Skip to main content

funder_partner: AfricaRice

Five strides forward for CGIAR crop breeding resources and services

Sitting at the cutting edge of science, the crop breeding domain has been improving and refining tools, technologies and techniques. But adoption by public breeding programs focusing on Africa, Asia, and Latin America has often been slow. This has hindered progress on developing the new varieties needed for farmers to overcome climate impacts, build livelihoods, and feed their communities.

But One CGIAR’s new integrated approach is changing that. Building on the work of CGIAR Excellence in Breeding, the Breeding Resource Initiative can point to major progress in 2022, moving forward on an array of shared services, capacity development programs and technical support. Here are five significant milestones helping CGIAR and its national partners deliver better results:

1. Regional hubs are on their way: CGIAR’s vision is to have regional hubs coordinating and delivering services across crops. AfricaRice is set to grow into a regional service provider and coordinator for multiple crops in West Africa. After discussions, planning and site visits with BRI, AfricaRice leadership committed to working with the BRI team to start by providing regional nutritional analysis services, aimed to launch for selected partners in 2023. The plan is to then expand AfricaRice’s role as a coordinator of other competitive services like genotyping and capacity building. This is a major step toward CGIAR’s vision of not just improving breeding stations, but serving  all CGIAR/National Agricultural Research and Extension Services (NARES) partners regionally. The aim is collaboration, efficiency and results in farmers’ fields.

2. Operations teams are amping up skills and knowledge: Breeding success hinges on good operational practices leading to accurate data. To ensure the heritability of breeding trials, BRI has offered resources, trainings and on-the-ground support for operational teams. Through its Breeding Operation Network for Development (BOND), BRI/EiB, along with IITA, ran three weeklong workshops for partners across Africa (watch all 22 sessions on plotmanship, gender, seed processing, irrigation and more), regular webinars exploring private and public sector best practices, and a series focusing on continuous improvement approaches. BRI also trained dozens of operational staff across Africa on how to use and maintain new USAID-supplied equipment. And CGIAR continued its push to harmonize rice breeding processes between IRRI, AfricaRice and CIAT through a week-long rice breeding operations training at IRRI. As well, new tools such as a gender inclusion checklist are now available to support operational excellence.

3. EBS is settling in as a universal data platform: The data management platform Enterprise Breeding System has made real strides in the past year, with an updated version with new features (Milestone 5) rolling out across three Centers (CIMMYT, IITA, IRRI), with over 500 users. Other Centers, such as AfricaRice are starting to deploy the system too. On their visit to AfricaRice’s Ivory Coast station, the BRI team noted barcode deployment across the upland rice nurseries – an inspiration to spur other CGIAR Centers to accelerate their own adoption. EBS is a single, powerful, shared, multi-crop platform and its deployment will mean major time and money savings for breeders – and better breeding decisions.

4. Lab services are expanding: As breeders strive for higher-yielding, climate-resilient and nutritious crops, BRI/EiB have been improving breeding speed and accuracy through streamlined, reliable and cost-effective genotyping services. Services include Low Density SNP Genotyping Services (LDSG), Mid-density SNP Genotyping (MDSG), along with training. BRI also launched a Lab Services Process Team to connect Genetic Innovation departments and teams and ensure delivery of high quality services through standardized processes. And launching in 2023, partners will be able to access biochemical testing for nutritional traits and quality. These improved services mean CGIAR and national partners are becoming more effective and competitive as they use this data to make better decisions.

5. Regional approaches set to drive change: BRI drives change at both local and regional levels. For example, team members visited Kiboko and Njoro stations in Kenya, and ran planning sessions in Nairobi with East African breeding teams. This helped clarify challenges and priorities in the region, helping define how services could best be established. Kenya’s key outcomes included: a commitment with CIMMYT leadership to establish services in Kiboko as a pilot, an action plan to improve EBS development and adoption in the region, and endorsement by CGIAR Breeding Research Services leadership of major Crops to End Hunger grants in the region – these fill key gaps in the drive to modernization. The team plans to organize similar sessions to support CGIAR/NARES breeding networks in other regions.

These five strides forward represent but a glimpse into Breeding Resources’ progress. And these are much more than just separate achievements. They represent a shift in breeding culture across the CGIAR-NARES networks – one that will help deliver better varieties, faster. With major plans for 2023, CGIAR-NARES can look forward to the tools and services they need to deliver first-class programs.

