Schoolchildren singing a song they composed about climate change and agriculture at a field day in Gokwe, Zimbabwe.
CIMMYT scientists working on the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) have identified the most suitable maize varieties for high temperature and drought-prone environments in Zimbabwe. The scientists have been conducting research on drought- and heat-tolerant maize varieties in areas that are vulnerable to climate variability and climate change in Zimbabwe. Working in collaboration with Sustainable Agriculture Technology (SAT), a local NGO, the scientists are testing the suitability of drought- and heat-tolerant varieties as a solution to challenges farmers face in “climate hotspots.”
These farmers are vulnerable to climate change due to erratic and limited rainfall, a situation that is worsened by increasing temperatures. “To identify these areas, we looked at climate change patterns across Zimbabwe which allowed us to identify five wards: Bikita, Gokwe, Gutu, Mutare and Zaka,” said CIMMYT physiologist Dr. Jill Cairns. The scientists then downscaled projections of monthly changes in rainfall and temperature in these wards to confirm their vulnerability and get a better understanding of the seasonal changes likely to occur by 2050.
In this maize demonstration plot, crop management was done using hand weeding.
In partnership with SAT, scientists are screening drought- and heat-tolerant maize varieties in demonstration plots using different farmer-managed practices that are accessible to local communities. “SAT has very good links to extension leaders, which has helped us reach the community,” said Cairns. “It holds field days at each demonstration location and has managed to engage locally.” During these events, farmers are provided with information on climate change, improved maize varieties and modern agricultural practices. Cairns said highlights from field days she has attended included seeing schoolchildren sing about climate change and agriculture, and a group of HIV-positive women singing about agriculture and improved seed. The drought-tolerant maize varieties used in this study are from the Drought Tolerant Maize for Africa (DTMA) project breeding pipeline, which is funded by the Bill & Melinda Gates Foundation. The research on heat is a component of DTMA being funded by the U.S. Agency for International Development (USAID).
Ten members of the technical staff from the Improved Maize for African Soils (IMAS) project joined their counterparts from the Water Efficient Maize for Africa (WEMA) project for training in managing risks during confined field trials (CFTs) —both projects funded by the Bill & Melinda Gates Foundation. Participants learned how to minimize the risk of disseminating materials under analysis into feed and food pathways. Emphasis was placed on spatial and temporal separation of the flowering parts of plants, to ensure they do not move outside the CFT. Incinerating all materials after the collection of trial results was also emphasized. IMAS staff participated in the course to help them prepare for the mock trials that will be carried out later this year at IMAS CFTs in Kiboko and Kitale, Kenya.
Ten members of the technical staff from the Improved Maize for African Soils project joined their counterparts from the Water Efficient Maize for Africa project for training in managing risks during confined field trials.
The training served as a refresher course in the standard operating procedures and protocols outlined by the National Biosafety Authority (NBA). Dr. Joseph Gichuki, head of biotechnology at the Kenya Agricultural Research Institute (KARI), explained the key steps in operating a CFT: the application process, conducting an experiment, the NBA review process, receiving trial material and storage. He also stressed the importance of closely monitoring the movement of trial materials, storage of materials and disposal facilities.
Participants learned the importance of record keeping of all activities in the CFT: planting, storage, special isolation, flowering, whether the crop should be destroyed after flowering and early destruction once the data required has been collected. Postharvest data collection was also discussed, including the need to record if there are volunteer crops after harvest and when they are removed.
Participants marked the field during the practical segment of the training session.
The workshop ended with a practical session. Participants planted an event that is under trial by the WEMA team being led by Regina Tende, a senior research scientist at KARI-Katumani. “It was very educational for all staff members who participated,” said Titus Kosgei, IMAS research technician. “We are ready to plant our first mock trials now that our team has been trained on CFT management,” said Dr. Biswanath Das, CIMMYT maize breeder and co-leader of the IMAS project.
Dr. Stephen Mugo, CIMMYT maize breeder and WEMA project leader, was one of the course facilitators. The training was coordinated by KARI maize breeder Murenga Mwimali, in collaboration with CIMMYT and partners from the African Agricultural Technology Foundation (AATF), Kenya Plant Health Inspectorate Services, Monsanto and the NBA.
