Skip to main content

funder_partner: CGIAR

Decades of on-station conservation agriculture trials reveal key farming insights for Zambia’s changing climate

Aerial view of one of the long-term, on-station trials on conservation agriculture, CIMMYT (Photo: CIMMYT).

Long-term research rarely offers quick fixes. More often, it is a patient pursuit, marked by seasons of uncertainty, occasional setbacks, and gradual, hard-won insights. Yet, when carefully managed, its outcomes can redefine farming systems and adaptation strategies to long-term climate trends.  

This is the story of CIMMYT‘s persistence, working alongside Zambia’s Ministry of Agriculture to maintain some of Southern Africa’s most critical long-term Conservation Agriculture (CA) experiments for over two decades. 

Scattered across Zambia’s contrasting agro-ecological zones, from the high rainfall Northern province to the drought-prone Southern Province, and the tropical savanna climate in the Eastern province, the Misamfu Research Station, Monze Farmer Training Centre, and Msekera Research Station have hosted these long-term trials, with Monze being established in 2005, Msekera in 2011, and Misamfu in 2016. Through searing droughts, erratic rainfall, floods, pest outbreaks and changing policy landscapes, these stations have systematically tested CA principles over multiple seasons, focusing on crop productivity, economic viability, and soil health, pest and disease dynamics, soil moisture and climate resilience among other aspects, to adapt CA to local farming conditions. More importantly, they have adapted these principles to Zambia’s diverse socio-economic realities and contexts. 

 

Testing CA under Zambia’s climate gradients

At the core of these trials is a simple, but essential question: “Can CA systems be adapted to Zambia’s smallholder farmer conditions to improve productivity, soil health, and resilience under climate variability?” 

Each research station offers a unique window into answering this question. For instance, Monze Farmer Training Centre located in Zambia’s Southern Province, hosts one of the oldest CA trials in the region. In addition, originally set up with eight main treatments and 32 trial plots, it has since expanded to 48 plots consisting of 12 treatments, testing CA under no-tillage against conventional plough-based systems with maize, cotton and sun hemp rotations of varying sequences. The plots have accumulated invaluable data, owing to the detailed and precise monitoring of yields, soil moisture, infiltration rates, pest and disease dynamics, soil quality indicators, and soil organic matter, year after year. 

Christian Thierfelder, CIMMYT’s Principal Cropping Systems Agronomist and founder of all long-term experiments reflects, “When we started, CA was a hot topic in Zambia. We wanted to know its benefits if you persist with these systems under Zambia’s conditions, not just for three or five years, but over decades”. 

Two decades later, key findings from these trials reveal that rotations that include cotton and/or sun hemp consistently outperform others in maize yields due to the nitrogen-fixing and soil-improving effects of the legume and deep-rooting cotton. CA plots, especially those combining minimum tillage, residue retention, and rotations, also demonstrate better soil moisture retention and infiltration, even in drought years. In fact, one striking observation has been that during intense rainfall events, water infiltration under CA plots is dramatically higher than under conventional systems, reducing flooding, erosion, and surface run-off. CA plots absorb and retain more moisture, a significant advantage as rainfall patterns become more erratic. 

However, the trials have also revealed complex trade-offs that researchers alike must accommodate. For example, while the maize-cotton-sun hemp rotation delivers exceptional yields, its economic viability hinges on market dynamics. When sun hemp seed and cotton commanded reasonable prices in the past, the system was highly profitable; in its absence, farmers risk sacrificing income for soil benefits alone. Another surprising insight comes from long-term soil organic carbon (SOC) trends. While CA systems reduce erosion and improve infiltration, the anticipated build-up of SOC has remained elusive, except at one long-term trial site outside Zambia at the Chitedze Research Station in Malawi. Thierfelder notes, “Declining rainfall, declining biomass, and declining soil carbon levels are interconnected. CA alone may not reverse these trends unless combined with complementary practices like manure application or agroforestry species.” 

A snapshot of different trials being implemented at Monze FTC and Misamfu Research station, CIMMYT (Photo: CIMMYT).

Adapting CA for high-rainfall areas

Misamfu Research Station, in Zambia’s wetter Northern Province, has wrestled with another challenge: CA’s performance under high-rainfall conditions. Since 2016, Misamfu has hosted the long-term CA systems trial. Originally designed to conserve moisture, CA systems, especially when planted on the flat, struggle with too much moisture, leading to waterlogging, and here, not drought, is the problem. CA plots without drainage interventions have underperformed in very wet years. Yet, new innovations are emerging. Permanent raised-beds and permanent ridges, two promising CA systems developed under irrigated systems, are showing promise by improving drainage while retaining CA’s soil health benefits. 

 “In relatively dry years, CA systems shine,” explains Thierfelder, “but under waterlogged conditions, we now know that permanent raised beds or ridges could be the missing link.” “Over the long-term, CA systems planted on the flat are capable of buffering high rainfall effects, probably due to improved infiltration”, remarked Blessing Mhlanga, CIMMYT’s Cropping Systems Agronomist.  

Capturing cumulative effects over time

Since 2011, the CA long-term experiment at Msekera Research Station in Eastern Zambia has revealed how CA performs beyond short-term seasonal gains. Unlike seasonal experiments, these trials capture the gradual, cumulative effects of CA on soil health, water use, weed and pest dynamics, and crop yields under real-world conditions. With ten treatments, including conventional tillage, ridge and furrow systems, and CA practices- such as direct seeding, residue retention, and crop rotations, the trials provide critical evidence. So far, results from Msekera show that no-tillage systems with crop residue retention, especially when combined with crop rotations, significantly improve soil moisture retention and structure, leading to more stable crop production over time. 

Why long-term matters

Long-term trials are essential to fully understand the benefits and limitations of CA across a full spectrum of climate conditions. Such trials require consistent donor support, strong partnerships with research station managers, and effective field management. Unlike short-term experiments, long-term trials capture the cumulative effects of CA practices across diverse seasons, including droughts and floods.  

These trials also show that CA is not a one-size-fits-all solution — its success hinges on continuous application over time. Since to date, rainfall patterns cannot be predicted precisely, deciding to adopt CA only in dry years is ineffective. Instead, long-term trials reveal how CA builds resilience and improves productivity year after year. 

This body of work is more than just a collection of experiments. It is a living archive, many years of climate, crop, and soil interactions, yielding insights impossible to capture through short-term trials. “We learned, for example, that infiltration rates under CA improved noticeably within just two years,” says Thierfelder. “But understanding yield trends, soil fertility dynamics or the role of rotations takes decades.” Moreover, these trials have shown that CA is not a one-size-fits-all solution. Its benefits are context-specific, often requiring adaptive management depending on rainfall, soil type, and market conditions. 

From plots to farmers’ fields

The value of this long-term work extends beyond research stations. Field days and exposure visits have allowed farmers and extension officers to engage directly with these trials, drawing lessons for their own fields. In some regions, farmers are already adapting lessons, adopting rotations, maintaining residues, experimenting with raised beds and permanent ridges, and tailoring CA to their realities. Importantly, the trials continue to evolve. While core treatments remain unchanged to preserve data integrity, small innovations, such as integrating manure or testing alternative rotations, are helping to sharpen recommendations for the next generation of CA practitioners. 

An aerial view of a mother trial implementer in Zambia, SIFAZ (Photo: CIMMYT).

The road ahead

As climate variability intensifies, the value of long-term research becomes even more critical. These trials offer answers to one of agriculture’s most urgent questions: How can CA be fine-tuned to deliver resilience and productivity? This is not just a scientific quest; it is about securing the future of Zambia’s smallholders, helping them navigate a more uncertain climate future, and ensuring their fields remain productive for the next generations. 