Read the original article: Five strides forward for CGIAR crop breeding resources and services

Story and feature photo by Adam Hunt, EiB/BRI/ABI Communications Lead. We would like to thank all funders who support this research through their contributions to the CGIAR Trust Fund. And thank you to the supporters and partners of CGIAR Excellence in Breeding, particularly the funding from Bill and Melinda Gates Foundation.

‘Perennial’ rice saves time and money, but comes with risks

The largest real-world test of grains that grow year after year without replanting is showing promise for saving money, helping the environment, and reducing labor in China.

Initial trials with perennial rice as part of the Sustainable Agrifood Systems (SAS) program by the International Maize and Wheat Improvement Center (CIMMYT) suggest the crop could be a game changer for agriculture and food security.

The next phase of the research will determine whether farmers wish to adopt Perennial Rice 23 (PR23), which has been developed by breeding an Asian variety of rice with a wild, perennial relative from Nigeria.

Read the original article: ‘Perennial’ rice saves time and money, but comes with risks

CGIAR Initiative: Excellence in Agronomy

Smallholdings represent over 80% of the world’s farms, mostly located in the Global South, and supply 50% of global food. Enhanced agronomy management has a great potential to increase productivity, sustainability, efficiency and competitiveness of these smallholdings, which is characterized by low and variable yields and profitability, smallholder farming challenges include water scarcity, climate change, low resource use efficiencies and declining soil health. These result in negative impacts on food and nutrition security, equitable livelihoods and ecosystem health.  

Smallholder farmers seasonally make critical agronomic decisions regarding crop choice, planting dates and pest, disease, weed, soil fertility and water management, often based on suboptimal practices and information. Traditional agronomic research enhances our understanding of basic processes, but with limited connection to stakeholder demand and often based on outdated approaches. The development, deployment and uptake of interventions is hampered by social, economic and institutional constraints, further confounded by adherence to conventional supply-driven innovation strategies.

Objective

This Initiative aims to deliver an increase in productivity and quality per unit of input (agronomic gain) for millions of smallholder farming households in prioritized farming systems by 2030, with an emphasis on women and young farmers, showing a measurable impact on food and nutrition security, income, resource use, soil health, climate resilience and climate change mitigation.  

Activities

This objective will be achieved through:

  • Facilitating the delivery of agronomy-at-scale solutions, including development and technical/user-experience validation and the co-creation and deployment of gender- and youth-responsive solutions to smallholder farmers via scaling partners. 
  • Enabling the creation of value from big data and advanced analytics through the assembly and governance of data and tools; application of existing analytics and solutions for specific use cases; supply of information on climate impacts, inclusivity and sustainability of agronomic solutions; and national agricultural research system capacity strengthening. 
  • Driving the next generation of agronomy-at-scale innovations by addressing key knowledge gaps and facilitating innovation in agronomy research through engagement with partners. 
  • Nurturing internal efficiencies for an agile and demand-driven agronomy research and development community through internal organization and external partnerships for prioritization, demand mapping and foresight. 

CGIAR Plant Health Initiative formally launched on the International Day of Plant Health

National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)

CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiative’s inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.

The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.

Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.

“The CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. “This calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.”

Demand-driven multistakeholder approach

CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.

The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenya’s Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIAR’s contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.

“As government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],” said Magenya.

Implications of Plant Health in Africa and globally

Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.

Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.

CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrow’s problems today, through collective and decisive action at all levels.

Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)

The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing women’s major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. “We welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,” she added.

Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.

Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.

Reflecting on gender, social inclusion, and plant health

Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.

Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).

B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)

Charting the course for the Initiative

The Plant Health Initiative Work Package Leads presented the Initiative’s five specific work packages and reiterated their priorities for the next three years.

“We are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,” said Prasanna.

The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.

For more information, visit the CGIAR Plant Health Initiative page or download a brief. 

Panel Discussion Presentations

“Plant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forward” moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).

 “Scaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovations” moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)

Work Package Title and Leads

Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization

Lead: Monica Carvajal, Alliance of Bioversity-CIAT

Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response

Lead: Lava Kumar, IITA

Work Package 3: Integrated pest and disease management

Lead: Prasanna Boddupalli, CIMMYT

Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination

Lead: Alejandro Ortega-Beltran, IITA

Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)

Researchers in East Africa add the Enterprise Breeding System to their work tools

Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)
Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)

Scientists overseeing breeding, principal technicians and data management and support staff from the International Maize and Wheat Improvement Center (CIMMYT) learned about the Enterprise Breeding System (EBS) at a training in Nairobi, Kenya, on May 4–6, 2022. This was the first in-person training on this advanced tool held in Eastern Africa.

