Madhulika Singh
Madhulika Singh is an agricultural scientist working with CIMMYT in India.
Madhulika Singh is an agricultural scientist working with CIMMYT in India.
In the traditional Indian society Madhulika Singh grew up in, girls choosing to study science, technology, engineering or mathematics (STEM) was as radical as choosing a life partner on their own.
“They say women hold up half the sky. I believe they should hold up as much and contribute equally in STEM too,” says Singh, now an agriculture specialist at the International Maize and Wheat Improvement Center (CIMMYT).
In her early teens she saw her mother, a school headmaster, comfortably navigate her career along with her domestic responsibilities without a sweat. She later saw a similar example in her sister-in-law. “I grew up thinking ‘there is so much that a woman is capable of,’ whether at home or her workplace,” Singh recalls.
This strong idea of women’s potential led her to pursue studies in science. “Many women before me, like my mother’s generation, were encouraged to take up [careers in] humanities — become a teacher, or pursue home management courses — to ensure a smooth transition once married,” Singh explains. She hoped this would change during her time and that following a career in STEM would be a matter of choice — not gender.
Singh’s goals and ambitions were very clear from the very beginning. In school, she was interested in biology, particularly plant studies and botany. Her inquisitive nature was reflected in her projects and presentations, scoring her high grades. She demonstrated a thorough understanding of plant physiology and her passion for the subject. The budding scientist always wanted to know more and to do more, which Singh feels resonates with her current research and publications.
A popular quote attributed to Mahatma Gandhi says “Be the change you want to see in the world.” When Singh chose to take up plant science in graduate school and then agriculture science for her doctorate, she became the change she had hoped to see in her home and society as a young girl. With the support from her family but a skeptical society, she went ahead and pursued a career in STEM, beginning her research on maize genotypes and conservation agriculture. In 2013 she joined CIMMYT as a physiologist.
Helping farmers transition to conservation agriculture
Singh currently works in her home state of Bihar for the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. She is engaged with over ten thousand farmers from the states of Bihar and Uttar Pradesh, supporting the adoption of conservation agriculture practices.
Farming is vital for the region, as nearly 70% of the population is engaged in agriculture and extension services. However, food and livelihoods are threatened by the small size of farms, low incomes, and comparatively low levels of agricultural mechanization, irrigation and productivity.
Singh and her colleagues have led the transition from traditional farming to sustainable intensification practices — like early wheat sowing, zero tillage and direct-seeded rice — which have helped smallholder farmers increase their yield potential substantially.
“We believe a project like CSISA, along with the government and partners, can help advance and support in realizing the full agriculture potential of these regions,” Singh explains.
Roots in the soil
Her grandparents were farmers. “To be able to care for the land that provided you nourishment and a living was always admired upon,” she says. As a crop scientist, Singh’s family acknowledges her work as an extension of the services her grandparents practiced.
Sustained by this motivation and encouragement, Singh feels reassured of her role: joining other scientists, partners and farmers to make agriculture sustainable and our communities food-secure.
“The fact that the data we generate from our experiments serve as building blocks in the generation of knowledge and help farmers optimize the cost of inputs and increase their productivity is fulfilling and enriching to me,” Singh expresses.
Apart from working to build the capacity of farmers and extension workers, Singh supports the implementation of field trials and community-based technology demonstrations. She also helps refine key agricultural innovations, through participatory testing, and optimizes cropping systems in the region.
Leading the way for for the next generation
A true representative of the STEM community, Singh is always learning and using her experience to give back to society. She has co-authored numerous books and contributed to journals, sharing her knowledge with others.
Other women leaders in STEM have inspired Singh in her professional life, including CIMMYT’s former deputy director general for research Marianne Banziger. Singh believes Banziger was trailblazing and that young girls today have many female role models in STEM that can serve as inspiration.
The change is already here and many more young women work in STEM, pursuing excellence in agriculture sciences, engineering and research studies contributing to as well as claiming “half the sky.”
Cover photo: CIMMYT researcher Madhulika Singh (center-right) stands with farmers from self-help groups in the village of Nawtanwa, West Champaran, in India’s Bihar state. CIMMYT works on gender inclusion and participation through partnerships with other organizations and self-help groups. (Photo: CIMMYT)
Today the Weed Science Society of America (WSSA) announced the Honorary Member award for Ram Kanwar Malik, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). This award is given every year to a person who has made outstanding contributions to weed science “through their research, teaching, publishing and outreach.”