How Crops to End Hunger is transforming CGIAR crop breeding from the ground up

When crop breeding succeeds, the impact is dramatic: improved varieties reach farmers, productivity increases, and resilience to climate change and disease improves. But breeding success doesn’t happen by chance. It relies on modern facilities, cutting-edge tools, and the ability to test and select for complex, evolving traits. That’s where Crops to End Hunger (CtEH) comes in. At CGIAR Science Week, the project team and beneficiaries demonstrated how.  

A project designed for exponential impact 

Launched in 2019, CtEH aimed to support the modernization of CGIAR’s crop breeding infrastructure, with support from GIZ, the Gates Foundation, the US government, DFID, and ACIAR. As it nears the end of the most recent two-year GIZ funding cycle, the project has made targeted investments in upgrading breeding station infrastructure, equipping them with advanced tools, building capacity across CGIAR and national breeding teams, and developing the foundational systems needed to accelerate the entire breeding process. 

Supporting CGIAR Centers’ core functions 

At CGIAR Science Week, Bram Govaerts, CIMMYT Director General, explained: “CtEH is crucial for implementing CIMMYT 2030 strategy. Support has increased our breeding capacity for maize, wheat, and newly added dryland crops that complement maize and wheat cropping systems.” 

One example is the Groundnut Biotic Stress Screening Network, established with CtEH support. The network has strengthened the capacity of partners in Uganda and Malawi to screen for groundnut rosette disease; a devastating disease spread by aphids can result in 100% crop loss, with annual losses of over $150 million. The screening network will enable development of resistant varieties. 

In Kenya, a $2.5 million worth infrastructure upgrade at the KALRO–CIMMYT Crop Research Facility in Kiboko, has accelerated breeding cycles. This investment is enabling the development of new varieties tailored to the needs of East African farmers. Drought-tolerant maize varieties developed through work in Kenya and Zimbabwe have expanded dramatically, from just 0.5 million hectares in 2010 to 8.5 million hectares across sub-Saharan Africa today. 

The Kiboko station is also a regional leader in pest and disease resistance. Its advanced screening capabilities for fall armyworm have led to the release of three tolerant maize hybrids, benefiting farmers in Kenya, Malawi, Zambia, Zimbabwe, South Sudan, and Ghana. The development of maize varieties resistant to maize lethal necrosis further demonstrates the station’s critical role in enhancing food security across the region. 

Operational improvements: more than bricks and mortar 

CtEH isn’t just about infrastructure; it’s also about operational transformation which profoundly change the breeding work. For instance, as Gustavo Teixeira explains, “The installation of reliable irrigation systems, one of CtEH’s key priorities, improves breeding efficiency in several ways. It enables off-season trials, allowing breeders to conduct multiple generations per year. It promotes plot control, ensuring uniformity across trial plots and data quality. Finally, it improves the ability to breed for drought tolerance.” 

In Ghana, Maxwell Asante of CSIR-CRI described how CtEH brought crop-neutral upgrades that have encouraged teams to strategically plan and align resources, enabled cost attribution to specific breeding programs, improving accountability, and fostered cross-location collaboration by making centralized services possible.  

These operational improvements are helping CGIAR and national systems move toward truly modern breeding programs that can operate with greater precision, speed, and coordination. 

Building for regional collaboration and innovation 

Bram Govaerts also emphasized that collaboration is central to the future of breeding, and that CtEH is helping to make that possible. 

“Strategic collaborations enhance our impact by leveraging diverse resources and expertise, especially through public-private partnerships that scale research and technology transfer for agricultural transformation.” 

Facilities and systems funded by CtEH are helping CGIAR foster cross-disciplinary innovation and strengthen ties with governments, donors, and technology companies. This makes it easier to bridge the gap between research and real-world application – exactly what’s needed to accelerate impact. 

Empowering women in breeding 

Infrastructure improvements under CtEH have considered inclusivity and gender equity. 

Aparna Das, CIMMYT Technical Lead, explained that modernized stations have been upgraded to better support women in breeding roles – such as providing restrooms and expression rooms in remote research stations, often located far from urban centers, which help attract talent. 

Why does this matter? Women breeders bring valuable perspectives, particularly in identifying gender-relevant traits, like cooking time, seed size, and ease of harvesting. Diverse, balanced breeding teams also tend to be more dynamic and innovative, leading to better science and more relevant products for farmers. 

Targeting the right traits 

Breeding for traits farmers need starts with the ability to test and measure those traits under real-world conditions. This can require specialized equipment. 

Maxwell Asante emphasized that this is where CtEH makes a difference: 

“Testing for traits is fundamental. And now, we’re not just selecting for yield – we’re breeding for disease resistance, climate resilience, cooking quality, and more. The only way to do this efficiently is through modern breeding infrastructure and processes.” 

Modern breeding enables scientists to combine multiple traits in a single variety and identify the best candidates with greater accuracy and confidence. This is made possible through CtEH investments in equipment and data analytics, such as Bioflow, the CtEH-funded breeding analytics pipeline developed for CGIAR and its partners. 

Long-term impact through smart design 

What makes CtEH unique is its sustainability-by-design approach. The project was structured to build long-lasting capacity and to leverage investments from across CGIAR Initiatives, amplifying both the quality of upgrades and their outcomes. 

Whether it’s enabling year-round trials, supporting new partnerships, or empowering a more diverse generation of breeders, CtEH is not just upgrading infrastructure, it’s also reshaping CGIAR and partners’ breeding. 

As CGIAR continues to respond to climate, nutrition, and food security challenges, projects like CtEH are making sure we have the tools, systems, and people in place to breed for tomorrow – starting today. 

To learn more about Crops to End Hunger, check out other stories here.

New Breakthrough in Wheat Blast Resistance: A Novel Non-2NS QTL Identified

A newly published study has identified a significant breakthrough in the ongoing battle against wheat blast: a novel quantitative trait locus (QTL), named Qwb.cim-7D, located on the long arm of chromosome 7D and derived from Aegilops tauschii, offers stable and moderate resistance to wheat blast—independently of the widely used 2NS translocation.

Wheat blast, caused by Magnaporthe oryzae pathotype Triticum (MoT), is a rapidly spreading disease threatening wheat production, particularly in tropical and subtropical regions of the world. First detected in Brazil in 1985, the disease has since caused devastating yield losses—up to 100% in severe cases. Its transboundary spread, including recent incursions in Bangladesh and Zambia, has intensified international concerns about food security, especially among vulnerable smallholder farming communities. Control through chemical means has proven unreliable, placing even greater emphasis on the development and deployment of resistant wheat cultivars.

Fig. 1 Global incidence of wheat blast with years of its first identification indicated for the affected countries

For years, wheat breeders have relied on a single major source of genetic resistance—the 2NS/2AS translocation from Aegilops ventricosa. While initially effective, recent field observations—particularly in Brazil—suggest that wheat blast pathogens are evolving to overcome this resistance. Despite extensive efforts, previous studies have failed to identify any non-2NS QTLs with both significant and stable effects across environments in field trials.

Fig. 2 Contrasted wheat blast reactions between BWMRI Gom 3 (left, a 2NS carrier) and BARI Gom 26 (right, a non-2NS carrier)

A New Genetic Solution for Blast Resistance

In a recently published study entitled “A novel QTL on chromosome 7D derived from Aegilops tauschii confers moderate field resistance to wheat blast”, CIMMYT’s wheat pathology team and collaborators reported the identification of a novel and consistent QTL—Qwb.cim-7D—which provides significant resistance to wheat blast independent of the 2NS translocation.