Kate Dreher, Data Manager at CIMMYT, was the primary trainer. Dreher sought to ensure that scientists and their teams are well equipped to confidently use the EBS for their programs, including the creation and management of trials and nurseries. During the training, participants had the opportunity to test, review and give feedback on the system.

“The EBS is an online comprehensive system that brings together different types of data, including field observations and genotypic data, to harmonize processes across all teams and enable optimized decision-making in the short term and continuous learning for the long term,” Dreher said.

She explained that the EBS is more efficient than the former approach of using the Excel-based Maize Fieldbook software, even though it managed several useful processes.

The EBS is currently available to registered breeding and support team members and data managers from CIMMYT, IITA, IRRI and AfricaRice, across all geographies where related programs are implemented. Currently, the EBS is used by programs in maize, rice and wheat crops.

A more streamlined approach

“Although teams sent germplasm and phenotypic data for centralized storage in two databases (IMIS-GMS and MaizeFinder) managed by the data management team in Mexico in the past, this required curation after the data had already been generated,” Dreher said. “The EBS will enable teams to manage their germplasm and trial nursery data directly within one system.”

The EBS stores information on germplasm and linked seed inventory items. It is also designed to house and perform analyses using phenotypic and genotypic data. Users can also capture metadata about their trials and nurseries, such as basic agronomic management information and the GPS coordinates of sites where experiments are conducted.

Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at CIMMYT, observed that the training gave him firsthand information on the current capabilities and use of the live version to search germplasm and seed, and the capabilities to create nurseries and trials.

“In the AGG project, we have one primary objective which focuses on implementing improved data management, experimental designs and breeding methods to accelerate genetic gain and improved breeding efficiency. Therefore, implementing EBS is one of the top priorities for AGG project,” said Yoseph, who leads the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods Project (AGG).

Lourine Bii, an Assistant Research Associate who recently joined CIMMYT and the only female research technician on the Global Maize program based in Kenya, also found the training useful. “The EBS is a fantastic system that enables an individual to create experiments. The system links a team, for instance a product development team, to get live updates on the various stages of creating an experiment, reducing back and forth by email.”

The system’s software development is ongoing. The development team continues to add and enhance features based on feedback from users.

From diagnosis to action on social equity

A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)
A group of farmers involved in participatory rice breeding trials near Begnas Lake, Pokhara, Nepal. (Photo: Neil Palmer/CIAT/CCAFS)

As CGIAR develops 33 exciting new research Initiatives, it is essential for its new research portfolio to move beyond “diagnosing gender issues” and to supporting real change for greater social equity. Gender-transformative research and methodologies are needed, co-developed between scientists and a wide range of partners.

To advance this vision, gender scientists from ten CGIAR centers and key partner institutions came together from October 25 to 27, 2021, in a hybrid workshop. Some participants were in Amsterdam, hosted by KIT, and others joined online from Canada, the Philippines and everywhere in between.

The workshop emerged from gender scientists’ desire to create a supportive innovation space for CGIAR researchers to integrate gender-transformative research and methodologies into the new CGIAR Initiatives.

The organizing team calls this effort GENNOVATE 2, as it builds on GENNOVATE, the trailblazing gender research project which ran across the CGIAR between 2014 and 2018.

GENNOVATE 2 promises to help CGIAR Initiatives achieve progress in the Gender, Youth and Social Inclusion Impact Area. It will also advance change towards Sustainable Development Goals 5 and 10 on gender and other forms of inequality.

In the workshop, participants sought to:

  • Share and develop ideas, methods and approaches to operationalize gender-transformative research and methodologies. Working groups focused on an initial selection of CGIAR Initiatives, representing all the Action Areas of CGIAR:
    • ClimBeR: Building Systemic Resilience against Climate Variability and Extremes; (Systems Transformation)
    • Securing the Asian Mega-Deltas from Sea-level Rise, Flooding, Salinization and Water Insecurity (Resilient Agrifood Systems)
    • Sustainable Intensification of Mixed Farming Systems (Resilient Agrifood Systems)
    • Market Intelligence and Product Profiling (Genetic Innovation)
  • Build on the significant investments, methods, data, and results from the original GENNOVATE.
  • Conceive a community of practice for continued sharing, learning and collaboration, across and within Initiatives, to accelerate progress on gender and social equity.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

Joining a vibrant community

GENNOVATE 2 is envisioned to complement the CGIAR GENDER Platform and the proposed new CGIAR gender-focused research Initiative, HER+.

