Skip to main content

funder_partner: Bill & Melinda Gates Foundation

East African wheat breeding pipeline and E&SSA network

Healthy wheat and wheat affected by Ug99 stem rust in farmer’s field, Kenya. (Photo: CIMMYT)

The East African wheat breeding pipeline aims to improve wheat varieties and contribute to regional food security by ensuring a stable and resilient wheat supply. In 2022, CIMMYT, in partnership with the Kenya Agriculture and Livestock Research Organization (KALRO) established a Joint Breeding Program in Njoro, a town southwest of the Rift Valley in Kenya. This was one of the first integrated breeding pipelines between CGIAR and National Agricultural Research and Extension Systems (NARES) partners.

Over the last three decades, genetic trials of over 77 varieties have been conducted in several regions. In East Africa, an expanded testing network that spans over multiple research institutes in Kenya and Ethiopia has been established for Stage 1 and Stage 2 trials in network countries. This makes the pipeline a powerful driver of positive impacts, rapidly enhancing both farm productivity and production in target regions. In Kenya specifically, a genetic gain trial was conducted at two sites in 2023 with the Stage 1 trials evaluated across eight locations. These are being distributed to NARES partners to establish correlations between the breeding site in Kenya and the Target Population of Environments (TPEs) in the E&SSA regions. This breeding pipeline demarcates the population improvement from product development. Other areas in the trials include the enhancement of genetic diversity to build resilience, adaptability, and quality enhancement to meet market and consumer demands.

The trial will continue in 2024 and 2025 to establish a baseline for genetic gains and to enable the assessment of the breeding pipeline’s progress in the coming years. The first cohort of pipeline materials (250 crosses) has been advanced to F2 generation and will be ready for distribution to E&SSA partners in 2025.

Accelerated breeding

The anticipation is that accelerated breeding techniques will be implemented in Kenya by incorporating a three-year rapid generation bulk advancement (RGBA) scheme aimed at diminishing the time necessary for variety development and release. This collaborative effort encompasses various activities, including joint crossing block, generation advancement, yield testing, and population improvement. The three-year RGBA scheme, coupled with data-driven selection utilizing advanced data analytics (GEBV, SI) and genomic selection approaches, is expected to play a pivotal role in facilitating informed breeding decisions in the East African region.

3-year RGBA scheme. (Photo: Sridhar Bhavani)

Varietal improvement

The project aims to develop and release improved wheat varieties that are well adapted to the East African agroecological conditions. The Kenyan environment closely mirrors wheat-growing conditions in Ethiopia, Tanzania, Uganda, Rwanda, and Burundi, and spillover impacts to sub-Saharan countries such as Zambia and Zimbabwe. This strategic alignment with local conditions and close cooperation with NARES partner organizations has proven to be very effective in addressing critical gaps, including high-yield potential, disease resistance, and climate resilience, and aligns with CIMMYT’s overall wheat strategy for Africa.

Enhanced disease resistance

Kenya stands out as a hotspot for rust diseases, showcasing notable diversity in stem rust variants (ug99) and yellow rust. The virulence spectrums of these diseases differ from those found in Mexico, posing challenges to effective breeding strategies. It is expected that the breeding pipeline will effectively tackle these challenges as well as those associated with fusarium, Septoria, and wheat blast, which are on the rise in African environments.

Climate adaptation

The East African wheat breeding pipeline is committed to breeding wheat varieties that can thrive in changing climatic conditions, including heat and drought tolerance, and expanding testing in marginal rainfed environments experiencing heat and drought stress.

Through the support of our partners and funders from the Bill and Melinda Gates Foundation, Foundation for Food and Agriculture Research (FFAR), and Foreign, Commonwealth and Development Office FCDO, the following achievements can be reported:

Regional collaboration and cooperation

For over four decades, the enduring collaboration with KALRO has yielded significant successes including the operation of the largest phenotyping platform for stem rust and various diseases. The Mexico-Kenya shuttle breeding program, incorporating Ug99 resistance, has successfully countered the threat of stem rust by releasing over 200 varieties in targeted regions and advancing the East African wheat breeding pipeline. The plan is to replicate these accomplishments in other target regions through the E&SSA network. To address limitations in KALRO’s breeding program and to conduct standardized trials, a strategic partnership with a private seed company Agventure Cereal Growers Association has been established. This collaboration will facilitate yield testing at multiple sites in Kenya to identify lines with superior performance for the East African region. So far, lines exhibiting high yield potential of up to 8 tons/ha, even under rain-fed environments, have been identified. The collaborative efforts are already making a noticeable impact, as evidenced by reports indicating increased adoption of zero-tillage practices among farmers. This shift has proven beneficial, especially during years marked by heat and drought challenges, resulting in higher returns for these farmers.

Increased capacity of national programs

From 1-13 October 2023, the AGGMW project held a training program on “Enhancing Wheat Disease Early Warning Systems, Germplasm Evaluation, Selection, and Tools for Improving Wheat Breeding Pipelines”. The course which brought together 33 participants from over 13 countries was held at the KALRO station in Njoro- Kenya. The comprehensive program covered a wide range of crucial subjects in the field of wheat breeding and research. Topics included breeding methodologies, experimental design, data collection, statistical analysis, and advanced techniques such as genomic selection. Participants also engaged in practical hands-on data analysis, explored rust pathology, and delved into early warning systems. Moreover, they had the opportunity for direct evaluation and selection of breeding materials. The course aimed to equip participants with a diverse skill set and knowledge base to enhance their contributions to the field of wheat breeding and research.