The donor bread wheat line, Gladius*2/KU 2097, inherited its resistance from the resistant Ae. tauschii accession ‘KU-2097’. Field experiments were conducted at two Precision Phenotyping Platforms (PPP) in Bolivia (Quirusillas and Okinawa) and one PPP in Bangladesh (Jashore), under artificially inoculated conditions—ensuring a robust evaluation of resistance. The QTL was mapped to the long arm of chromosome 7D, where it explained between 7.7% and 50.6% of the phenotypic variation across different environments. This is a significant finding, as previous studies identified non-2NS resistance loci with typically small effects (less than 10%) and inconsistent performance. In contrast, Qwb.cim-7D is the first moderate-effect QTL to demonstrate stable resistance across multiple field conditions.

To facilitate its adoption in breeding pipelines, researchers successfully converted the flanking DArTseq markers into KASP markers—enabling more efficient marker-assisted selection.

Importantly, Qwb.cim-7D provides approximately half the resistance effect of 2NS, highlighting its value as a complementary resistance factor. When deployed through gene pyramiding strategies alongside 2NS and Rmg8, this new QTL could help breeders develop varieties with stronger and more durable resistance to the evolving wheat blast pathogen.

This breakthrough marks a turning point in global wheat blast resistance breeding. It addresses the urgent need to diversify the genetic basis of resistance and equips breeders with a viable new tool to safeguard wheat yields. As wheat blast continues to threaten food security in key regions, the introgression of Qwb.cim-7D into breeding programs offers a promising path toward enhanced crop resilience and improved farmer protection.

Reinventing mechanization for Southern Zambia’s drylands: The story of Joe Akombaetwa

Joe Akombaetwa shows the improved no-till multi-crop planter fitted with a T-bar and furrow kits (Photo: CIMMYT)

In Dumba Camp, a small farming community in Mazabuka District, Joe Akombaetwa is proving that even in the face of unreliable rains and poor soils, small shifts in how farmers work the land can make all the difference. A farmer since 1992, Joe has lived through the growing impacts of climate change, its frequent shocks to the rain-fed systems, and the high risks it brings to farming families in Zambia’s Southern Province. For the past five years, he has worked as one of the earliest mechanization service providers (SPs) under the European Union-funded Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project. As a SIFAZ service provider, Joe acquired a set of machinery, including a two-wheel tractor, a trailer, a multi-crop thresher, and a sheller in 2021. Since then, he has been offering paid mechanization services to farmers in his community. But more than a service provider, Joe is an innovator, a machinery fabricator, and a businessman, creating tailor-made climate-smart mechanization solutions with the support of the SIFAZ project, responding directly to the challenges faced by farmers in his community.

Grounding innovation in reality

Joe’s innovations aren’t conceived in a lab—they’re forged in the field, shaped by the lived realities of his fellow smallholder farmers. One of his earliest breakthroughs came when he collaborated with SIFAZ engineers to design a T-bar to modify the Chinese single-row, no-till multi-crop planters into a double-row planter for a two-wheel tractor, allowing simultaneous planting of two rows instead of just one.

The original single-row planters, while functional, were slow and inefficient. “We wanted to save time and get the work done faster,” Joe explains. “So, we created the T-bar so that two planters could work together in tandem.”

But the innovation didn’t stop there. Joe received feedback from the farmers on the issue of high side separation between the seed and fertilizer openers on the planter. This high side separation of about 120 mm might be useful to reduce seed burning in an irrigated system for which the planter was developed, but Joe and his client farmers in the rain-fed system noticed reduced early plant growth, evidently resulting from delayed nutrient access by young seedlings of the crops. Further, the furrow covered by the press wheels of the planter was not optimum (leaving some seeds uncovered with soil), leading to germination failures.

With his own hands and tools, together with the SIFAZ engineers, Joe redesigned the seed placement system by better aligning the seed and fertilizer openers (with 50 mm side separation) and developing a flexible seed-covering kit fitted before each press wheel on the planter. These modifications addressed what agronomists refer to as “placement efficiency”, but for Joe, it was simply about “getting the seed and fertilizer placed close to each other for the plants to access the fertilizer early and firmly cover the seeds for optimum emergence.” To further improve performance, he added a balancing bar to help stabilize the planter across uneven ground, making the machine more practical for Southern Province’s uneven terrains and varying soil textures.

Joe demonstrates his two-wheel tractor mini boom sprayer to the CIMMYT mechanization team (Photo: CIMMYT)

Bridging science with farmer-led solutions

Joe’s hands-on creativity is not new. Back in 2010, he was part of the team that co-developed an animal-drawn ripper, a widely adopted tool that aligns with Conservation Agriculture (CA) principles by reducing soil disturbance.

With a background in blacksmithing and metal fabrication from Kasisi, and early career exposure to seed certification at ACCI in Chilanga, Joe has long moved between formal agriculture and on-the-ground adaptation. Joe is aware of declining draft animals and the aging of the farmers in Zambia, which adds to the challenges faced by smallholder farmers. He sees a declining interest of rural youths in agriculture who do not want to walk behind the beasts or do labor-intensive manual work. Observing the ease with which large-scale commercial farmers operate rippers and boom sprayers, Joe wondered, “Why not adapt this to smallholder needs?”

Joe designed a double-row ripper and a mini boom sprayer for use with a two-wheel tractor. Compared to the traditional animal-drawn single-row rippers or the knapsack sprayers, the two-wheel tractor double-row ripper saves not only time, costs, and drudgery, but also makes farming interesting. “In just ten minutes, I can finish spraying a 16 m by 39 m field,” he says. It’s a leap in efficiency, and for farmers, who often juggle time, labor, and resource constraints, it’s a game-changer! Joe has sold a few rippers and boom sprayers to his neighboring farmers and different projects. The demand for the machinery is on the rise, which encourages him as a rural manufacturer.

Business with a purpose

Joe isn’t only an innovator; he’s also a sharp businessman. From ripping and planting to boom spraying and shelling maize, his mechanization services are in high demand among farmers in and around Dumba Camp. “Ripping has been the most profitable,” he notes. “Almost every farmer now wants it because of the sustainable farming practices introduced by SIFAZ.” He charges based on plot size and crop type, typically around ZMW 200–450 per hectare (approximately US$7–16) for services like no-till planting. But he also knows the realities farmers face. “Sometimes, I negotiate. I don’t want the price to scare away the farmers.” Demonstration days and field shows are his marketing lifeline. From the Cotton Development Trust-organized mechanization field days to local radio promotions, Joe has built a network of trust and visibility. He’s become a go-to name in the Dumba Camp and beyond.

Joe stands with his 80-year-old client, who, thanks to hiring the no-till soybean planting service, is able to keep his family farm running despite his children’s absence. (Photo: Md A Matin, CIMMYT)

Staying afloat in tough seasons

Last season, the El Niño-induced drought was a huge blow in farmers’ fields. Poor and uneven rainfall and economic strain slashed demand for mechanization services. But Joe stayed afloat by leaning on his farmer instincts. He didn’t sell off all his harvest, but instead, he stored 100 bags of maize and sold another 100 bags to have money for living. That food sovereignty, paired with diversified income from shelling and ripping, kept his business breathing through the drought.

A legacy in the making

Behind the machines and modifications is a father of five, two of whom are already following in his footsteps, bringing civil engineering skills into the family’s growing innovation portfolio. It’s a quiet generational shift powered by resilience, knowledge sharing, and an openness to adapt. Joe’s story reminds us that the future of farming isn’t only shaped by distant policies or global climate models, but also built, welded, and tested in the fields of Southern Zambia, where farmer-innovators like Joe bridge the gap between science and local adaptation.

Positive Solutions for Nature in Colombia: A Review

In a world where environmental and agrifood challenges demand urgent responses, the CGIAR-led Positive Solutions for Nature (Nature+) initiative is transforming agriculture into a catalyst for ecological regeneration and sustainable development.