Improved Maize for African Soils(IMAS) was created to improve food security and livelihoods in sub-Saharan Africa by creating and sharing new maize varieties that use fertilizer more efficiently and help smallholder farmers get higher yields, even where soils are poor and little commercial fertilizer is used. To learn more about this project and IMAS visit the project website here.
On a hot summer day in the Muzaffarpur District of Bihar State, India, 345 women farmers gathered to talk about the challenges they face in agriculture with a visiting team from the U.S. Agency for International Development and the Bill & Melinda Gates Foundation. During the event, which was organized by the Cereal Systems Initiative for South Asia (CSISA), one woman said, “Brothers, if you are farmers, so are we.” The group responded with loud claps and whistles. The women then discussed their day-to-day issues and shared their enthusiasm to learn about new agricultural technologies and management practices.
It is relatively uncommon to see women in rural India – where gender discrimination runs deep and women often are not empowered to speak or make decisions – talk openly and passionately about their lives. The farmers who attended the CSISA meeting are members of the new initiative Kisan Sakhi, meaning “a woman farmer friend,” jointly started by CSISA and the Bihar Mahila Samakya, an Indian government program on women’s equality.
Women farmers discussing their training needs with the CSISA team. Photo: Madhulika Singh
Women work extensively on farms across India – participating in sowing, weeding and harvesting – and are responsible for managing farm work and household chores. However, their contribution in agriculture remains largely unseen and unacknowledged. According to the Food and Agriculture Organization (FAO) of the United Nations, women account for 43 percent of the agricultural labor force in developing countries and produce 60 percent of the food, yet compared with men farmers most women don’t have land rights or equal access to education or training.
Kisan Sakhi aims to empower women farmers in Bihar by disseminating new climate-resilient and sustainable farming technologies and practices that will reduce women’s drudgery and bridge the gender gap in agriculture. FAO estimates that the productivity gains from ensuring equal access to fertilizer, technology and tools could raise the total agricultural output in developing countries and reduce the number of hungry people.
“In spite of doing all kinds of work in the field, I never got the respect as a farmer that men farmers would get,” said Sumintra Devi, who is now a member of Kisan Sakhi. She is being introduced to new technologies and management practices such as improved weed management, maize intercropping, intensification of cropping systems with summer green gram, machine transplanting of rice under non-puddled conditions and nursery management. “We have discussions with the group members during which they identify the training needs and practices they would like to adopt,” said CSISA gender specialist Sugandha Munshi. In one such discussion, the women mentioned the painful and tedious process of shelling maize by hand. CSISA organized training that demonstrated post-harvest technologies such as a hand-powered maize sheller and “super bags” for effective grain storage (see photos on page 8). Six geographical areas – Aurai, Bandra, Bochaha, Gai Ghat, Kudhni and Musahri – in Muzaffarpur District have been identified for the pilot work. “Women farmers recognize that receiving information and skill is more important than short-term monetary support from a project,” said R.K. Malik, the leader of CSISA’s Objective 1 and the Bihar and eastern Uttar Pradesh hub manager.
CSISA has also started helping women farmers to become entrepreneurs. As part of Kisan Sakhi, four women self-help groups in the Bandra area are pooling resources to buy a rice-transplanting machine, which will help them to earn income by offering custom-hire services. “It is part of a major shift in perception of participating women groups. CSISA and its partnership with the government of Bihar now see an opportunity to involve women for adoption of new technologies and facilitate them to become service providers,” said Malik.
Strategies to make improved seed varieties more appealing and available to India’s farmers were the focus of the Seed Summit for Enhancing the Seed Supply Chain in Eastern India, held 14-15 May in Patna, Bihar. The summit was organized by the Cereal Systems Initiative for South Asia (CSISA) and funded by the U.S. Agency for International Development Feed the Future initiative and the Bill & Melinda Gates Foundation.
More than 60 seed experts from the government, research institutions and the private sector identified the challenges in the seed value chain and discussed actionable solutions that will improve the delivery of improved wheat and rice varieties to farmers in eastern India.