Other initiatives supporting the breeding pipeline include CGIAR programs, Accelerated Breeding and Crops to End Hunger. This multi-faceted approach within the breeding pipeline underpins the importance of fostering regional collaboration, knowledge sharing, and strategic investments in enhancing wheat production and addressing critical challenges in the region.

Enhancing wheat breeding efficiency in South Asia through early germplasm access

Wheat field. (Photo: CGIAR)

In the dynamic landscape of wheat breeding, early access to germplasm emerges as a strategic catalyst for accelerating variety turnover and meeting the evolving challenges faced by farmers in South Asia. Since its inception, the Accelerating Genetic Gains in Maize and Wheat (AGG) project has pioneered new tools to optimize the wheat breeding process. One such tool, the efficient and low-cost 3-year breeding cycle, has been fine-tuned in Mexico, using the Toluca screenhouse and field advancement in Obregón, laying the groundwork for faster variety turnover.

The inaugural set of lines generated through this enhanced breeding cycle is already undergoing Stage 1 trials in the Obregón 2023-24 season. However, the innovation doesn’t stop there; to expedite the variety release process and garner robust data from the Target Population of Environments (TPE), Stage 2 lines are being rigorously tested at over 20 sites in South Asia through collaboration with National Agricultural Research and Extension Services (NARES) partners. In the seasons spanning 2021-2024, a total of 918 Stage 2 lines underwent rigorous trials, aiming to provide early access to improved wheat lines for testing and release by NARES and establish a genetic correlation matrix between Obregón selection environments and diverse sites across South Asia.

These extensive trials serve a dual purpose. Firstly, they facilitate early access to improved wheat lines for testing and release by NARES, bolstering the agricultural landscape with resilient and high-yielding varieties. Secondly, they contribute to the establishment of a genetic correlation matrix between the selection environments in Obregón and the diverse sites across South Asia. This matrix becomes a guiding compass, aiding in selecting the most promising lines for broader TPEs in South Asia and beyond.

Transformative impact on wheat varieties in South Asia

Through the support of our partners and funders from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), the UK Foreign, Commonwealth & Development Office (FCDO), and the US Agency for International Development (USAID), great achievements have been recorded throughout the region. India, a prominent player in wheat cultivation, stands as a testament to the transformative impact of early access to advanced lines. The top three varieties, namely DBW187, DBW303, and DBW 222, covering over 6 million hectares, trace their roots to CIMMYT varieties. Adopting a fast-track approach through early-stage testing of these advanced lines at BISA sites in India, supported by the Delivering Genetic Gain in Wheat (DGGW) project, facilitated the release of these varieties two years ahead of the regular testing process. This expedited varietal release was complemented by the innovative early seed multiplication and dissemination approach introduced by the Indian Council of Agricultural Research (ICAR). Recent additions to this accelerated channel include varieties such as DBW 327, DBW 332, DBW 370, and 371, promising further advancements in wheat cultivation.

Pakistan

In Pakistan, the early access to advanced lines has been a catalyst for releasing high-yielding, climate-resilient, and nutritious wheat varieties. In 2023 alone, 12 new varieties were released, with the renowned ‘Akbar-19,’ introduced in 2019, covering a substantial 42% of cultivated land in Punjab. Data released by the Ayub Agricultural Research Institute (AARI), shows that this variety, known for its high yield potential, disease resistance, and enriched zinc content, has significantly contributed to increased wheat production in the region.

Nepal

Guided by policy interventions in the national varietal testing process, Nepal has experienced the fast-track commercialization of high-yielding and climate-resilient wheat varieties. Allowing multilocation testing of CIMMYT nurseries and advanced elite lines, Nepal released six biofortified zinc wheat varieties in 2020. The expeditious seed multiplication of these released and pre-release varieties has facilitated the rapid spread of new and improved wheat varieties.

The strategic utilization of early access to wheat germplasm in South Asia holds promise in accelerating variety turnover, offering farmers resilient and high-performing wheat varieties. Collaborative efforts between research institutions, government bodies, and international organizations exemplify the power of innovation in transforming agriculture. With an ongoing dedication to refining breeding cycles, expanding testing initiatives, and fostering collaboration, the AGG project contributes to building a sustainable and resilient agricultural future in South Asia. Early access to wheat germplasm emerges as a practical approach in this scientific endeavor, laying the foundation for a climate-resilient and food-secure region. The successes witnessed in India, Pakistan, and Nepal underscore the transformative potential of this approach, offering tangible benefits for agricultural communities in South Asia and beyond. In navigating the complexities of a changing climate and growing food demand, early access to wheat germplasm remains a pragmatic ally, propelling agricultural innovation and resilience to new heights.

Alison Laing

Alison Laing is the CIMMYT lead for CSISA India, and leads bilateral and Initiative-funded projects in South and Southeast Asia. She works with farmers and researchers in South and Southeast Asia to sustainably improve cropping and farming system productivity, profitability and resilience.