In Colombia, CIMMYT has played a key role in implementing several activities under this initiative. These efforts have not only improved agricultural productivity but also promoted biodiversity conservation, sustainable resource management, and the strengthening of rural communities—with a special focus on youth, women, and native maize.

One of the first steps in Colombia was conducting a diagnosis and mapping key actors within agrifood systems across different regions. This assessment identified major challenges such as limited access to native seeds, soil degradation, and lack of access to fair market opportunities for smallholder farmers.

To ensure that promoted practices aligned with local realities and needs, CIMMYT worked closely with farmers to co-create solutions. A significant example was the support given to women producers to conserve native maize varieties. Workshops held in Cesar, Nariño, Putumayo, and Valle del Cauca included childcare spaces, enabling full participation by women.

Another important milestone was facilitating dialogue between producers and niche markets, helping connect farmers growing native maize with potential buyers. This has been key to revitalizing the value chain for these crops. In parallel, twelve community seed banks were strengthened in various regions, ensuring the availability of native varieties and encouraging intergenerational knowledge exchange.

CIMMYT also conducted extensive training activities, benefiting hundreds of farmers in the post-harvest management of native grains and seeds. In workshops held during 2023 and 2024, over 780 producers—many of them women—received training in practices such as harvesting, drying, shelling, and hermetic storage, which reduced post-harvest losses and improved seed quality.

Infrastructure improvements further supported these efforts. One standout example is the YEL-PUE Cumbe seed bank in Cumbal, Nariño—established with support from CIMMYT and the Bioversity-CIAT Alliance. This seed bank not only conserves agricultural biodiversity but also serves as an intergenerational learning hub, where farmers, students, and technicians share experiences and knowledge.

A key component of the initiative has been youth participation. Through collaboration with the José María Falla Educational Institution and youth networks like Herederos del Planeta, students have engaged in agroecological maize production. This involvement fosters stronger rural ties and ensures the continuity of traditional knowledge for future generations.

While challenges remain, the implementation of Positive Solutions for Nature in Colombia has demonstrated that agricultural production can go hand in hand with environmental conservation and community well-being. Thanks to collaborations with research centers such as CIMMYT, many Colombian farmers are now adopting regenerative practices, enhancing agrobiodiversity and boosting resilience to both climate and economic shocks.

Looking ahead, these efforts will continue within the CGIAR Multifunctional Landscapes Science Program. CIMMYT, in collaboration with other CGIAR centers, will focus on participatory varietal selection, business models to enhance the value of agrobiodiversity, connections to niche markets, and the empowerment of women as agents of biodiversity conservation.

Sistema tradicional maíz-frijol en Valledupar, Cesar, Colombia

Advancing gender and social inclusion in agroecology: Insights from the CGIAR Agroecology Initiative in Zimbabwe

Agriculture lies at the core of rural livelihoods, yet longstanding social inequities have stifled the potential of marginalized groups particularly women and youth to fully benefit. The CGIAR Agroecology Initiative (AE-I) recognizes gender and social inclusion as critical pillars in achieving sustainable agricultural transformation. By embedding these aspects within its framework, AE-I ensures that marginalized groups—especially women and youth—play a meaningful role in agroecology transitions.  

Current realities on women and youth in agriculture

Women and youth are central to Zimbabwe’s agricultural economy, yet they remain underrepresented or excluded in decision-making processes and face barriers to accessing   critical resources. Globally, women make up about 48% of the agricultural labor force in Sub-Saharan Africa (World Bank, 2024), yet they consistently face challenges in accessing land, credit, and markets. In Zimbabwe, these disparities are even more pronounced. In  Mbire and Murehwa districts, rural economic activities, including agriculture, rely heavily on women and youth. Women make up approximately 70% of the agricultural labor force (UNDP, 2024) in these regions, but they often lack control over resources needed to enhance productivity and economic stability such as land, credit, and markets.  

Agroecology Living Landscapes and Gender and Social Inclusion Matter

Embedding gender and social inclusion (GESI) into agroecology is not just a moral imperative but a foundational requirement for achieving lasting and transformative impact. Traditional top-down development approaches have often neglected marginalized groups’ unique needs and contributions, resulting in unsustainable outcomes. In contrast, the AE-I prioritizes inclusive and participatory processes, exemplified by its Agroecology Living Landscapes (ALLs), which serve as collaborative spaces where community members actively co-create locally relevant solutions.   

Central to the CGIAR Agroecology Initiative (AE-I) is a commitment to “do no harm—say no harm,” ensuring that the inclusion of women, youth, and other marginalized groups is safe, meaningful, and impactful. Including marginalized groups can disrupt existing power structures and opportunity hierarchies, so it must be done with contextual sensitivity. Young and old women are provided equal opportunities to participate in and contribute to the co-creation of innovations. However, systemic barriers-such as limited agency or entrenched gender norms-continue to hinder meaningful engagement. To address these challenges, AE-I collaborates with key stakeholders, such as the Ministry of Women Affairs, Community, Small and Medium Enterprises Development (MWACSMED), to advocate for gender mainstreaming. Concrete actions have included training programs, documentation of gender norms and their impacts, elevating women and youth role models, and ensuring equal participation in ALL activities. MWACSMED has evolved into a proactive stakeholder in this process. Initially a passive participant in ALL discussions, the ministry now plays a leadership role in addressing gender and social inclusion issues within the landscapes. This deliberate attention to GESI within ALLs has illuminated systemic barriers such as unequal access to resources, rigid cultural norms, and the exclusion of certain social groups.   

Conversations with farmers during ALLs meetings (Photo: CIMMYT)

Agroecology recognizes that inclusion is not merely about representation but about fostering environments where meaningful transformation can happen. For instance, cultural norms often limit the participation of women and youth in mixed-group activities. To address this, the AE-I initiated monthly “dialogues with elders,” engaging traditional authorities and community leaders to reconcile cultural traditions with transformative gender and social inclusion goals. These dialogues have yielded positive shifts in such perspectives. As one elder participant noted, “We value inputs from women and acknowledge their critical role in our community.”   

The transformative impacts of AE-I’s inclusive approach are increasingly visible. Across Murehwa and Mbire districts, Agroecology Living Landscapes (ALLs) are reshaping community dynamics by empowering previously marginalized groups, such as elderly women, to contribute to agricultural innovation. Within some of the activities of the Initiative, women and youth engagement is quite impressive, with over 60% of participants in seed fairs and field days. These figures highlight the significant potential for expanding women’s and youth’s opportunities to advance agroecological goals through gender- and youth-focused interventions. It also demonstrates their eagerness to engage in knowledge-sharing opportunities. Such initiatives improve livelihoods and build women’s and youths’ agency as active contributors to agricultural innovations. 

Inclusivity within ALLs is further is reinforced by low barriers to entry, emphasizing a willingness to learn and transform their crop and livestock production rather than asset ownership. This approach has expanded participation among resource-poor farmers, breaking down traditional exclusionary practices brought by other Donor programs.  

As one farmer remarked, “In the past, only those with cattle or fenced homesteads could join such programs on transformative change. Now, even those of us without such assets can participate.”  

Such practices have strengthened the confidence of marginalized farmers, enabling them to navigate complex production dynamics collectively.   

Building Economic Independence and Transforming Food Systems

The AE-I’s focus on inclusive value chains has begun to yield tangible economic benefits. In Mbire and Murehwa, women are transitioning from subsistence farming to economic independence by engaging in agroecological business models. For example, Sasso poultry farming has become a viable income-generating activity, allowing women to reinvest in their farm-level activities. Youth are also leveraging their involvement in agriculture to build assets, diversify income and nutritional sources, and secure a more stable future. 

A critical challenge remains exploitative market dynamics that limit farmers profitability. Farmers have raised concerns about the informal urban markets, where asymmetric power dynamics and a lack of competitive pricing mechanisms enable buyers to dictate unfavorable prices. Middlemen in the poultry markets suppress prices by 40%, while unstructured sorghum buyers pay 20–30% below market rates, eroding farmers’ profitability.  