Malik’s early engagement in agricultural sustainability led to initiatives exploring herbicide resistance evolution and management, zero tillage, and other resource-conservation technologies. At the Cereal Systems Initiative for South Asia (CSISA) — a regional project led by CIMMYT — Malik and his colleagues helped promote the practice of early wheat sowing to beat terminal heat stress, resulting in increased wheat yield in India’s eastern Indo-Gangetic Plains.
“WSSA’s Honorary Member award is one of the highest recognitions bestowed by the Weed Science Society of America,” said Krishna Reddy, Chair of the WSSA 2022 Award Committee. “[The] Honorary Member is selected for meritorious service to weed science, among non-members from North America or any weed scientist from other countries. Only one person per year is awarded this membership. Dr. Malik’s significant research in weed science and his collaborative effort to deliver solutions for farmers in developing countries like India is inspirational.”
The award was presented virtually at the 2022 annual meeting of WSSA, held in Vancouver, Canada.
Transforming rice–wheat systems
Malik has worked extensively in the Indo-Gangetic Plains, leading many initiatives and innovations over the years, in collaboration with national and international partners. The WSSA award highlights Malik’s inspiring work in tackling herbicide resistance problems, first reported in India by his team in 1993. Malik was instrumental in developing a management solution for herbicide-resistant Phalaris minor, a pernicious weed in wheat crops. The integrated weed management system he helped develop raised wheat yield capacity significantly for farmers in the Indo-Gangetic Plains.
“The WSSA Honorary Member award reiterates the importance of agronomic management for sustained weed control strategies across cropping systems,” Malik said. “CIMMYT and partners, including the Australian Centre for International Agricultural Research (ACIAR), were the first to introduce zero tillage in wheat as part of a strategy to manage weed resistance problems in India. It is an honor that WSSA has recognized this collective work of ours,” he acknowledged.
Malik has devoted more than thirty years to transforming agricultural systems in the Indo-Gangetic Plains, working closely with farmers and partners, and building the capacity of national agricultural and research extension systems. he is a firm believer in farmers’ participation: “Large-scale adoption of sustainable agricultural practices is possible when we work together to leverage technologies which are mutually agreed by partners and meet farmers’ needs.”
Malik is a fellow of the Indian Society of Agronomy and the Indian Society of Weed Science (ISWS), which granted him the Lifetime Achievement Award. He has also received the Outstanding Achievement Award from the International Weed Science Society (IWSS) and the 2015 Derek Tribe Award from the Crawford Fund.
He remains passionate about and invested in changing the lives of farmers through better-bet agronomy and by leading innovative research at CIMMYT.
About the Weed Science Society of America (WSSA)
Founded in 1956, WSSA is a nonprofit scientific society that encourages and promotes the development of knowledge concerning weeds and their impact on the environment.
Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.
Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex — that is, they are controlled by many genes and gene interactions — so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.
Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.
Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.
Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.
With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the crops’ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered “banks.”
The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.
Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.
Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.
Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.
Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.
Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plant’s genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA “fingerprint” of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.
Plant breeders normally prefer to work with “elite” populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.
Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmers’ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.
Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.
In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa — a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought — was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.
Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.
Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.
Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.
Crosses of wheat with related crops (rye) or even wild grasses — the latter known as wide crosses — have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as “goat grass,” that boost their resilience and provide other valuable traits to protect yield.
Biofortification — breeding to develop nutritionally enriched crops — has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.
Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.
Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information — also called phenotyping — to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles — or generations — to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.
Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.
Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIAR’s Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.
Cover photo: CIMMYT experimental station in Toluca, Mexico. Located in a valley at 2,630 meters above sea level with a cool and humid climate, it is the ideal location for selecting wheat materials resistant to foliar diseases, such as wheat rust. Conventional plant breeding involves selection among hundreds of thousands of plants from crosses over many generations, and requires extensive and costly field, screenhouse and lab facilities. (Photo: Alfonso Cortés/CIMMYT)
New improved maize varieties may fall short in meeting the needs of women and the poorest of farmers – a concern that remains a focus of the International Maize and Wheat Improvement Center (CIMMYT) and the wider CGIAR.
Lower than expected adoption rates for some new maize varieties suggest that innovative strategies in breeding and seed delivery are likely needed. There is broad recognition of the need to get new germplasm from the CGIAR and its partners into the fields of more farmers in less time.
