. The training workshops are aimed at supporting pest control and extension actors to effectively scout, determine the need for intervention, and appropriately apply specific practices to control the pest in maize and other important crops in Africa.
For further information or to arrange interviews on-site or remotely, please contact Julie Mollins, CIMMYT communications: j.mollins (at) cgiar (dot) org
EVENT DETAILS
WHAT: B.M. Prasanna will be part of a panel discussion titled “Fall Armyworm: A clear and present danger to African Food Security” at the Borlaug Dialogue symposium to discuss the strategic approach for managing the pest in Africa.
WHEN: October 19, 2017, 7 a.m. to 8:30 a.m.
WHERE: Downtown Des Moines Marriott Hotel, 700 Grand Ave., Des Moines, Iowa.
WHO: B.M. Prasanna has been director of CIMMYT’s Global Maize Program since 2010 and the CGIAR Research Program on MAIZE since June 2015. Based in Nairobi, Kenya, Prasanna leads a multi-disciplinary CIMMYT-Global Maize Program team of 45 scientists located in sub-Saharan Africa, Latin America and Asia. Prior to joining CIMMYT, Prasanna served as a faculty member and maize geneticist at the Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, under the Indian Council of Agricultural Research (ICAR), for nearly two decades. Since 2012, Prasanna has led intensive multi-institutional efforts to effectively tackle Maize Lethal Necrosis (MLN) in eastern Africa. He oversaw the establishment of a state-of-the-art Maize Doubled Haploid (DH) Facility in Kiboko, Kenya in 2013. He has also led the development of several successful public-private partnership projects and recognized with several awards and honors in India for his contributions to maize research, post-graduate teaching and human resource development.
ABOUT BORLAUG DIALOGUE: An annual three-day conference that attracts more than 1,200 delegates from around the world to discuss global food security and nutrition. The Borlaug Dialogue, which features scientists, policymakers, business executives and farmers, coincides with World Food Day and the awarding of the World Food Prize.
ABOUT CIMMYT: The International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies. CIMMYT website: http://staging.cimmyt.org
EL BATAN, Mexico (CIMMYT) – A DuPont Pioneer leadership delegation visited CIMMYT HQ on May 12 to explore public-private collaboration approaches within the new CGIAR Excellence in Breeding Platform (EiB). The high level delegation, included Geoff Graham, Vice President of Plant Breeding, and other members of management from Global Breeding & Marker Technology Field Technology Innovation & Operations, and Africa, and Latin America regional operations. The team got acquainted with the EiB through interactions with CGIAR scientists and a tour of the CIMMYT scientific facilities.
The visit focused on mutually beneficial collaboration that would enable CGIAR and DuPont Pioneer breeding programs to better capitalize on each other’s experiences, and strengthen knowledge sharing in the pre-competitive domain. The ultimate aim is to improve public and private breeding programs targeting the developing world, including for crops with lower private sector investments.
This visit is the latest in a series of new public-private collaborations with DuPont Pioneer. During CIMMYT’s 50th anniversary celebrations DuPont Pioneer and CIMMYT entered a Master Alliance Agreement to jointly develop improved crops using CRISPR-Cas advanced plant breeding technology for characteristics that address the needs of smallholder farmers around the world.
“Public and private sector breeding programs may target different farming communities and agricultural commodities,” said Marianne Banziger, CIMMYT Deputy Director General for Research and Partnerships. “Nonetheless there are many areas where we can learn from each other and thereby accelerate benefits reaching farming communities, both in poorer and wealthier countries.”
The Excellence in Breeding Platform is one of three new platforms within the new CGIAR portfolio. Drawing from innovations in the public and private sector, the Platform will provide access to cutting-edge tools, services and best practices, application-oriented training and practical advice with the intention to modernize breeding programs targeting the developing world.
Forging major change is never simple, but one of my top priorities upon taking the helm at the International Maize and Wheat Improvement Center (CIMMYT) as director general last year was to develop a new five-year institutional strategy. CIMMYT must continuously change in order to adapt to an increasingly complex world and address urgent agricultural challenges. Not only do almost 800 million go to bed hungry each night, but to cite just a few examples, this year severe drought in southern Africa exacerbated by an El Niño weather system took its toll on crops, deadly wheat blast disease emerged in South Asia for the first time and scientists ratcheted up the fight against virulent maize lethal necrosis disease.