Addressing these bottlenecks through cooperative-led marketing, digital trading platforms (e.g., Hamara App), and guaranteed off-take agreements ensures equitable economic participation and a resilient food system. 

Drudgery and Women in Agri-Food Systems

The transition to agroecology offers both opportunities and challenges, particularly for women, who bear the brunt of agricultural labor. In many rural communities, women are responsible for labor-intensive activities, including land preparation, weeding, and post-harvest handling.  

While agroecological practices promote sustainability and resilience, some approaches—such as conservation agriculture—can initially increase women’s workload, exacerbating drudgery and limiting their time for other economic or social activities.  

To ensure that agroecology transitions are both equitable and scalable, it is essential to integrate appropriate-scale mechanization that reduces labor burdens while maintaining ecological integrity. By embedding gender-responsive technologies into agroecological systems, AE-I can foster inclusive, productive and sustainable farming solutions. 

Women in Murehwa receiving training on how to use the basin digger (Photo: CIMMYT)

To address this, the Initiative has facilitated the adoption of labor-saving technologies, improving access to mechanized solutions that ease women’s workload. In Mbire and Murehwa districts, 43 out of 95 women farmers now have access to basin diggers, significantly reducing the effort required to establish planting basins in conservation agriculture. Additionally, four multigrain threshers have been introduced in each district, enabling women to process small grain cereals more efficiently, cutting down the time spent on post-harvest handling.  

These innovations not only alleviate physical strain but also increase productivity, allowing women to participate in value-added activities and play a greater role in decision-making processes within the food system.  

By prioritizing appropriate-scale mechanization, the AE-I ensures that agroecology transitions foster inclusivity, sustainability, and economic empowerment for women farmers. 

Wrap up

The CGIAR Agroecology Initiative’s work in Mbire and Murehwa provides a step forward for centering gender and social inclusion into agricultural development. Through participatory methods, inclusive partnerships, and a focus on actor agency and opportunity for behavior change, the Initiative has redefined what it means to build sustainable and equitable food systems. For donors, partners, and other stakeholders, the AE-I offers a compelling case for investing in inclusive approaches that transform agriculture and uplift entire communities. As agroecology continues to evolve, centering gender and social inclusion will remain vital for achieving sustainable, impactful outcomes.  

 

Promoting mechanized farming technologies in Mbire and Murewa through the Agroecology Fairs

As part of the CGIAR Initiative on Agroecology, the Feed the Future Zimbabwe Mechanization and Extension activity participated in the 2024 Agroecology Fairs held in Murewa and Mbire districts on September 25 and October 17, 2024, respectively. The events provided valuable platforms to collaborate with the initiative and showcase different scaling pathways for mechanization within the context of sustainable, efficient farming.

(Photo: CIMMYT)

At the Mechanization and Extension activity’s exhibition stand, visitors explored an array of machinery specifically tailored to small-scale farming needs. Among the featured equipment were basin diggers, two-wheel tractors, multi-crop threshers, chopper grinders, trailers, and peanut butter processing machines, including a groundnut sheller, peanut roaster, and peanut butter-making machine. Each piece of equipment aligns with existing activities within the initiative to demonstrate practical solutions for improving labor efficiency and enhancing crop productivity which might be needed during agroecology transitions.

The basin digger drew significant attention, especially from farmers encountering it for the first time or wanting to know more about how they could become service providers. Designed for creating basins such as those established under the Pfumvudza/Intwasa conservation agriculture program, the basin digger can significantly reduce labor and time in land preparation, especially for those with limited access to manual labor.

The service provision model: a pathway to accessible mechanization

Participants interested in the service provision model received first-hand information on the benefits of the program and how they could sign up. The service provision model is a key part of the Feed the Future Zimbabwe Mechanization and Extension activity, designed to facilitate year-round access to mechanization services in farming communities.

Through this model, trained service providers are established locally, offering a range of fee-based services, including land preparation, crop management, post-harvest processing, value addition, and transportation. This model makes essential machinery accessible to farmers without requiring them to purchase it outright. To support the establishment of service providers, three financing options are offered:

  • Loan facility: Prospective service providers apply for a loan from BancABC, with a 30% initial deposit of the total machinery cost. Upon approval, the balance is paid directly to the machinery supplier, who then delivers the equipment.
  • Hire purchase agreement: Service providers may opt for a hire purchase arrangement with the manufacturer, where machinery is provided after an agreed deposit, with the remaining balance paid over three to four months.
  • Outright cash purchase: Community members with funds can purchase machinery.
Strong community interest and prospects for growth

The Mechanization and Extension activity stand generated substantial interest among farmers in both districts. In Murewa, 95 participants engaged with the display, with eight potential service providers expressing interest in acquiring the peanut butter-making machine, manual groundnut sheller, and peanut roaster. Groundnut production is high in Murewa, so farmers were especially intrigued by the value addition machinery, which opens new opportunities for processing and marketing.

“As groundnut farmers, these machines will give us a business opportunity to sell peanut butter in large quantities,” said attendee Colleta Nzara of Murewa district.

We used to lose so much money by just selling unshelled groundnuts because very few could manually process into peanut butter, but with these machines, the whole process is so much easier,” said Florence Mutize of Murewa district.

In Mbire, where 57 participants visited the stand, the basin digger was a major attraction.

This is the first time I am seeing this machine that can ease our labor burdens when making our Pfumvudza plots,” said Jennifer Nyatande from Mbire district. “I’m eager to invest in one to both reduce costs on my farm and offer services to others.“

(Photo: CIMMYT)

The 2024 Agroecology Fairs provided an opportunity to demonstrate how mechanization can be both accessible and transformative for smallholder farmers. With growing interest from local communities, the Mechanization and Extension activity continues to work toward sustainable agricultural development across Zimbabwe’s rural districts.

Sustainable Agri-Food Colombia: a boost for resilient agriculture

Biofortified corn crop in Colombia (Photo: CIMMYT)

CIMMYT, in collaboration with the Bioversity-CIAT Alliance and the Ministry of Agriculture and Rural Development of Colombia, is contributing to the Sustainable Agri-Food Colombia project. This transformative initiative aims to reshape Colombia’s agricultural sector by fostering sustainable and resilient agri-food systems. Several research institutions are also part of this mission as strategic implementing partners.

The goal of Sustainable Agri-Food Colombia is to address the environmental and production challenges facing Colombian agriculture, while ensuring food security and sustainability. Through the implementation of innovative technologies, better agricultural practices and adaptation to climate change, it aims to improve the competitiveness of Colombian producers and reduce pressure on natural resources. In this sense, the project contributes to the achievement of the United Nations Sustainable Development Goals (SDGs), especially those related to climate action, life on earth and reducing inequalities. 

CIMMYT is collaborating in this project to join efforts to strengthen farmers’ capacities, as Sustainable Agri-Food Colombia focuses not only on agricultural production, but on the entire agri-food system, seeking to build more inclusive and efficient value chains, from production to the consumer, emphasizing community participation and knowledge transfer in an inclusive manner, involving women, youth and marginalized rural communities in decision-making processes and technology adoption. 

The collaboration between international CGIAR research centers, such as the Bioversity-CIAT Alliance and CIMMYT, together with key stakeholders in Colombia, demonstrates that the future of agriculture depends on an integrated vision that combines science, innovation and collaboration. This lays the foundation for transforming agriculture and food in Colombia for the benefit of people and the planet. 