Alison firmly believes in participatory, multi-disciplinary research and in combining practical field-trial based research with robust modelling to examine likely long-term outcomes of different management approaches.

Early maturity products popular among farmers in Kenya

Across all production environments in Kenya, early-maturity products demonstrate strong sales. This was revealed in a recent study by the CGIAR Initiative on Market Intelligence. During the long-rains season, farmers in higher rainfall production environments—wet, mid and high altitudes—purchased early-maturity seed products despite potentially lower yields. Also, the short-rains season, which represents almost one-fourth of total maize seed sales, was dominated by early-maturity products.

These insights were obtained through a panel of maize-seed sales data from 722 agrodealers in Kenya during two short-rains seasons and three long-rains seasons in 2020–2022. The study also offers insights into the extent the maturity level of seed products, purchased by farmers in Kenya, aligns with the production environment where they were sold. Market Intelligence applies eight criteria to identify seed product market segments (SPMSs) for CGIAR crop breeding. In the application of these criteria to maize in East Africa, two conditions distinguish the segments: production environment and maturity level. The other criteria do not vary. A key indicator for prioritizing breeding investments across segments is the relative size of SPMSs. In the case of maize, and other crops, teams generally use geospatial data to identify the area of production environments, with the assumption that farmers in each production environment would use the seed product with the maturity level designed for that environment.

The paper contends that a stronger focus on using sales data to inform breeding decisions in maize, and potentially other crops where retailers play an important role in seed distribution, should become a priority for market intelligence. Future work will engage stakeholders in maize seed systems in other countries of East Africa about the changes in demand for earlier-maturing products and the implications for segmentation.

This article is adapted from Market Intelligence Brief 5: Maize Farmers Acquire Early-Maturity Seed Across Production Environmentsthe fifth paper in the ongoing peer-reviewed series published inMarket Intelligence Briefs.

*About Market Intelligence Briefs

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop-breeding teams, and others to work together toward the design and implementation of a demand-led breeding approach. In 2022, the Market Intelligence Brief (MIB) series was created as a valuable communication tool to support informed decision making by crop breeders, seed-system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector, and non-governmental organizations (NGOs).

The author would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund. This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by Bill & Melinda Gates Foundation; Foundation for Food & Agriculture Research (FFAR); United States Agency for International Development (USAID); and United Kingdom’s Foreign, Commonwealth & Development Office (FCDO).

Ten years later: CIMMYT facilities in East Africa continue to make a difference

CIMMYT and partners in Kenya recently marked the 10th anniversary of two major facilities that have been crucial for maize breeding in sub-Saharan Africa. The Maize Doubled-Haploid (DH) facility and the Maize Lethal Necrosis (MLN) screening facility at the Kenya Agriculture and Livestock Research Organization (KALRO) centers in Naivasha and Kiboko, respectively, have made immense contributions to the rapid development of higher-yielding, climate-resilient and disease-resistant maize varieties for smallholder farmers across the continent.

An aerial photo of the Naivasha Research Center. (Photo: CIMMYT)

“These two facilities have been instrumental in furthering KALRO’s mission to utilize technology in the service of Kenya’s smallholder farmers,” said KALRO Director General/CEO, Eliud Kireger. “They also exhibit the spirit of cooperation and collaboration that is necessary for us to meet all the challenges to our food systems.”

“Deploying a higher yielding maize variety may not be impactful in eastern Africa if that variety does not have resistance to a devastating disease like MLN,” said CIMMYT’s Director General Bram Govaerts. “These two facilities demonstrate the holistic methods which are key to working towards a more productive, inclusive and resilient agrifood system.”

Maize DH facility

Hybrid maize varieties have much higher yields than open-pollinated varieties and are key to unlocking the agricultural potential of maize producing countries. The doubled haploid process is an innovative technology producing within a year genetically true-to-type maize lines that serve as building blocks for improved maize hybrids.

Unlike conventional breeding, which takes at least 7 to 8 generations or crop seasons to develop parental lines, DH lines are generated within two seasons, saving significant time, labor and other resources. DH maize lines are highly uniform, genetically stable, and are more amenable to the application of modern molecular tools, making them perfect resources for breeding elite maize hybrids.

Workers in the Kiboko Double Haploid facility. (Photo: CIMMYT)

The aim of CIMMYT’s maize DH facility is to empower the breeding programs throughout the low-and middle-income countries in Africa by offering a competitive, accessible, not-for-profit DH production service that will accelerate their rate of genetic gain and fast-track development of improved maize varieties for farming communities.

Since 2017, the DH facility has delivered 280,000 DH lines from 1,840 populations of which 20% were delivered to public and private sector partners. CIMMYT maize breeding programs and partner organizations have embraced the use of DH technology, with many of the newest maize hybrids released in Africa being derived from DH lines. The facility has also served as a training ground so far for over 60 scientists and hundreds of undergraduate students in modern breeding technologies.

“Before 2013, DH technology was mainly employed by private, multinational corporations in North America, Europe, Asia and Latin America,” said CIMMYT’s DH Facility Manager, Vijay Chaikam. “But the DH facility operated by CIMMYT at the KALRO Kiboko research station is specifically targeted at strengthening the maize breeding programs by the public sector institutions as well as small-and medium-size enterprise seed companies in Africa.”