To learn more about the CIMMYT work environment, I sent an email to our key donors and partners seeking answers to some simple questions: What is CIMMYT doing well? What can CIMMYT do better? What new areas of research or collaboration should we explore? I met with staff at headquarters near Mexico City and visited regional offices to get a well-rounded set of responses. The answers I received have become the basis for the new CIMMYT Strategic Plan 2017-2022: “Improving Livelihoods through Maize and Wheat Science.”
From crops to agri-food systems
The new strategy marks a shift in thinking of maize and wheat simply as crops, recognizing that they play a major role in agri-food systems in which they operate. Modern agriculture is increasingly diverse, complex and unpredictable and we need to look beyond science alone to understand the ecological, economic and social forces that are driving change in farming systems. The shift from commodity-based research to an integrated approach centering on agri-food systems is a critical change allowing our community to work more effectively to strengthen food security, reduce poverty and enhance human nutrition.
Contributing to international development goals
Simultaneously, as CIMMYT has been undergoing changes, the CGIAR system of agricultural research centers is also going through a transition. The aim is to improve efficiency, benefiting relationships with our global network of donors and partners. These changes build on past successes, articulating an ambitious new direction known as the “CGIAR Strategy and Results Framework 2016-2030” We have gone through a process of refining our strategy to ensure alignment with the CGIAR strategy and the U.N. Sustainable Development Goals. The strategies emphasize the need to assign higher priority to reducing malnutrition, empowering female farmers, developing new public-private partnerships and sharing knowledge with partners and farmers.
A new strategic direction
The new strategy identifies four interlinked areas of work, each highlighting CIMMYT’s strengths: scientific excellence; impact through partnerships; capacity building and the “ONE CIMMYT” concept, which reflects efforts to synthesize both internal and external activities. To achieve scientific excellence we will further develop our practice of conducting research of the highest quality and create innovations that farmers can readily put to use. CIMMYT will steadily improve the scope and quality of partnerships to accelerate the adoption of technology. CIMMYT’s leadership of the CGIAR Research Programs on MAIZE and WHEAT and the Excellence in Breeding Platform, which will help modernize breeding programs in the developing world by providing access to cutting-edge tools, services, best practices, application-oriented training and practical advice.
These initiatives will form a key part of a new partnership strategy. By creating agricultural knowledge communities, CIMMYT develops capacity and empowers collaborators to help farmers advance to a more food-secure, sustainable future. Finally, “ONE CIMMYT” values have far reaching implications on the way we work, unifying teams and building a common understanding across regions.
Launching this strategy marks the beginning of an evolutionary way of working, which will continue over the next five years to 2022. Its successful implementation requires collaboration across disciplines and the involvement of our vast network of partners. As we move forward, I will continue to consult with key stakeholders to gather insights and assessments about how we can continue to create even more impact in farmers’ fields.
I hope that you will join us.
NEW DELHI — The International Maize and Wheat Improvement Center (CIMMYT) Director General Martin Kropff presented the organization’s draft strategy with its unifying vision of ‘One CIMMYT’ at the staff session in the Delhi office during his India visit from 24 February to 3 March. Kropff highlighted that CIMMYT’s excellent scientific work, global presence, partnerships and people are its strengths. However, the organization needs to focus on engaging with new donors and increasing organizational effectiveness in the future.
In the meeting, Kropff shared reflections on his eight months at CIMMYT, emphasizing that improving integration among different projects, teams and geographies through shared values and teamwork will help to achieve a common mission: “Maize & Wheat Science for Improved livelihoods.”
Staff discussed different elements of the strategy in smaller group breakout sessions and suggested various steps to raise scientific excellence, increase capacity building and to achieve the One CIMMYT objective across all regions. The groups agreed that the “will play a key role in bringing innovative ideas and developing the next generation of well-trained scientists.