CIMMYT research on markets and social inclusion focuses on understanding two related dynamics: the unique preferences, needs and circumstances faced by women and the poorest farmers, and the implications these carry for how breeding programs and seed companies design and market new varieties.
Taking stock of knowledge and gaps in gender and maize breeding
A new paper by CIMMYT researchers, “Gender inclusivity through maize breeding in Africa: A review of the issues and options for future engagement”, takes stock of lessons learnt on gender and maize breeding and assesses knowledge gaps that need to be filled to effectively support gender-responsive and gender-intentional breeding and seed systems work.
Decades of research on maize preferences have sought to understand if and how men’s and women’s preferences differ. However, existing data provides unclear guidance to maize breeders on gender-relevant traits to prioritize in product profile design. The evidence suggests a lack of meaningful differences in what men and women are looking for in maize—yield, drought tolerance and early maturity—are high priorities almost across the board.
One reason for the similarity in preferences among women and men may relate to how we evaluate them, the authors argue. Preference studies that focus on evaluation of varieties’ agronomic and productivity-related traits may overlook critical components of farmers’ variety assessment and seed choice, including their household and farming context. Ultimately, they say, we need to explore new approaches to evaluating farmer demand for seed, considering new questions instead of continuing to look for gender-based differences in preferences.
A first step in that direction is to figure out how demand for maize seed differs among farmers according to their needs, priorities and resource limitations. Gender is definitely a part of that equation, but there’s much more to think about, like how maize fits into household food security and livelihoods, decision-making dynamics around maize production, and seed accessibility. New tools will be needed for understanding those and how decision-making around seed happens in real-world contexts.
Understanding how farmers make decisions on seed choice
The authors offer several practical suggestions for maize breeders and other researchers in this space:
With the transition to the One CGIAR, sharing tools and lessons learned across crops will be increasingly important. Researchers in the CGIAR community have developed new tools for gender-responsive and gender-intentional breeding. This includes through the Gender and Breeding Initiative, which has published the G+ tools to support gendered market segmentation and gender-intentional product profile development.
While learning from one another’s experiences will prove essential during the transition, recognizing that the gender dynamics of maize production may be very different from sweet potato production will also be key. Here, the new Market Intelligence & Product Profiles initiative and SeEdQUAL initiative on seed systems will both create new spaces for exploring these issues across crops.
Related links
Webinar: CIMMYT Webinar (Nov. 2021) on Gender Inclusivity through Maize Breeding
CGIAR Gender & Breeding Initiative link: http://www.rtb.cgiar.org/gender-breeding-initiative/
Breeding for better gender equity at CGIAR Excellence in Breeding: https://excellenceinbreeding.org/blog/breeding-better-gender-equity
The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in eastern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to register and commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities.
The deadline to submit applications to be considered during the first round of allocations is February 11, 2022. Applications received after that deadline will be considered during the following round of product allocations.
Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.
Product Profile | Newly available CIMMYT hybrids | Basic traits | Nice-to-have / Emerging traits |
Eastern Africa Product Profile 1A
(EA-PP1A) |
CIM20EAPP1-01-38 | Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV | MLN, Striga, FAW |
CIM20EAPP1-01-1 | |||
CIM20EAPP1-01-16 |
You can download the full text and trial data summary for the CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 to 2021 Seasons and Product Announcement.
Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.
A recent publication in the journal Frontiers of Plant Science provides results of the first-ever study to test genomic selection in breeding for resistance to wheat blast, a deadly disease caused by the fungus Magnaporthe oryzae that is spreading from its origin in Brazil to threaten wheat crops in South Asia and sub-Saharan Africa.
Genomic selection identifies individual plants based on the information from molecular markers, DNA signposts for genes of interest, that are distributed densely throughout the wheat genome. For wheat blast, the results can help predict which wheat lines hold promise as providers of blast resistance for future crosses and those that can be advanced to the next generation after selection.
In this study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners evaluated genomic selection by combining genotypic data with extensive and precise field data on wheat blast responses for three sets of genetically diverse wheat lines and varieties, more than 700 in all, grown by partners at locations in Bangladesh and Bolivia over several crop cycles.