The maize DH facility at Kiboko, Kenya, was established with funding support from the Bill & Melinda Gates Foundation and inaugurated in September 2013. The facility includes an administrative building, seed quality laboratory, training resources, artificial seed dyer, a cold-storage seed room, a chromosome doubling laboratory, greenhouse and a state-of-the-art irrigation system to support year-round DH production in the 17-hectare nursery.

MLN screening facility

MLN is a devastating viral disease that can decimate farmers’ fields, causing premature plant death and unfilled, poorly formed maize ears, and can lead to up to 100 percent yield loss in farmers’ fields. Though known in other parts of the world for decades, the disease was first identified in eastern Africa in 2011. By 2015, MLN had rapidly spread across eastern Africa, including Kenya, Uganda, Tanzania, South Sudan, Rwanda, Democratic Republic of Congo and Ethiopia. CIMMYT scientists quickly discovered that almost all the commercial maize cultivars in eastern Africa were highly susceptible to the disease.

Against this backdrop, CIMMYT and KALRO recognized the urgent need for establishing a screening facility to provide MLN phenotyping service and effectively manage the risk of MLN on maize production through screening of germplasm and identifying MLN-resistant sources. The facility was built with funding support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, and inaugurated in September 2013.

Resistant and susceptible line at the Maize Lethal Necrosis facility. (Photo: CIMMYT)

“The MLN screening facility is a key regional resource in breeding for resistance to a devastating viral disease. The facility is indeed one of the key factors behind successful management of MLN and helping stem the tide of losses in eastern Africa,” said Director of the Global Maize Program at CIMMYT and One CGIAR Plant Health Initiative, B.M. Prasanna. “Fighting diseases like MLN, which do not respect political boundaries, requires strong regional and local collaboration. The successes achieved through the MLN Screening facility in the past 10 years embody that spirit of collaboration.” Indeed, farmers in the region now have access to over twenty genetically diverse, MLN-tolerant/resistant maize hybrids released in eastern and southern Africa.

The facility is the largest dedicated MLN screening facility in Africa and has evaluated over 230,000 accessions (over 330,000 rows of maize) from CIMMYT and partners, including over 15 national research programs, national and multinational seed companies. The facility covers 20 hectares, of which 17 hectares are used for field screening of germplasm. Dedicated laboratories and screen houses cover the remaining 3 hectares.

“MLN phenotyping service is conducted under stringent quarantine standards and the high-quality data is shared with all the CGIAR and public and private partners. The MLN screening service has helped breeding programs across the continent, aided in undertaking epidemiological research activities, and supported capacity building of students from diverse institutions, and regional stakeholders regarding MLN diagnosis and best management practices,” said CIMMYT’s Maize Pathologist in Africa, L.M. Suresh.

“The output of MLN resistant lines and hybrids has been remarkable,” said Director of Phytosanitary and Biosecurity at the Kenya Plant Health Inspectorate Service (KEPHIS), Isaac Macharia. “And the facility has strictly adhered to quarantine regulations.”

In Uganda, the MLN facility was crucial in the “release of the first-generation MLN tolerant hybrids and dissemination of MLN knowledge products that minimized the economic impact of MLN,” said the Director of Research of the National Crops Resources Research Institute, Godfrey Asea.

Peter Mbogo, maize breeder with Seed Co Group, said, “This is the only quarantine facility in the world where you can screen against MLN under artificial inoculation. It has been an excellent return on investment.”

Five new CIMMYT maize hybrids available from the Latin America breeding program

CIMMYT is happy to announce five new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

How does CIMMYT’s improved maize get to the farmer?
Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM21LAPP1A-12 Intermediate maturing, white, high yielding, and resistant to TSC, MLB, and Ear rots Lowland tropics
CIM21LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM21LAPP2A-4 Intermediate-maturing, white, high-yielding, FSR, GLS, and Ear rots. Mid-altitudes/

Spring-Summer season

CIM21LAPP2A-8
CIM20LAPP2B-12 Intermediate-maturing, yellow, high-yielding, resistant to GLS, and Ear rots.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 03-22LTHTWM4M, 04-22LTHTYM4M, 01-22MASTCHSTW and 02-22MASTCHSTY Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 -2021 and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is December 1st, 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

CIMMYT Ethiopia signs MoU with key private food processor to bolster durum wheat market

CIMMYT Ethiopia signed a memorandum of understanding (MoU) in November 2023 with the Addis Ababa-based private food processing company Alvima Foods Complex Plc, in an effort to encourage durum wheat production among smallholder farmers and create market linkage in selected woredas of Oromia and Amhara regional states.

The MoU, which is part of CIMMYT Ethiopia’s overall durum wheat project aiming to reinvigorate durum wheat production in the country, was signed by Workneh Rikita, Alvima general manager, and Kindie Tesfaye, CIMMYT Ethiopia’s senior scientist.

CIMMYT Ethiopia signing a memorandum of understanding.