During his first visit to the state of Bihar, Kropff visited BISA research farm at Pusa, where he was accompanied by Hari S. Gupta, Director General of BISA, senior officials from Rajendra Agriculture University and CIMMYT scientists. Raj Kumar Jat, BISA cropping systems agronomist, explained the positive impacts of long-term conservation agriculture research on productivity, profitability and soil health at the farm. Kropff saw demonstrations of small farm mechanization, climate-smart practices and the latest research tools and techniques for breeding crop varieties.
The team visited the research platform of the Cereal Systems Initiative for South Asia (CSISA) project in Patna. R.K. Malik, CIMMYT cropping systems agronomist, highlighted that research results have shown that using shorter hybrid rice varieties can help facilitate an early rice harvest and advance wheat sowing. This will help combat the adverse effects of climate change such as rising heat during the wheat ripening phase and will increase wheat productivity in Bihar. Kropff also interacted with women farmers and service providers to understand their business development services around service provision model.
Kropff and the CIMMYT-BISA team then met with Nitish Kumar, Bihar Chief Minister to discuss how CIMMYT and BISA’s work on new technologies could be helpful to double the productivity in the state with less cost and less water while improving the soil quality. The meeting was also attended by the senior officials of the state government and the Agricultural Production Commissioner of Bihar.
By Arun Joshi /CIMMYT
Over the past five years, more than a dozen new stress tolerant wheat varieties have become available to farmers in South Asia, through breeding research and partnerships as part of the Cereal Systems Initiative for South Asia (CSISA), according to Arun K. Joshi, CIMMYT wheat breeder. Joshi said that germplasm exchange with CIMMYT had increased significantly; that most advanced breeding lines in CIMMYT trials were resistant to Ug99 stem rust and other rusts; more segregating generation lines from South Asia were being sent to Njoro, Kenya, for stem rust resistance screening; the use of physiological tools to select for heat and drought tolerance in the region had increased; links among breeders, seed producers and farmers had strengthened; and capacity building had been promoted.
These and other achievements, as well as challenges and opportunities for improvement, came to light in two recent review meetings in Dhaka, Bangladesh. From 6 to 8 October, 56 scientists from Bangladesh, Bhutan, India and Nepal, as well as representatives of government councils and ministries, research centers, agricultural institutes and universities, convened for CSISA’s 5th wheat breeding review meeting. Participants also attended the 2nd review and work plan meeting for the project, “Increasing the productivity of the wheat crop under conditions of rising temperatures and water scarcity in South Asia,” funded by the Federal Ministry for Economic Cooperation and Development, Germany. The meetings were organized by Joshi, team leader of the two projects in South Asia, and facilitated by CIMMYT’s Dhaka office, led by T.P. Tiwari. CIMMYT was represented in the meetings by scientists from Bangladesh, India and Nepal and a consultant from Cambridge.
The CSISA meeting reviewed the progress of the 2012-13 wheat cycle and established work plans for the 2013-14 crop cycle. The event was inaugurated by chief guest Khalid Sultan, director of research at the Bangladesh Agricultural Research Institute (BARI), and R.P. Dua, assistant director general for the Indian Council of Agricultural research (ICAR). Dua praised the regional focus and presence of CSISA wheat breeding, and Sultan said “the South Asia-CIMMYT collaboration is paramount to the food security of the region.” Ten participating research centers presented reports and work plans.
Participants discussed how to strengthen links among wheat breeding, fast-track seed production, distribute new, improved varieties to farmers and work on conservation agriculture and participatory variety selection. Wheat breeders, pathologists, physiologists, agronomists and soil scientists attended the “Increasing the productivity of the wheat crop” meeting, which addressed project work plans and progress in breeding and agronomy.
Six Indian research centers reported on progress in evaluating more than 3,300 wheat lines screened last cycle for early sowing, as well as the 2013-14 work plan. The top 50 lines will be used to develop two trials in India: one for the northwestern plains and one for the central and peninsular zone, Joshi said. He also presented the highlights of the molecular research by Marion Roder, Leibniz Institute of Plant Genetics and Crop Plant Research, Germany, and Susanne Dreisigacker, CIMMYT molecular breeder, in screening some 3,000 wheat lines for genes controlling vernalization and response to changes in day length.