‘I have bigger plans ahead’ – The journey of Tichaona from odd-job man to agricultural entrepreneur

Tichaona transporting hay bales using his acquired two-wheel tractor (Photo: Dorcas Matangi, CIMMYT)

In the heart of Mbire’s Ward 2 in Zimbabwe, Tichaona Makuwerere has earned the trust of his community, not just as a farmer but also as a resourceful problem-solver. His journey began with “piece jobs” — manual labor that barely made ends meet. From providing firewood and bricks to renting an ox-drawn cart, Tichaona’s days were filled with tough and gritty work. Occasionally, he crossed into Zambia to collect baobab fruit for sale, returning with livestock pesticides, which he traded locally.

However, stability remained elusive. Jobs were scarce, and community hiring often favored personal connections. Undeterred, Tichaona turned to self-employment in 2007, offering ox-drawn ripping services to farmers. His commitment didn’t go unnoticed. When the CGIAR Agroecology Initiative (AEI) came to Mbire, the community recognized Tichaona’s entrepreneurial spirit and nominated him as a service provider.

Catalyst for change: CGIAR Agroecology Initiative 

The CGIAR-funded Transformational Agroecology across Food, Land, and Water Systems (AE-I) aims to empower farmers like Tichaona to lead their communities toward sustainable agricultural practices.

AE-I brings together farmers and stakeholders to address local challenges and develop practical solutions in Mbire and Murewa. Through Agroecological Living Landscapes (ALLs)—collaborative spaces for innovation—various stakeholders work to identify, co-design, test, and adopt agroecological practices. One challenge identified was that agroecology can be labor-intensive, highlighting the need to reduce labor demands by integrating mechanization for manual activities such as crop planting, manure transportation, and threshing. Partnering with private sector organizations like Kurima Machinery, AE-I provides farmers in Mbire and Murewa with the tools and training necessary to make mechanized services more accessible.

Equipped for success through training and support 

Tichaona’s journey with AE-I began with intensive training at Gwebi College of Agriculture in Zimbabwe, where he learned the intricacies of machine operation, repair, and business management. The hands-on experience gave him the confidence he needed. “It was a turning point,” said Tichaona. “The training gave me skills that are hard to come by here. I learned how to run and sustain an agricultural service business.”

In addition, Kurima Machinery provided practical guidance and support when delivering his new equipment kit, which included a two-wheel tractor, trailer, grass cutter, chopper grinder, ripper, thresher, and basin digger. Although Tichaona had no prior experience with engines, his determination, along with Kurima’s ongoing virtual support, helped him develop the skills needed to operate and maintain the equipment.

Scaling up from oxen to efficient mechanization

The kit has dramatically transformed Tichaona’s way of working. Where he once struggled with oxen, the two-wheel tractor can now complete a three-hour task in just 30 minutes. This leap in efficiency has enabled him to expand his services beyond ripping and transportation. Tichaona now offers grass cutting, baling, grinding, threshing, and basin digging services.

Mechanization has not only streamlined his business but also significantly increased his clientele. Previously, he served around 50 clients per year; now, with the tractor, he supports over 200 annual clients, many of whom are repeat customers. In a region where animal feed is scarce during the dry season, Tichaona’s baling services have become especially valuable. Over the past year, he has produced more than 3,000 bales, even attracting safari operators who use the bales as bait for animals.

“Hatisi kumira kutsvaga mabasa” (We keep going forward and look for new jobs), Tichaona reflected with pride. In his drive to grow, he has further diversified his services to include grinding forest products such as Faidherbia albida, acacia, and Piliostigma thonningii pods, producing affordable livestock feed for farmers. He acquired these skills during livestock feed production training at the ALLs.

Mechanization has not only improved productivity but also mitigated environmental risks. Grass cutting and baling have curbed the practice of uncontrolled burning, which previously caused frequent veld fires in Mbire and Murehwa. In recognition of the project’s success in promoting sustainable land use, the Environmental Management Authority (EMA) has invested in additional service kits for other wards.

Transporting grass bales in Mbire for local farmers (Photo: Dorcas Matangi, CIMMYT)
Strengthening Resilience Amid Climate Uncertainty

Tichaona’s services have become indispensable in a community grappling with erratic weather patterns and prolonged droughts. By baling grass, sorghum stalks, and crop residues, he enables farmers to store feed for their livestock, mitigating risks during drought seasons. The benefits extend beyond livestock care—his machinery has helped farmers expand cultivable areas despite a shrinking planting season.

Moreover, Tichaona has stepped up as a water carrier during the dry months. With wells drying up, villagers often dig makeshift wells in distant riverbeds. Using his tractor, Tichaona fetches water from the borehole for the community. His efforts free up time for farmers to focus on land preparation and other critical tasks, boosting their productivity.

Building a Lasting Legacy at the Community Level

Tichaona’s success has translated into significant improvements for his family. His increased income has allowed him to build a new home and purchase land in Guruve town. He has also invested in goats for his children as a form of social security. “Kudya kaviri kwaitonetsa, ikozvino takutodya uye atichatenderi kuti muenzi asvika abve pamba asina kudya (We could barely afford two meals a day, but now we eat more than four meals. We ensure that no visitor leaves without eating),” he shared.

His generosity extends beyond his family. Tichaona provides free transportation for vulnerable residents, including the elderly, and offers free grinding services to low-income families. These acts of kindness have solidified his reputation as a respected and valued member of the community.

A Model of Adaptability and Determination

Tichaona’s journey has not been without challenges. Mechanical issues, such as trailer body wear, brake replacements, and two-wheel tractor bearing failures, have tested his resourcefulness. He stocks essential spare parts, conducts regular maintenance, and leverages Kurima Machinery’s support network for troubleshooting and repairs. Collaborating with other AE-I operators, he shares tips and techniques for maintaining machinery, ensuring consistent and reliable services.

As his confidence and skills grow, Tichaona is planning to expand his offerings. He envisions adding oil pressing for sunflower and groundnut as well as peanut butter production. Already, he has invested in a grinding mill operated by his wife, allowing him to focus on field services. His ambitions extend to poultry farming, where he plans to use his chopper grinder to produce feed, incorporating local products into his supply chain.

“Ndine hurongwa hukuru” (I have bigger plans ahead), Tichaona said. He dreams of drilling a borehole to support horticulture production, a venture that would benefit not only his family but also nearby farmers by providing easier access to water. His ultimate goal is to establish a comprehensive agricultural service hub, offering everything from land preparation to livestock feed production, to strengthen the community’s resilience.

A Model for Agroecological Transformation

Tichaona’s story exemplifies the far-reaching impact of empowering local service providers in rural agriculture. Through the CGIAR Agroecology Initiative, he transformed from being a community handyman to a pioneering agricultural entrepreneur in Mbire. His contributions not only enhanced agricultural efficiency and overall life for himself and his community, but also offered a blueprint for sustainable development in agriculture. His story reminds us that when local expertise is supported and equipped, it can transform communities into models of resilience and sustainable growth.

Helping herders access grazing lands and water sources amid prevailing food insecurity in Sudan

In parts of the conflict-ridden Sudan, including the eastern regions such as Kassala and Gadarif, rainfall is sparse and recurring droughts caused by climate change compound the issue. Consequently, perennial grasses that are supposed to grow back year after year are dramatically disappearing.

In addition, uncontrolled and heavy grazing in large areas in Sudan is also negatively affecting soil by increasing erosion, and cattle hooves can compact the soil, preventing plant roots from receiving enough oxygen, water, and nutrients.

Due to these factors, many pastoralist groups in east Sudan are seeking grazing resources outside their recognized tribal territory. A major problem for these groups has been the recurrent droughts and the deterioration of pasture areas, which has forced them to stay longer in areas with rich grazing, thus competing with other groups and leading to frictions and conflicts.