The study also compared the use of a small number of molecular markers linked to the 2NS translocation, a chromosome segment from the grass species Aegilops ventricosa that was introduced into wheat in the 1980s and is a strong and stable source of blast resistance, with predictions using thousands of genome-wide markers. The outcome confirms that, in environments where wheat blast resistance is determined by the 2NS translocation, genotyping using one-to-few markers tagging the translocation is enough to predict the blast response of wheat lines.
Finally, the authors found that selection based on a few wheat blast-associated molecular markers retained 89% of lines that were also selected using field performance data, and discarded 92% of those that were discarded based on field performance data. Thus, both marker-assisted selection and genomic selection offer viable alternatives to the slower and more expensive field screening of many thousands of wheat lines in hot-spot locations for the disease, particularly at early stages of breeding, and can speed the development of blast-resistant wheat varieties.
Read the full study:
Genomic Selection for Wheat Blast in a Diversity Panel, Breeding Panel and Full-Sibs Panel
The research was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Bangladesh Wheat and Maize Research Institute (BWMRI), the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF) of Bolivia, the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research (ICAR) in India, the Swedish University of Agricultural Sciences (Alnarp), and Kansas State University in the USA. Funding for the study was provided by the Bill & Melinda Gates Foundation, the Foreign and Commonwealth Development Office of the United Kingdom, the U.S. Agency for International Development (USAID), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), the Swedish Research Council, and the Australian Centre for International Agricultural Research (ACIAR).
Cover photo: A researcher from Bangladesh shows blast infected wheat spikes and explains how the disease directly attacks the grain. (Photo: Chris Knight/Cornell University)
Grafting is the technique of joining the shoot of one plant with the root of another, so they continue to grow together as one. Until now it was thought impossible to graft grass-like plants in the group known as monocotyledons because they lack a specific tissue type, called the vascular cambium, in their stem.
Researchers at the University of Cambridge have discovered that root and shoot tissues taken from the seeds of monocotyledonous grasses — representing their earliest embryonic stages — fuse efficiently. Their results are published today in the journal Nature.
An estimated 60,000 plants are monocotyledons; many are crops that are cultivated at enormous scale, for example rice, wheat and barley.
The finding has implications for the control of serious soil-borne pathogens including Panama Disease, or Tropical Race 4, which has been destroying banana plantations for over 30 years. A recent acceleration in the spread of this disease has prompted fears of global banana shortages.
“We’ve achieved something that everyone said was impossible. Grafting embryonic tissue holds real potential across a range of grass-like species. We found that even distantly related species, separated by deep evolutionary time, are graft compatible,” said Julian Hibberd in the University of Cambridge’s Department of Plant Sciences, senior author of the report.
The technique allows monocotyledons of the same species, and of two different species, to be grafted effectively. Grafting genetically different root and shoot tissues can result in a plant with new traits — ranging from dwarf shoots, to pest and disease resistance.
Alison Bentley, CIMMYT Global Wheat Program Director and a contributor to the report, sees great potential for the grafting method to be applied to monocot crops grown by resource-poor farmers in the Global South. “From our major cereals, wheat and rice, to bananas and matoke, this technology could change the way we think about adapting food security crops to increasing disease pressures and changing climates.”
High magnification images show successful grafting of wheat in which a connective vein forms between root and shoot tissue after four months. White arrows show the graft junction. (Photo: Julian Hibberd)Monocotyledons breakthrough
The scientists found that the technique was effective in a range of monocotyledonous crop plants including pineapple, banana, onion, tequila agave and date palm. This was confirmed through various tests, including the injection of fluorescent dye into the plant roots — from where it was seen to move up the plant and across the graft junction.
“I read back over decades of research papers on grafting and everybody said that it couldn’t be done in monocots. I was stubborn enough to keep going — for years — until I proved them wrong,” said Greg Reeves, a Gates Cambridge Scholar in the University of Cambridge Department of Plant Sciences, and first author of the paper.
“It’s an urgent challenge to make important food crops resistant to the diseases that are destroying them,” Reeves explained. “Our technique allows us to add disease resistance, or other beneficial properties like salt-tolerance, to grass-like plants without resorting to genetic modification or lengthy breeding programmes.”
The world’s banana industry is based on a single variety, called the Cavendish banana — a clone that can withstand long-distance transportation. With no genetic diversity between plants, the crop has little disease-resilience. And Cavendish bananas are sterile, so disease resistance cannot be bred into future generations of the plant. Research groups around the world are trying to find a way to stop Panama Disease before it becomes even more widespread.