The MoU aims primarily to create market linkage between farmers and manufacturers, in a context of a sharp decrease of durum wheat production. “Prior to the 1980s, 80% of the wheat produced in Ethiopia was durum, but in 2016 our nationwide research on wheat showed that the durum wheat coverage was 5%, which stands in contrast to the country’s effort to industrialize the economy and substitute import goods with local produce”, said Kindie Tesfaye, CIMMYT durum wheat project leader. “We, as CIMMYT, want to encourage farmers to produce good quality durum wheat in quantity, and teach them about contract farming by creating market linkage with produce receivers like Alvima.”

“Cooperation, not business venture”

Established in 2011, Alvima Foods Complex initially centered its operations around importing and exporting agro-food products. In 2017, the company set up a pasta and flour processing factory and contracted 800 farmers to produce durum wheat. “At first, our objective was to produce premium quality pasta, unlike most processing companies in the country which produce pasta from hard wheat or mixed wheat,” said Workneh Rikita, Alvima’s general manager. In the absence of binding rules, the project failed and Alvima resigned to import durum wheat. “The law on contract farming was constituted recently and the difficulties to access foreign currency (therefore to import goods), which led us to turn our attention back to our initial project”, said Workneh Rikita.

Alvima Foods Complex general manager added that his company didn’t sign the agreement as a business venture but as an advantageous cooperation to learn from. He thanked CIMMYT for agreeing to work with his company and expressed his hopes for its success.

The current durum wheat market in Ethiopia is unpredictable as prices are set by the brokers, which heavily disadvantages the growers. The objective of the memorandum of understanding is to address such market challenges faced by farmers, affording them guaranteed market opportunities at a fair price.

As part of the agreement between Alvima Foods Complex and the durum wheat growers in target districts of the Amhara and Oromia regional states, CIMMYT will leverage on its expertise to help the farmers produce more and in good quality. Alvima will access the produce from farmers’ cooperatives directly, without the intervention of middlemen, to guarantee better incomes to producers. Moreover, CIMMYT is training farmers on use of climate information, accessing climate advisories, video-based production trainings, and crop disease management.

“If the farmers get the premium price for their produce, they will be encouraged to continue producing better wheat,” said Kindie Tesfaye. “We want the cooperation to be sustainable and to create direct links between farmers and local food processors (such as AVLIMA). The MoU will also benefit Ethiopia by decreasing imports of processed food items.”

A multilayered challenge to durum wheat production

Supported by the Bill and Melinda Gates Foundation, CIMMYT and Digital Green (an organization creating digital tools to assist farmers) have been conducting durum wheat improved varieties were insufficiently promoted; the seed was not made adequately accessible to farmers; productivity was perceived by farmers as being low; and market linkage was poor. These multilayered challenges led farmers to prioritize bread wheat varieties, according to Kindie Tesfaye.

In response, CIMMYT structured its support around three main pillars: the organization helps farmers access seeds together with Oromia’s Seed Enterprise, provides farmers with digital advisory services to improve their productivity, and works with the private and public sectors to upgrade market linkages, as with the memorandum of understanding signed with Alvima Foods Complex Plc.

 

Integrating gender into crop breeding

The Seed Production Technology for Africa (SPTA) project, led by CIMMYT, has been selected by the CGIAR Gender Impact Platform as a successful case study of integrating gender into crop breeding.

The case study, published in Frontiers in Sociology, is one of fourteen that the CGIAR Genetic Innovation Gender strategy is drawing on to showcase lessons learned from practical experience. These case studies form a critical part of the efforts to pursue gender responsive or gender-intentional breeding and explore how these can inform larger breeding pipelines.

Maize is widely grown by both women and men in Africa. Evidence of gender-differentiated preferences for maize varieties remains inconclusive; however, there is evidence of gendered differences in management practices. Hybrids produced using SPTA segregate 1:1 for pollen producing and non-pollen producing plants referred to as 50% non-pollen producing (FNP) varieties. Previous research showed FNP offered a yield benefit under low input conditions. In the early stage of its inception, the project quickly recognized the potential implications of hybrids produced using SPTA for women and other resource-constrained smallholders in Africa.

Understanding gender-based differences

From the start, the SPTA team conducted a gender review that underscored the fact that women in the region often use less fertilizer than men, a challenge that is further compounded by cultivation of smaller plots and lower quality soils. This review led the breeding team to explicitly target women and resource-poor farmers with an ambition to increase yields on women’s fields. From here henceforth, SPTA made it a priority to understand gender-based differences in performance and preference for new FNP maize varieties. This process involved ensuring both women and men farmers host trials to evaluate and attest to the performance of the FNP hybrids.

But these efforts were not without challenges. The team also found significant gender differences, particularly among women farmers in crop management practices and between farmers’ stated preferences during participatory varietal selection exercises and the varieties they used at home. This suggested that initial on-farm evaluations were not adequate for predicting real world demand for varieties. Moving forward, the evaluation strategy of SPTA evolved to enable variety evaluations under farmers’ preferred management practices.

The success of the SPTA team in ensuring that gender considerations were strongly embedded into the breeding program is attributed to strong collaboration across disciplines that included social scientists and gender researchers working closely with breeders, allocating funding to allow exploration, testing of gender topics and responsive variety evaluation tools and strong buy-in from leadership and donors. As the SPTA case highlights, there is value in starting small, building productive partnerships and collaborating to pilot and develop proof of concept for new models.