“We have several gender methodology assets in CGIAR, and GENNOVATE is one of them,” said Nicoline de Haan, Director of the CGIAR GENDER Platform, opening the workshop. “We want to make sure we cultivate and grow the efforts started during GENNOVATE and move forward important lessons and practices in the new CGIAR portfolio.”

The team of scientists behind GENNOVATE 2 wants to support a vibrant community of researchers who “work out loud.” They will document and share their research methodologies, experiences and insights, in order to accelerate learning on gender issues and scale out successes more quickly.

The ultimate objectives of GENNOVATE 2 are to:

  • Develop and deepen a set of methodologies expected to directly empower women, youth, and marginalized groups in the targeted agri-food systems
  • Contribute to normative change towards increased gender equality across different scales, ranging from households to countries.
  • Generate and build an evidence base on the relationship between empowering women, youth and marginalized people, and moving towards climate-resilient and sustainable agri-food systems — and vice versa.

“An example of the added value GENNOVATE 2 can bring to CGIAR Initiatives is understanding what maintains prevailing gender norms in research sites, and also at relevant institutional and political levels,” said Anne Rietveld, gender scientist at the Alliance of Bioversity International and CIAT, and co-organizer of the workshop. “This will enable CGIAR scientists, partners and policymakers to design locally relevant gender-transformative approaches and policies for more impact. We can do this by building on our GENNOVATE 1 evidence base, adapting methods from GENNOVATE 1 and co-developing new methods in GENNOVATE 2.”

Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.
Participants at the GENNOVATE 2 workshop in Amsterdam, the Netherlands, in October 2021.

What’s next?

The workshop showed that many scientists from CGIAR and partner institutes are motivated to invest in the vision of GENNOVATE 2. Achieving impact in the Gender, Youth and Social Inclusion Impact Area will require concerted efforts and inputs from scientists on the ground.

“There is a groundswell of experience and enthusiasm that you, we, this group brings. We need answers and we can and should work together to make this a reality,” remarked Jon Hellin, Platform Leader – Sustainable Impact in Rice-based Systems at the International Rice Research Institute (IRRI), and co-lead of the ClimBeR Initiative.

The organizing team listed concrete actions to follow the workshop:

  • Developing processes and spaces for discussing methodological advancements among the gender scientists in these four Initiatives which other Initiatives can tap into, contribute to and become part of.
  • To develop these shared and integrated methodologies and approaches into a GENNOVATE 2 conceptual and methodological roadmap — to contribute to the CGIAR Gender, Youth, and Social Inclusion Impact Area and guide other Initiatives, as well as bilateral research
  • To develop a position paper articulating what can be achieved through concerted efforts to integrate gender and social equity more effectively into the Initiatives, to showcase gender-transformative research methods for further development and implementation. The aim of the position paper is to influence global science leaders and CGIAR leadership in how they include issues of social equity in the Initiatives.
  • To support these conversations, learnings and harmonization processes through setting up a community of practice, where the “practice” to be improved is the practice of advancing gender research methodologies to go from diagnosis to action. This will start with a core group of enthusiastic researchers and then will expand as it gains momentum, so that all researchers in the various Initiatives interested in social equity can contribute
  • To seek funding opportunities to support the activities outlined above.

The GENNOVATE 2 organizing team welcomes the participation of interested CGIAR Initiatives as they move forward. The organizing team will also help strengthen interactions with external resource people and research networks, in to cross-pollinate new knowledge and innovations.

If you would like to know more about GENNOVATE 2, please contact Anne Rietveld, Gender Scientist at the Alliance of Bioversity International and CIAT and Hom Gartaula, Gender and Social Inclusion Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

The GENNOVATE 2 workshop was supported with funds from the CGIAR Research Programs on Roots Tubers and Bananas, Maize, and Wheat.

Workshop organizers Anne Rietveld (Alliance), Cathy Rozel Farnworth (Pandia Consulting, an independent gender researcher), Diana Lopez (WUR) and Hom Gartaula (CIMMYT) guided participants. Arwen Bailey (Alliance) served as facilitator.

Participants were: Renee Bullock (ILRI); Afrina Choudhury (WorldFish); Marlene Elias (Alliance); Gundula Fischer (IITA); Eleanor Fisher (The Nordic Africa Institute/ClimBeR); Alessandra Galie (ILRI); Elisabeth Garner (Cornell University/Market Intelligence); Nadia Guettou (Alliance); Jon Hellin (IRRI); Deepa Joshi (IWMI); Berber Kramer (IFPRI); Els Lecoutere (CGIAR GENDER Platform); Angela Meentzen (CIMMYT); Gaudiose Mujawamariya (AfricaRice); Surendran Rajaratnam (WorldFish); Bela Teeken (IITA), among others.