Grafting has been used widely since antiquity in another plant group called the dicotyledons. Dicotyledonous orchard crops — including apples and cherries, and high-value annual crops including tomatoes and cucumbers — are routinely produced on grafted plants because the process confers beneficial properties, such as disease resistance or earlier flowering.
The researchers have filed a patent for their grafting technique through Cambridge Enterprise. They have also received funding from Ceres Agri-Tech, a knowledge exchange partnership between five leading universities in the United Kingdom and three renowned agricultural research institutes.
“Panama disease is a huge problem threatening bananas across the world. It’s fantastic that the University of Cambridge has the opportunity to play a role in saving such an important food crop,” said Louise Sutherland, Director of Ceres Agri-Tech.
Ceres Agri-Tech, led by the University of Cambridge, was created and managed by Cambridge Enterprise. It has provided translational funding as well as commercialisation expertise and support to the project, to scale up the technique and improve its efficiency.
This research was funded by the Gates Cambridge Scholarship programme.
Read the study:
Monocotyledonous plants graft at the embryonic root-shoot interface
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:
Marcia MacNeil, Head of Communications, CIMMYT.
Jacqueline Garget, Communications Manager, Office of External Affairs and Communications, University of Cambridge
ABOUT THE UNIVERSITY OF CAMBRIDGE:
The University of Cambridge is one of the world’s top ten leading universities, with a rich history of radical thinking dating back to 1209. Its mission is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.
The University comprises 31 autonomous Colleges and 150 departments, faculties and institutions. Its 24,450 student body includes more than 9,000 international students from 147 countries. In 2020, 70.6% of its new undergraduate students were from state schools and 21.6% from economically disadvantaged areas.
Cambridge research spans almost every discipline, from science, technology, engineering and medicine through to the arts, humanities and social sciences, with multi-disciplinary teams working to address major global challenges. Its researchers provide academic leadership, develop strategic partnerships and collaborate with colleagues worldwide.
The University sits at the heart of the ‘Cambridge cluster’, in which more than 5,300 knowledge-intensive firms employ more than 67,000 people and generate £18 billion in turnover. Cambridge has the highest number of patent applications per 100,000 residents in the UK.
ABOUT CIMMYT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.
Cover photo: A banana producer in Kenya. (Photo: N. Palmer/CIAT)
Dorcus Chepkesis Gemenet is a Breeding Simulation Specialist working with CIMMYT’s Integrated Development program.
She is currently working with the CGIAR Excellence in Breeding (EiB) Platform, in the Breeding Program Optimization team as a Breeding Simulation Specialist mainly giving direct support on program optimization for Roots, Tubers and Bananas CGIAR group of crops (RTB) with IITA, CIAT and CIP.
She has more than 10 years’ experience working with different CGIAR centers. Before joining EIB, she worked for the International Potato Center (CIP) as a Molecular Breeder and Quantitative Geneticist with duties to develop genomics-ssisted breeding tools and establish quality control standards in sweet potato and potato. Before CIP, as part of her PhD, she worked with ICRISAT in the Sahel region of West Africa (Niger, Mali, Burkina Faso and Senegal) on the genetic basis of low phosphorus tolerance in the Pearl millet systems. Chepkesis Gemenet was also part of the Kenya Maize Working group (KALRO) and worked on CIMMYT/NARS Projects including IRMA II, DTMA, WEMA and IMAS.
In agriculture, good soil management is a pillar of productive systems that can sustainably produce sufficient and healthy food for the world’s growing population.
Soil properties, however, vary widely across geography. To understand the productive capacity of our soils, we need high-quality data. Soil Intelligence System (SIS) is an initiative to develop comprehensive soil information at scale under the Cereal Systems Initiative for South Asia (CSISA) project in India. SIS is led by the International Maize and Wheat Improvement Centre (CIMMYT) in collaboration with ISRIC – World Soil Information, International Food Policy Research Institute (IFPRI), and numerous local partners on the ground.
Funded by the Gates Foundation, the initiative launched in 2019 helps rationalize the costs of generating high-quality soils data while building accessible geo-spatial information systems based on advanced geo-statistics. SIS is currently operational in the States of Andhra Pradesh, Bihar and Odisha where the project partners collaborate with state government and state agricultural universities help produce robust soil health information.