Livestock-Food Systems Development (LFSD) is a component of the Sustainable Agrifood Systems Approach for Sudan (SASAS), funded by USAID, focused on the dairy and meat subsector of the livestock sector. The LFSD aims to enhance the utilization of appropriate forage and feeding options through the demarcation of migratory routes to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

Along with partners, Practical Action and International Livestock Research Institute (ILRI), LFSD, is establishing a 50 km migratory route demarcation from Al Hindiiyya to Banqir in the Atbara River locality, Kassala State, East Sudan. These routes connect villages to public grazing land for livestock to pass through without impacting farmland.

The intervention also includes reseeding 1,000 feddans (around 420 hectares) of grazing lands and creating water ponds for animals during the rainy season. SASAS is also enhancing water harvesting by using a tractor to increase soil moisture. The two interventions were recommended by local communities and agriculture and animal resources authorities in Kassala state.

“As the rainy season is commencing, we started working with the local communities and reseeding the targeted areas in rural Kassala and River Atbara localities as recommended by the Ministry of Agriculture,” said Dr. Abdallah Osman, Project Manager, Practical Action.

Reseeding around 1,000 feddans of grazing lands in River Atbara Locality, Kassala (Photo:Suliman Fadlalla/CIMMYT )

“To ensure the best results, we used a mix of five high-quality seed types, all of which were recommended by the Kassala State Ministry of Agriculture,” Osman said.

The reseeding will serve 15 villages and enhance grazing lands for over 100,000 animals in the area. In addition, water storing capacity will be increased by constructing 15 large water ponds.

“For the past decades, our grazing lands had diminished gradually, and we face huge challenges in feeding our livestock, especially during dry seasons. In most cases, we had to buy costly fodder and water trucking,” said Ahmed Hassan, a community leader and a herder from River Atbara Locality, Kassala State. “We feel very proud to participate in reseeding the grazing lands in our areas, as this will increase grass yield and quality, enabling us to feed our animals better.”

The intervention also aims to rehabilitate animal migratory route demarcations to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

“As farmers, we suffer a lot from animals that cross into our agricultural fields and destroy our crops. We are relieved that reseeding will create more grazing lands for herders, and the demarcation of animal routes will help reduce the chronic seasonal conflicts between farmers and herders,” said Haw Osman, a farmer from Am Safri, Kassala Rural locality.

“At SASAS, we strive to ensure that herders have access to rich grazing lands. We work with our partners to address all problems linked to overgrazing, reseeding pasture lands, and treating the causes of conflict between herders and farmers. We involve local communities in creating clear animal migration routes away from farms and increasing water sources for animals through water harvesting projects,” said Abdelrahman Kheir, SASAS Chief of Party in Sudan.

Water harvesting to create water ponds for animals in River Atbara Locality, Kassala State (Photo: Suliman Fadlalla/CIMMYT )
SASAS partners work with local communities in rural Kassala and River Atbara to mark animal migration routes for animals (Photo: Suliman Fadlalla/CIMMYT)

International recognition for CIMMYT: Honorary Doctorate Awarded to Bram Govaerts in India

Ceremony for the awarding of an honorary doctorate to Dr. Bram Govaerts of CIMMYT. (Photo: Richa Puri / BISA)

During a formal ceremony at Chandra Shekhar Azad University of Agriculture and Technology (CSA) in Kanpur, India, Bram Govaerts, CIMMYT Director General, was awarded the honorary degree of Doctor Honoris Causa. This prestigious honor not only recognizes Govaerts’ outstanding career but also highlights CIMMYT’s innovative and collaborative work on behalf of global food security, a joint effort that impacts millions of farmers and communities around the world.

Upon receiving the recognition, Govaerts dedicated it to the entire CIMMYT team, emphasizing, “This honor is a testament to the tireless work of my colleagues and collaborators at CIMMYT, who, through science and innovation, are contributing to food and nutrition security in key regions such as India and South Asia.” He further noted that this Honorary Doctorate symbolizes the global commitment of CIMMYT and Mexico in addressing the agricultural and climate challenges that threaten food production.

This recognition also underscores the strong agricultural partnership between Mexico and India, a collaboration that has saved millions of lives. This alliance dates back to the Green Revolution, led by Norman Borlaug, who introduced wheat varieties developed in Mexico that allowed India to double its agricultural output and avert a catastrophic famine in the 1960s.

Ceremony for the awarding of an honorary doctorate to Dr. Bram Govaerts of CIMMYT. (Photo: Richa Puri / BISA)

Today, CIMMYT continues to be a vital partner for India, developing maize and wheat varieties that are resilient to extreme climate conditions and promoting sustainable agricultural practices. The Borlaug Institute for South Asia (BISA), established in 2011 as a collaboration between CIMMYT and the Indian Council of Agricultural Research (ICAR), is a testament to the progress made through international collaboration. BISA has played a critical role in strengthening India’s agri-food systems, improving the livelihoods of millions of farmers, and contributing to environmental restoration in the region.

Beyond commercial ties, scientific collaboration between Mexico and India has been a cornerstone of agricultural improvements in both countries. India, the world’s second-most populous country, faces significant food production challenges, many of which mirror Mexico’s struggles, such as soil degradation and the effects of climate change. Thanks to CIMMYT’s collaboration with Indian institutions, critical advances have been made to address these challenges, paving the way for more resilient and sustainable agriculture.

The honorary doctorate awarded to Bram Govaerts not only recognizes his leadership but also the transformative impact of CIMMYT and its partners in improving the lives of millions of people around the world. Govaerts said, “This award reflects the strength of international scientific collaboration and the power of science to change the world.”

Scaling fodder innovations to improve livestock productivity in Zimbabwe’s semi-arid regions

Gogo Consilia Nyamunda in her pigeon pea field (CIMMYT)

When she first ventured into growing pigeon peas as a baby trial host farmer, Gogo Consilia Nyamunda doubted that intercropping them with maize would bring any benefits, especially given the weather had not been lenient over the past few years in Buhera district, in eastern Zimbabwe. “This year has been the hardest. I’ve never experienced such drought and heat stress, but it’s not just me—it’s affecting the entire country,” says Gogo Consilia. Yet, her production turned out to be better than that of farmers growing only maize, a popular crop in Southern Africa. Encouraged by the results, she expanded her efforts, dedicating half a hectare to pigeon peas. “From just 0.2 hectares of pigeon peas, I still managed to harvest 10 kilograms in these extremely dry conditions. It’s not just for feeding my chickens—other farmers are now interested in the seeds as well,” she explains.

Gogo Consilia Nyamunda is one of twelve farmers experiencing new feed production practices as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project, rolled out since 2020 by the International Livestock Research Institute (ILRI) in partnership with CIMMYT, the French Agricultural Research Center for International Development (CIRAD), and the University of Zimbabwe (UZ).

In the face of a changing climate, building the resilience of local farmers is crucial to safeguarding both their meal baskets and livestock feed. In this context, LIPS Zimbabwe has emerged as a strategic initiative, deeply rooted in farmer-driven trials to scale fodder production while maximizing the potential of mechanization for smallholder farmers in Buhera. By integrating improved agronomic practices with scalable fodder production, LIPS Zimbabwe is helping farmers withstand the challenges posed by climate change.

Empowering local farmers through fodder production

In the same district, Shirley Makoni also began as a baby trial farmer, intercropping maize with jack bean, a leguminous crop resilient to drought. Her case highlights the importance of diversifying crops and adapting to the realities of climate change: despite initial skepticism, Shirley found that jack beans not only survived the drought but also provided valuable feed for her cows. “I didn’t think anything would come out of it, but the cows love the leaves and seeds. They’ve gained weight, and the crop has been easy to manage,” she shares. While her maize and other crops failed due to the severe weather, jack bean proved to be a reliable source of feed, allowing her to bale the leaves and even share the harvest with others.