India transforms wheat for the world

India can applaud a hallmark in national food production: in 2023, the harvest of wheat—India’s second most important food crop—will surpass 110 million tons for the first time.

This maintains India as the world’s number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolution—the modernization of India’s agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.

“Newer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,” said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. “More than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Center’s international yield trials and nurseries or developed locally using CIMMYT parents.”

Wheat grain yield in Indian farmers’ fields rose yearly by more than 1.8 percent—some 54 kilograms per hectare—in the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.

“The emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,” Singh explained. “This both protected their crops and delivered breeding gains for yield and climate resilience.”

CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.

Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.

Farm innovations for changing climates and resource scarcities

Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.

New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.

Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.

Weeds in zero-tillage wheat in India. (Photo: Petr Kosina/CIMMYT)

“This ‘zero tillage’ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,” said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). “Also, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.”

Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.

Science and policies ensure future wheat harvests and better nutrition

Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. “Added to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.”

To safeguard India’s wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladesh’s wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.

“More than a dozen wheat blast resistant varieties have been deployed in eastern India to block the disease’s entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,” said Pawan Singh, head of wheat pathology at CIMMYT.

Building on wheat’s use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.

“At least 10 such ‘biofortified’ wheat varieties have been released and are grown on over 2 million hectares in India,” said Velu Govindan, CIMMYT breeder who leads the Center’s wheat biofortification research. “It is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.”

A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.

Celebrating joint achievements and committing for continued success

The April-June 2018 edition of the “ICAR Reporter” newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research “…one of the longest and most productive in the world…” and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.

Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts,  Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of India’s Ministry of Agriculture and Farmers Welfare and Director General of ICAR, “reaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.”

“The ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,” said Gyanendra Singh, director, ICAR-IIWBR. “This in turn advances global peace and prosperity.”

India and CIMMYT wheat transformers meet in India in February, 2023. From left to right: Two students from the Indian Agricultural Research Institute (IARI); Arun Joshi, CIMMYT regional representative for Asia; Rajbir Yadav, former Head of Genetics, IARI; Gyanendra Singh, Director General, Indian Institute of Wheat and Barley Research (IIWBR); Bram Govaerts, CIMMYT director general; Harikrishna, Senior Scientist, IARI. (Photo: CIMMYT)

According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. “The way forward to the next milestone — say, harvesting 125 million tons of wheat from the same or less land area — is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,” he said.

Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workers’ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.

Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UK’s Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).

Global Conference on Sustainable Agricultural Mechanization: efficiency, inclusiveness, and resilience

CIMMYT participated in the inaugural Global Conference on Sustainable Agricultural Mechanization, organized by the Food and Agriculture Organization of the United Nations (FAO) from September 27-29, 2023. The gathering provided space for focused dialogues to prioritize actions and strengthen technical networks for sustainable development of agricultural mechanization.

Bram Govaerts, CIMMYT director general, presented a keynote address on September 27 regarding climate change and mechanization. As a global thought leader and change agent for climate resilient, sustainable and inclusive agricultural development, CIMMYT has many specific initiatives centered on mechanization for facilitating machine innovations and scaling-up improved farming practices for sustainability and farmer competitiveness.

Bram Govaerts delivered a keynote address. (Photo: CIMMYT)

Collaboration is a hallmark of CIMMYT’s endeavors in mechanization, including a strong partnership with local governments across Latin America, Africa and Asia, and international cooperation agencies, supporting the Green Innovations Centers installed by GIZ-BMZ and working on accelerated delivery models together with USAID, in Malawi, Zimbabwe and Bangladesh, to name only a few. Further, local value chain actor engagement is crucial and necessary in this work to connect farmers with viable solutions.

CIMMYT has a long history of leading projects aimed at mechanizing the agricultural efforts of smallholder farmers, including the successful MasAgro Productor in Mexico and FACASI (farm mechanization and conservation agriculture for sustainable intensification) in East and South Africa. At present, the Harnessing Appropriate-Scale Farm Mechanization in Zimbabwe (HAFIZ) project is working towards to improve access to mechanization and reduce labor drudgery while stimulating the adoption of climate-smart/sustainable intensification technologies. The project engages deeply with the private sector in Zimbabwe and South Africa to ensure long-term efficacy.

The Scaling Out Small Mechanization in the Ethiopian Highlands project was active from 2017 to 2022 and increased access for smallholder farmers to planting and harvesting machines. Farmers using two-wheel tractors furnished by the project reduced the time needed to establish a wheat crop from 100 hours per hectare to fewer than 10 hours. CIMMYT’s work was in partnership with the Africa-RISING program led by the International Livestock Research Institute (ILRI) in Ethiopia.

“At CIMMYT, we work knowing that mechanization is a system, not only a technology,” said Govaerts. “Sustainable mechanization efforts require infrastructure like delivery networks, spare parts and capacity development. Working with local partners is the best way to ensure that any mechanization effort reaches the right people with the right support.”

Read these stories about CIMMYT’s efforts to support equal access to agricultural mechanization and scaling up within local contexts.

One-minute science: Mechanization for agriculture

Mechanization is a process of introducing technology or farm equipment to increase field efficiency. CIMMYT’s mechanization work is context specific, to help farmers have access to the appropriate tools that are new, smart and ideal for their unique farming conditions.