Farmers are the primary beneficiaries of this initiative, as they get reliable soil health management recommendations to increase yields and profits sustainably while state partners, extension and agricultural development institutions and private sector benefit primarily by expanding their understanding for agricultural interventions.
Modern Soil Intelligence System Impact
CIMMYT’s SIS Project lead Balwinder Singh said, “The Soil Intelligence Systems initiative under CSISA is an important step towards the sustainable intensification of agriculture in South Asia. SIS has helped create comprehensive soil information – digital soil maps – for the states of Andhra Pradesh, Bihar and Odisha. The data generated through SIS is helping stakeholders to make precise agronomy decisions at scale that are sustainable.”
Since its launch in December 2019, a wider network and multi-institutional alliances have been built for soil health management and the application of big data in addressing agricultural challenges. In the three states the infrastructure and capacity of partners have been strengthened to leverage soil information for decision-making in agriculture by devising new soil health management recommendations. For example, in the state of Andhra Pradesh, based on SIS data and outreach, State Fertilizer and Micronutrient Policy (SFMP) recommendations were created. Similarly, soil health management zones have been established to strengthen the fertilizer distribution markets enabling farmers with access and informed choices.
“Soil Intelligence System delivers interoperable information services that are readily usable by emerging digital agricultural decision support systems in India”, noted Kempen Senior Soil Scientist at ISRIC.
The three-part infographic highlights the impact of SIS initiative in the select three States and emphasizes the importance of SIS in other parts of the country as well.
The Maize Lethal Necrosis (MLN) Screening Facility quarantine site in Naivasha, Kenya, is used to provide MLN phenotyping services at cost to national agricultural research systems and seed companies in Africa.
The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture and Livestock Research Organization (KALRO) have been screening germplasm against MLN in Kenya since November 2012. The dedicated screening facility in Naivasha was established in 2013. This facility now represents a high-quality phenotyping platform, permitting large-scale screening of germplasm from regional public and private partners.
The facility has enabled CIMMYT and its partners to identify numerous materials that are resistant or tolerant to this devastating maize disease. Many of these products are featured in CIMMYT’s Maize Product Catalog.
Dryland Crops, formerly known as the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, aims to improve the livelihoods of small-scale producers and consumers of sorghum, millet, groundnut, cowpea and bean. Project partners focus on improving the breeding and seed systems of these crops in their key geographies in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Tanzania and Uganda. Other crops receiving growing attention in the project include finger millet, pigeon pea and chickpea.
Although significant adoption of improved seed of dryland cereals and legume crops in Africa has been reported, its overall use remains low. There is a growing interest in these crops, particularly because of their resilience to climate-change; however, the seed sector is constrained by lack of product information, dearth of knowledge of the size and scale of the business opportunity, and inadequate access to early generation seed.
Dryland Crops will address these constraints by contributing to the establishment of robust systems that:
The aspiration is to codevelop, validate by co-implementation, and continuously improve with partners research-to-farm-to-consumer models that achieve positive impacts on farmers’ livelihoods and consumers’ wellbeing.
The Alliance of Bioversity and CIAT and IITA will lead initiatives for common bean and cowpea, respectively. For sorghum, pearl millet and groundnut breeding, CIMMYT will design programs that support crop improvement networks, including CGIAR and national agricultural research systems, and incorporate best approaches, principles, and tools, particularly those availed through the Excellence in Breeding (EiB) platform.
The project is committed to gender equity as a guiding principle, considering the critical role women play in choosing legume and cereal varieties and seed sources. Women seed entrepreneurs and women-led seed companies will garner special attention for capacity development. Partnerships with actors through the value chain, platforms and demonstrations will ensure women have equal access to improved technologies.
The previous phase of the AVISA project was led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
Over 70% of rural women in India are engaged in agriculture. Women carry out a large portion of farm work, as cultivators and agricultural laborers, but in most cases they are not even counted and recognized as farmers. Millions of Indian rural women also carry the burden of domestic work, a job that is undervalued and unrecognized economically.
On the International Day of Rural Women, October 15, the focus is on their contributions to growing food and feeding families. The often invisible hands of rural women play a pivotal role in food security and sustaining rural communities.
Today, we have a glimpse at the daily life of farmer Anita Naik.
She hails from the village of Badbil, in the Mayurbhanj district of India’s Odisha state, surrounded by small hills and the lush greenery of Simlipal National Park.