External experts who provided methodological inputs were: Nick Vandenbroucke of Trias talking about institutional change; Shreya Agarwal of Digital Green talking about transformative data; Katja Koegler of Oxfam Novib talking about Gender Action Learning Systems (GALS) for community-led empowerment; and Phil Otieno of Advocates for Social Change (ADSOCK) talking about masculinities and working with men.

The beginning of a beautiful partnership

In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.

“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”

In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.

As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.

“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”

This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.

A catalyst for South-South learning and cooperation

Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.

CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.

Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.

However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.

Fostering solutions

By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.

To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.

Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)

Reaping the benefits of innovation

Post-harvest losses — which can range between 10-20% in major cereals — cause not only the loss of economic value of the food produced, but also the waste of scarce resources such as labor, land, and water, as well as non-renewable resources such as fertilizer and energy.

“High postharvest losses imply reduced grain yield, but with the same total greenhouse gas emission,” says RabĂ© Yahaya, a CIM/GIZ Integrated Expert working at the International Maize and Wheat Improvement Center (CIMMYT). “Reducing these losses reduces the yield-scaled global warming potential — total greenhouse gas emission per kilogram of grain — and contributes to climate change mitigation, as well as food security.”

A significant proportion of these losses are caused by late harvest due to labor shortages, with crops languishing in the field before farmers can retrieve them. Small and medium-sized machinery may seem like the answer, but many one or two-axe machines are often unable to reach the inner sections of rice and wheat fields because of limited road access, or the fact that they are simply too heavy to carry.

“As mechanized land preparation works outwards, inner fields get ready for harvest first, but without any applicated technical solution,” he explains.

Could motorized scythes be the answer? Yahaya thinks so.

The other scythe

Motorized scythes are hand-operated tools used for mowing grass or reaping crops. Though largely replaced by horse-drawn and tractor-mounted implements, they are still commonly used in some areas of Asia and Europe.

Models specifically adapted for harvesting rice and wheat have been commercially available in Africa for over two decades and currently sell for $150-350, presenting the lowest initial investment cost of all engine-driven solutions on the market. The motor scythe also boasts the lowest harvest cost per hectare and is portable enough to reach inner fields.

Despite its relative affordability, uptake in much of West Africa has been slow, as many farmers have found the 10kg machinery too heavy for sustained use.

“Studies carried out in Benin, Burkina Faso, Cote d’Ivoire and Mali show that this rapid fatigue is caused by incorrect handling of the machinery, including flawed posture,” Yahaya explains. “This is simply because most operators have never undertaken official training for operating the tool.”

In a bid to address this challenge, Yahaya has been collaborating with Elliott Dossou, Sali Atanga Ndindeng and Ernst Zippel — all scientists at AfricaRice — to design and test potential solutions. Their proposal for the development of a Service Provider Harvest (SPH) model has been shortlisted for the GIZ Innovation Fund 2020 award, from a GIZ/BMZ-supported Innovation Fund.

Ernst Zippel, CIM/GIZ Integrated Expert at AfricaRice, presents on the reduction of postharvest losses through correct usage of motor scythes. (Video: AfricaRice)

Cut for service

The approach focuses heavily on capacity development, with an initial nucleus group of trainers taking the lead on activities such as recruiting and contracting service providers, providing training on harvesting and threshing, supporting aftersales services such as machine maintenance and repair, and helping to determine the optimum harvest time.

Under the proposed model, each trainer will be responsible for a group of around 50 service providers, who will receive guidance on understanding their role, finance, creating a network of client farmers, machine maintenance and use.

In addition to the financial rewards and aftersales services, the training opportunities will make this technology accessible to young entrepreneurs in rural areas. Earning up to $18 a day for harvesting and weeding services, those using the tool can expect to see a return on their initial investment in one to two months.

“Young people are the main prospective clients for this initiative,” says Yahaya. “With the motor scythe and related training, they can start earning serious money.” He stresses, however, that all farmers – regardless of age or gender – will be able to benefit from the job creation opportunities this initiative provides.

The initiative has been shortlisted for the GIZ Innovation Fund 2020. If selected, funding from the accelerator program would support testing, the integration of GPS sensors into the tools, creation of a platform for bank security and Carbon Credit earning, other technical activities.