New generation of farmers adopts mechanization, making farming more productive and profitable

Working with the Cereal Systems Initiative for South Asia (CSISA), CIMMYT is leading mechanization efforts in Northern India. Combined with sustainable agriculture, the next generation of farmers now have access to tractors, seeders and other tools that are increasing yield and reducing back-breaking labor.

Gangesh Pathak with his father at the custom hiring center which provides custom hiring services to smallholder farmers in the region. (Photo: Vijay K. Srivastava/CIMMYT)

A promising partnership

The delivery of row seeders from India to Benin demonstrates a new path to sustainable South-South business relationships. Developed in India in an iterative design process with farmers, portable row seeders have been a great success. Working with GIC, CIMMYT facilitated a technology and materiel transfer of the portable row seeders to Benin.

A farmer pulls a row seeder in Benin, West Africa. (Photo: CIMMYT)

Solar powered dryers boost peanut production in Togo

Peanuts thrive as a crop in Togo and other West Africa countries, but post-harvest is threatened by aflatoxins, so the entire crop needs to dry. Traditionally, farmers, often women, have dried the peanuts in the open air, subject to weather and other pests. However, CIMMYT, working with GIC, has introduced solar-powered dryers, which speeds up the drying process by a factor of four.

Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)

A business model for mechanization is providing hope in Burkina Faso

Working with partners in Burkina Faso, CIMMYT is facilitating smallholder mechanization with a model of cascading effects: one farmer mechanizing can then use their skills and eqBMZuipment to help their neighbors, leading to community-wide benefits.

Pinnot Karwizi fills a mechanized sheller with dried maize cobs. (Photo: Matthew O’Leary/CIMMYT)

Visit our mechanization page to read stories about ongoing mechanization initiatives.

Conservation agriculture helps smallholder farmers to be more resource efficient

Millions of rural Indians, mostly farmers, are at the mercy of changing weather and climate change. Rising temperature and heat stress, unpredictable rainfall patterns, increasing drought-like situations, soil erosion and depleting water tables are leading to poorer yields and reduced income for farmers. While the agricultural sector and farmers are most affected by the adverse impacts of climate change, it is also one of the sectors significantly responsible for greenhouse gas emissions, contributing about 14% of the total greenhouse gas emissions in the country.

Farmer Rahul Rai prepares his field for wheat plantation with zero tillage – Buxar, Bihar (photo: Deepak K. Singh/CIMMYT)

Good agronomy and soil management through conservation agriculture practices such as no-till farming, crop rotation, and in-situ crop harvest residue management are resource efficient and help reduce greenhouse gas emissions significantly. The intensification of these conservation agriculture practices by the Cereal Systems Initiative for South Asia (CSISA)—a regional project led by CIMMYT to sustainably enhance cereal crop productivity and improve smallholder farmers’ livelihoods in Bangladesh, India, and Nepal—and partners is helping smallholder farmers to improve their yield and income with less input costs.

Climate smart agriculture

Over 70% of Bihar’s population is engaged in agriculture production, with wheat and rice as the two major crops grown in the state. Bordering Uttar Pradesh, Buxar, is one of the many rural districts in Bihar, with over 108,000 hectares of land used for agriculture. The area is plain, fertile and has good irrigation facilities. The rice-wheat cropping system forms the dominant practice here, and pulses and other non-cereal crops are grown additionally during winters.

CSISA began promoting zero tillage in wheat cultivation in the area in 2010. Along with Krishi Vigyan Kendras (KVKs), and local agriculture departments, awareness and frontline demonstrations on different best management practices were conducted to inform farmers of alternative approaches to cultivating wheat and rice sustainably. Farmers were used to conventional farming methods, with more input costs and labor-intensive practices. In addition, as farmers were growing long-duration rice varieties, they typically sowed wheat in late November to early December, which meant harvesting in late April/May. Harvesting wheat this late caused yield losses due to terminal heat stress at the grain filling stage. With increasingly hot temperatures in recent years due to climate change, yield loss in wheat is imminent.

To help curb these yield losses, researchers and officials began promoting early sowing of wheat through a technology called zero tillage in the region, with sowing recommended before mid-November. As expected, this helped farmers to escape high temperature stress at the time of the dough stage, thus, saving grain shrinkage and yield loss at harvest. Zero tillage technology is a tested method with the potential to increase crop productivity through better time management and reduced input cost.

Deepak Kumar Singh, scientist at CSISA who has been supporting agri-extension efforts in the region for nearly a decade recalled how CSISA and partners were able to get more farmers on board with zero tillage and early wheat sowing:

“The best practices of zero till technology and early wheat sowing were encouraged widely through exposure visits, demonstration trials on progressive farmers’ fields, and providing support from local KVKs for machines and quality seeds, including the promotion of private service providers,” he said.

As more farmers were reached through field events, with visible on-field results during public harvest activities held at demonstration fields by CSISA and KVKs, the region gradually adopted early wheat sowing, zero tillage and direct seeded rice technologies. Currently, in the district, it is estimated that over 40% of wheat cultivation under the rice-wheat system is through zero till, helping farmers obtain better yield and profits.