Naik belongs to a tribal community that has long lived off the land, through farming and livestock rearing. Smallholder farmers like her grow rice, maize and vegetables in traditional ways — intensive labor and limited yield — to ensure food for their families.
Married at a young age, Naik has a son and a daughter. Her husband and her son are daily-wage laborers, but the uncertainty around their jobs and her husband’s chronic ill health means that she is mostly responsible for her family’s wellbeing. At 41, Naik’s age and her stoic expression belie her lifelong experience of hard work.
The small hours
Naik’s day begins just before dawn, a little past 4 a.m., with household chores. After letting out the livestock animals — goats, cows, chicken and sheep — for the day, she sweeps the house’s, the courtyard and the animal shed. She then lights the wood stove to prepare tea for herself and her family, who are slowly waking up to the sound of the crowing rooster. Helped by her young daughter, Naik feeds the animals and then washes the dirty dishes from the previous evening. Around 6:30 or 7 a.m., she starts preparing other meals.
During the lean months — the period between planting and harvesting — when farm work is not pressing, Naik works as a daily-wage worker at a fly ash brick factory nearby. She says the extra income helps her cover costs during emergencies. “[I find it] difficult to stay idle if I am not working on the farm,” she says. However, COVID-19 restrictions have affected this source of income for the family.
Once her morning chores are over, Naik works on her small plot of land next to her house. She cultivates maize and grows vegetables, primarily for household consumption.
Naik started growing maize only after joining a self-help group in 2014, which helped her and other women cultivate hybrid maize for commercial production on leased land. They were supported by the International Maize and Wheat Improvement Center (CIMMYT) through the Cereal Systems Initiative for South Asia (CSISA) maize intensification program.
Every year from June to October, Naik also work on this five-acre leased farmland, along with the other group members. She is involved from planting to harvest — and even in marketing.
“There are eleven women members in our self-help group, Biswa Jay Maa Tarini. Thanks to training, awareness and handholding by CSISA and partners, an illiterate like me is currently the president of our group,” said an emotional Anita Naik.
Not quite done yet
A little further away from her house, Naik has a small field where she grows rice with the help of her husband and son. After checking in on her maize crop on the leased land, Naik works in her paddy the rest of the day. She tends to her land diligently, intent on removing the weeds that keep springing up again and again in the monsoon season.
“It is back-breaking work, but I have to do it myself as I cannot afford to employ a laborer,” Naik laments.
Naik finally takes a break around 1 p.m. for lunch. Some days, particularly in the summer when exhaustion takes over, she takes a short nap before getting back to removing weeds in the rice fields.
She finally heads home around 4 p.m. At home, she first takes the animals back into their shed.
Around 6 p.m., she starts preparing for dinner. After dinner, she clears the kitchen and the woodstove before calling it a night and going to bed around 8 or 9 p.m.
“The day is short and so much still needs to be done at home and in the field,” Naik says after toiling from early morning until evening.
Tomorrow is a new day, but chores at home and the work in the fields continue for Naik and farmers like her.
Paradigm change
Traditionally farmers in and around Naik’s village cultivated paddy in their uplands for personal consumption only, leaving the land fallow for the rest of the year. Growing rice is quite taxing as paddy is a labor-intensive crop at sowing, irrigating, weeding and harvesting. With limited resources, limited knowledge and lack of appropriate machinery, yields can vary.
To make maximum use of the land all year through and move beyond personal consumption and towards commercial production, CIMMYT facilitated the adoption of maize cultivation. This turned out to be a gamechanger, transforming the livelihoods of women in the region and often making them the main breadwinner in their families.
In early 2012, through the CSISA project, CIMMYT began its sustainable intensification program in some parts of Odisha’s plateau region. During the initial phase, maize stood out as an alternative crop with a high level of acceptance, particularly among women farmers.
Soon, CIMMYT and its partners started working in four districts — Bolangir, Keonjhar, Mayurbhanj and Nuapada — to help catalyze the adoption of maize production in the region. Farmers shifted from paddy to maize in uplands. At present, maize cultivation has been adopted by 7,600 farmers in these four districts, 28% of which are women.
CIMMYT, in partnership with state, private and civil society actors, facilitated the creation of maize producers’ groups and women self-help groups. Getting together, farmers can standardize grain quality control, aggregate production and sell their produce commercially to poultry feed mills.