Shirley Makoni proudly holds her jack bean hay bale (CIMMYT)

One of the key strategies employed by LIPS Zimbabwe is the promotion of resilient fodder crops that can thrive under harsh climatic, semi-arid conditions where potential evapotranspiration far exceeds seasonal rainfall, which is often below 600 mm. This approach not only ensures a reliable source of feed for livestock but also contributes to the overall resilience of farming systems. The success story of farmers like Gogo Consilia Nyamunda highlights the transformative impact of these efforts.

“The idea of testing new innovations has paid off. Despite the poor sandy soils in Buhera, these fodder crops (jack bean and pigeon pea) have done well!” says Isaiah Nyagumbo, a Systems Agronomist leading the CIMMYT component of the LIPS-Zim project. “This means we now have a more diverse range of leguminous fodder crop species that can be grown in these semi-arid conditions, apart from the more common ones such as mucuna, lablab, and cowpeas.”

Some preliminary laboratory results also suggest that jack bean contains much higher crude protein than popular fodder legumes like mucuna. Jack bean could thus offer a new resilient feed option for farmers in these drought-prone regions and can be grown as an intercrop or in rotation with cereals.

Transforming fodder production through mechanization

Tying the LIPS Zimbabwe project together is the introduction of the mechanization component, from planting to processing the fodder crops, which is crucial for increasing the scale of fodder production in Zimbabwe’s semi-arid regions. By processing forage legumes such as jack bean, lablab, pigeon pea, mucuna, and cowpea, farmers can ensure a steady supply of nutritious feed for their livestock, even in the face of unpredictable weather patterns.

Local farmers in Buhera have been equipped with machinery such as a chopper grinder, hay balers, planters, and tractors, and trained to use and maintain the equipment. “Among the machinery at hand, the hay baler has been a great win for me, especially for the cows,” says Gandani Nhachi. “Last season, I made 27 bales of fodder, which has been vital for my herd. I’ve also grown my goat herd from 16 last year to 35 this year,” he proudly shares.

Building resilience for the future

As climate change continues to challenge farmers, initiatives like LIPS Zimbabwe are essential for building resilience. By combining traditional knowledge with modern practices, scaling fodder production, and embracing mechanization, farmers in Buhera are better equipped to protect their livelihoods and ensure food security. As Gandani puts it, “Climate change is inevitable, but with the right practices, we can still thrive. When I give my goats food, they multiply. Even if one side fails, all hope is not lost.”

Nane Nane fair in Tanzania showcases agricultural innovation and collaboration

Partners at the AID-I exhibition booth (Photo: CIMMYT)

In Tanzania, the first week of August is all about agriculture. From August 1 to 8, agricultural fairs, also known as Nane Nane fairs, are held all over the country to recognize the contribution of farmers to the national economy. ‘Nane Nane’ in the local language means ‘eight eight,’ referring to August 8, which is celebrated as Farmers Day in the country.

Organized by the Agricultural Society of Tanzania, these fairs serve as a landmark event for agricultural stakeholders across the region. This year, the 31st edition of the fair was organized at the Nzuguni grounds in Dodoma. It saw 500 exhibitors, including smallholder farmers, agricultural enterprises, public and private sector entities, and government officials.

Themed ‘Embrace Visionary Leadership for Agricultural Transformation,’ the event emphasized the need for leadership commitment to sustainable agriculture, while highlighting the critical role of agriculture in Tanzania’s economic growth and food security.

The Southern Africa Accelerated Innovation Delivery Initiative (AID-I), funded by United States Agency for International Development (USAID) and implemented by CIMMYT, along with several partners, played a prominent role at this year’s fair. In addition to raising awareness of the innovative work being done, the fair provided a platform for AID-I and its partners to showcase a range of innovative agricultural technologies designed to address the specific needs of Tanzanian farmers. The event also enabled AID-I and its partners to interact directly with farmers and entrepreneurs, resulting in valuable feedback. 

Celebrating the Success of AID-I Beneficiaries at Nane Nane

 

The Nane Nane fair was more than just a display of agricultural technologies. It was also a celebration of the successes of local entrepreneurs who had benefited from AID-I’s support.

Among them was Sarah Mashauri, an entrepreneur from the Tabora region, who ventured into the business world by producing and selling maize flour, both wholesale and retail. Starting with only one sack of maize and a loan of 100,000 Tanzanian shillings (approximately US$36), Sarah faced numerous obstacles, including regulatory challenges that resulted in the Tanzania Food and Drugs Authority confiscating her items. The AID-I project recognized her potential and resilience. She was equipped with a milling and dehulling machine, which significantly improved her business. “Before the AID-I project came into my life, I was struggling on my own,” she said. “The support, coupled with the extensive training they provided, enabled me to scale up my operations. I went from employing seven people to 35, and my business expanded significantly. I am now able to source raw materials easily from small-scale farmers, thanks to the networks and training provided by AID-I.”

Agatha Laiza, managing director of Seasoning Palate, a food products company operating under the brand name Tobi Product in Dar es Salaam, is another entrepreneur who benefited from AID-I’s support. Agatha specializes in peanut butter, crunchy nuts, and peanut oil. Her journey began in 1996 with a focus on food product processing. She later realized the potential in peanut production and shifted to adding value to peanuts, while also addressing the critical issue of aflatoxin contamination. With support from AID-I, Agatha was able to build solar dryers for farmers and provide them with high-quality seeds, significantly reducing the risk of aflatoxin in their crops. “The support from USAID, CIMMYT, and AID-I has been invaluable,” Agatha said. “They have helped us build confidence among our farmers, reducing ground nut loss and ensuring safe, quality produce. Our factory, which can process up to three tons of peanuts daily, now operates more efficiently and our products are safer and more reliable.”

Aithan Chaula, executive director of the Dodoma Agriculture Seed Production Association (DASPA), also benefited from the AID-I project’s support. Since beginning pigeon pea production in 2022, DASPA saw substantial growth in demand for pigeon pea seeds, partnering with ALSSEM, a local seed production company.

DASPA expanded its operations to produce quality declared seeds (QDS) and certified seeds, catering to a growing market. Aithan attributed their success to the strategic support from AID-I and partnerships with organizations such as CIMMYT and ALSSEM. “The collaboration allowed us to expand our production capabilities and reach more farmers across various regions,” he said. DASPA is currently working with approximately 20,000 farmers and plans to increase this number by distributing small seed packs and conducting field demonstrations.

“This year at Nane Nane, we were able to distribute small packs of pigeon pea seeds to approximately 1,200 farmers to plant and farm,” said Aithan. “This effort, supported by AID-I, ensures that pigeon pea cultivation becomes well-known and widely adopted by farmers, contributing to both food security and income generation.”

The U.SA Ambassador to Tanzania interacting with exhibitors at the AID-I exhibition booth (Photo: CIMMYT)

Dr. Michael A. Battle Sr., the United States Ambassador to Tanzania, paid a visit to the AID-I exhibition booth. He engaged with AID-I representatives and the exhibitors, praising their innovative efforts to advance climate-smart agriculture and enhance food security. “It’s a joy to be participating in Nane Nane, particularly because USAID is interested in assisting Tanzania not only to become food secure but also to help with East Africa’s food security and ultimately the continent’s food security,” said Ambassador Battle Sr. He added that it was fulfilling to see the entire value chain of agriculture and agribusiness involving young people and old people engaged in the process of making Tanzania wealthier and more food secure.

For AID-I and its partners, the fair was a crucial opportunity to highlight ongoing initiatives and foster new partnerships. Peter Setimela, the Legume Seed Systems lead for AID-I, emphasized the importance of such events. “Our work in accelerating innovative technologies and ensuring they reach the farmers is reliant on strong partnerships. We bring these technologies to farmers by strengthening local seed systems, connecting farmers to financial services and products, and providing advisory services,” he said.