Rice-wheat cropping systems, resilient and sustainable in increasingly changing climate

Rajapur, a small village in Buxar district, boasts 100% adoption of zero tillage in wheat cropping. We met farmer Rahul Rai whose family has been involved in farming for generations. The family owns over thirty acres of land with agriculture as the primary source of income. His father and his siblings were used to conventional farming methods. The produce from their farm was sufficient for household consumption and with the little extra left, they sold and made some income. On the significance of agriculture and farming for his family, Rahul Rai says, “this farmland has been feeding and supporting 17 members in our joint household.”

When young Rahul Rai got down to work in the family fields in the early 2000s, he was keen to explore possibilities to improve the income generated from the farm. Initially, like many others, he was engaged in intensive farming. According to Rai, “with the input costs rising daily, including scarce labor and soil health deterioration, bringing in some extra income seemed unsustainable”.

He first met researchers from the CSISA project and local KVK scientists in early 2011 in the neighboring village. The team was there to inform farmers about conservation agriculture practices and how to better manage yield and maintain soil health. Rai soon became more curious about the benefits of adopting these new methods over conventional practices. He started with a few acres with zero tillage and began sowing wheat by early November, as recommended by the scientists. In Rabi 2022-23, his wheat fields were sown by November 11, compared to the early years when the sowing date was around December.

Wheat yield data gathered meticulously over a decade from Rahul Rai’s fields (Data: CSISA MEL team)

With more participation and engagement with CSISA, in 2017, he joined other farmers from the region on an exposure visit to Patna organized by the CSISA-KVK network. In Patna, at the Indian Council of Agri Research – Research Complex for Eastern Region (ICAR-RCER), Rai and the visiting farmers were introduced to conservation agri-technologies for rice-wheat and other cropping systems. During the visit, they were informed about crop rotation and diversification, new seed varieties that are resilient and adaptable to changing climates, efficient use of plant protection chemicals and fertilizer and various subsidies from the center/state government to farmers. He later accompanied other progressive farmers on a CSISA-led travel seminar to Gorakhpur in 2017, where he observed acres and acres of wheat fields cultivated through zero tillage and early sowing that had yielded 6-7 tons per hectare (t/ha) on average.

At present, Rai’s family cultivates only zero till wheat in their fields and direct seeded rice on a few acres where irrigation facilities are well established. Rai asserts that until 2014, the wheat yield was about 10-15 quintals per acre (3.5-4 t/ha), rising to around 20-25 quintals per acre on average (5.5 t/ha in 2023) in recent years, thanks to conservation agriculture practices.

Today, the CSISA team has system optimization and demonstration trials on fields owned by Rai’s family where they conduct trials to demonstrate the importance and feasibility of different agri-practices and compare yields at harvest. Rai, a champion farmer who has been involved with CSISA for nearly a decade, said, “I am a collaborator with CSISA now. The data gathered from my fields on the compounding benefits of conservation agriculture technologies is used to promote the best practices and technology adoption across our district and state.”

One village at a time

Presently, Rajapur village has 100% zero tillage adoption. Despite most farmers being smallholders, this level of zero tillage adoption in wheat is impressive. Zero-till-based crop establishment, with appropriate diversification in crops grown, is economically beneficial and improves soil health. All these practices and technologies ensure lower greenhouse emissions and support climate change mitigation efforts. Above all, smallholder farmers are food secure and contributing in their small way to national and global food security.

To scale the adoption of conservation agriculture practices, CSISA and partners are collaborating with farmers in the district/state – many of whom are already 50-80% in zero tillage adoption. The team on the ground are conducting system optimization trials on farmers’ fields to generate data and evidence to support and strengthen policies and assist in integrating market intelligence to support access and availability of technology to all smallholders. Every year steadily, through a smallholder farmer, a village, a district, the effort is to slowly expand the area under conservation agriculture across the state and region and ensure increased system productivity and sustainability of agriculture.

Harshit Rajan

Harshit Rajan is the GIS Specialist in the SAS program at CIMMYT. His role revolves around geospatial activities, primarily centered around his roles within CSISA and SIS. Within the confines of CIMMYT, his professional pursuits are firmly directed toward two critical areas: Drainage class mapping and Digital Soil Mapping, both of which are augmented by cutting-edge machine-learning techniques.

 

 

Moben Ignatius

Moben Ignatius is the Agriculture Research Associate in the SAS program at CIMMYT. His role revolves around fostering sustainable agricultural practices and innovative technologies and methods that cater to Rice-Wheat cropping systems.

His previous work role extended to forging alliances with diverse organizations and governmental bodies to advocate for the expansion of these beneficial agricultural techniques. Employing meticulous monitoring, evaluation, and data-driven surveys, ensuring the successful execution and scalability of projects.

Deepak Kumar Singh

Deepak is a consultant in the Sustainable Agrifood Systems program at CIMMYT. His area of expertise encompasses conservation agriculture, mechanization, precision agriculture, resource management and systems research.

Ajay Kumar

Ajay Kumar is Senior Research Associate of CIMMYT’s Cereal Systems Initiative for South Asia (CSISA) project in India. Ajay Kumar has been actively engaged in planning, coordinating CSISA activities of eastern UP hub.