This intervention in a predominantly tribal region significantly impacted the socioeconomic conditions of women involved in this project. Today, women like Anita Naik have established themselves as successful maize farmers and entrepreneurs.
Cover photo: Farmer Anita Naik stands for a photograph next to her maize field. (Photo: Nima Chodon/CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in southern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to register and commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities.
The deadline to submit applications to be considered during the first round of allocations is October, 24 2021. Applications received after that deadline will be considered during the following round of product allocations.
Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.
Product Profile | Newly available CIMMYT hybrids | Basic traits | Nice-to-have / Emerging traits | Trial summary |
Southern Africa Product Profile 1A
(SA-PP1A) |
CIM19SAPP1A-23 | Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV | MLN, Striga, FAW | Appendix 2 |
CIM19SAPP1A-24 (CZH16278) | ||||
Southern Africa Product Profile 1B
(SA-PP1B) |
CIM20SAPP1B-15 | Late-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV | MLN, Striga, FAW | Appendix 3 |
Southern Africa Product Profile 2
(SA-PP2) |
CIM19SAPP2-35 | Early-maturing, white, high-yielding, drought tolerant, NUE, resistant to GLS, MSV, TLB | FAW, Striga, FAW, Downy mildew | Appendix 4 |
Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization.
Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.
With the past decade identified as the warmest on record and global temperatures predicted to rise by as much as 2 degrees Celsius over preindustrial levels by 2050, the world’s staple food crops are increasingly under threat.
A new review published this month in the Journal of Experimental Botany describes how researchers from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators are boosting climate resilience in wheat using powerful remote sensing tools, genomics and big data analysis. Scientists are combining multiple approaches to explore untapped diversity among wheat genetic resources and help select better parents and progeny in breeding.
The review — authored by a team of 25 scientists from CIMMYT, Henan Agricultural University, the University of Adelaide and the Wheat Initiative — also outlines how this research can be harnessed on a global level to further accelerate climate resilience in staple crops.
“An advantage of understanding abiotic stress at the level of plant physiology is that many of the same tools and methods can be applied across a range of crops that face similar problems,” said first author and CIMMYT wheat physiologist Matthew Reynolds.
Abiotic stresses such as temperature extremes and drought can have devastating impacts on plant growth and yields, posing a massive risk to food security.
Addressing research gaps
The authors identified nine key research gaps in efforts to boost climate resilience in wheat, including limited genetic diversity for climate resilience, a need for smarter strategies for stacking traits and addressing the bottleneck between basic plant research and its application in breeding.
Based on a combination of the latest research advances and tried-and-tested breeding methods, the scientists are developing strategies to address these gaps. These include:
These strategies will be thoroughly tested at the Heat and Drought Wheat Improvement Network (HeDWIC) Hub under realistic breeding conditions and then disseminated to other wheat breeding programs around the world facing similar challenges.
One factor that strongly influences the success and acceleration of climate resilience technologies, according to Reynolds, is the gap between theoretical discovery research and crop improvement in the field.
“Many great ideas on how to improve climate-resilience of crops pile up in the literature, but often remain ‘on the shelf’ because the research space between theory and practice falls between the radar of academia on the one hand, and that of plant breeders on the other,” Reynolds explained.
Translational research — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields and aims to bridge this gap.
The impacts of this research, conducted under HeDWIC — a project led by CIMMYT in partnership with experts around the world — will be validated on a global scale through the International Wheat Improvement Network (IWIN), with the potential to reach at least half of the world’s wheat-growing area.
The results will benefit breeders and researchers but, most importantly, farmers and consumers around the world who rely on wheat for their livelihoods and their diets. Wheat accounts for about 20% of all human calories and protein, making it a pillar of food security. For about 1.5 billion resource-poor people, wheat is their main daily staple food.
With the world population projected to rise to almost ten billion by 2050, demand for food is predicted to increase with it. This is especially so for wheat, being a versatile crop both in terms of where it can grow and its many culinary and industrial uses. However, current wheat yield gains will not meet 2050 demand unless serious action is taken. Translational research and strategic breeding are crucial elements in ensuring that research is translated into higher and stable yields to meet these challenges.
Read the full study:
Harnessing translational research in wheat for climate resilience
Cover photo: Wheat fields at CIMMYT’s experimental stations near Ciudad Obregón, Sonora state, Mexico. (Photo: M. Ellis/CIMMYT)