Takashi Yamano, senior scientist and agricultural economist, International Rice Research Institute (IRRI), highlighting the scope and purpose of the event in the first session at the seed summit. Photo: Nabakishore Paridasmall
Seed Scenario
Many varieties of the two key crops have been released in India in recent decades, which could significantly increase agricultural productivity and reduce rural poverty. However, most
small-scale and poor farmers in eastern India do not have access to modern varieties that can tolerate flooding or are more resistant to pests and diseases while generating higher yields.
Seed replacement rates are extremely low in eastern India, for several reasons: farmers are not aware of the potential of new varieties; a lack of proper seed storage infrastructure to maintain good quality; poor linkages among government, private sector and farmers to provide seeds in a timely manner; and gaps in the policy environment.
The event focused on strengthening the financial capacity and marketing skills of rural seed dealers and input retailers, expanding the role of agricultural extension and advisory services, leveraging civil society – farmers’ associations, community groups and nongovernmental organizations – to help promote new varieties and encouraging greater engagement from India’s vibrant private sector in the region’s seed markets.
David Spielman, senior research fellow at the International Food Policy Research Institute (IFPRI), said India is the fifth-largest seed market in the world, growing at 12 percent annually. “There is a need for better decision-making tools —better data, information and analysis at a strategic level to improve seed systems and markets in Asia. Greater investments in the research systems and improved market surveillance to identify and prosecute fraudulent seed production are also required,” he said.
Vilas Tonapi, principal scientist at the Indian Agricultural Research Institute, promoted alternative seed system models – individual farmer as a seed bank, village-based seed banks and group-based small-scale seed enterprise – to provide local platforms where farmers can easily buy improved seeds.
Looking Forward
The last session established four critical priorities for an action plan in the Indian seed sector, especially in the eastern states: the extension system should be restructured and revived; effective seed subsidy programs should be designed that are based on evidence, are cost-effective and are better targeted to reach poor farmers; mechanization of the seed sector should be promoted with the introduction of mobile seed treatment units and seed weighing machines; and demonstration of new varieties and new farm technologies should be promoted through progressive farmers.
To view photos and press coverage of the summit, please visit www.csisa.org.
CIMMYT pathologist George Mahuku and MLN technician Janet Kimunye examine tassels for pollen production on an infected plant. MLN causes a symptom called ‘tassel blast’ where the tassels of infected plants do not shed or produce pollen. Photos courtesy of George Mahuku
By George Mahuku and Florence Sipalla/CIMMYT
Germplasm screening at the maize lethal necrosis (MLN) screening facility at the Kenya Agricultural Research Institute (KARI) Naivasha is underway, and CIMMYT pathologist George Mahuku said some inoculated lines are showing levels of resistance.
He described the green islands among the maze of yellow in the fields as a demonstration of the success of the testing protocols being used at the site. “This is the lifeline for farmers,” he said. “Next we will be incorporating genes from these lines into adapted germplasm and using the Doubled Haploid facility in Kiboko to quickly develop inbred lines with resistance to MLN.”The deadly maize disease was first identified in Kenya in 2011 and has since been diagnosed in the Democratic Republic of Congo, Rwanda, Tanzania and Uganda. The MLN screening facility was established in 2013 with funding from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture to serve maize breeding institutions in Sub-Saharan Africa in response to 2014 the emergence of the disease.
CIMMYT pathologist George Mahuku inspecting plants that show tolerance to MLN in Naivasha, Kenya.
“To date, we have planted more than 19,000 different types of germplasm on 15 hectares,” Mahuku said. “This germplasm was submitted by both private and public sector partners, including CIMMYT and the International Institute of Tropical Agriculture (IITA).”
All germplasm has been inoculated, Mahuku said, and symptoms are fully visible. Operations at the facility include maintaining pure strains of the viruses that cause MLN, producing inoculum for artificial inoculation, evaluating maize hybrids and inbred lines for response to MLN and building the capacity of stakeholders including scientists, technicians, farmers and extension workers to handle the disease.
The facility also provides employment opportunities for the community, hiring more than 30 people for activities such as weeding, irrigation and disease scoring. Because the facility screens germplasm from different countries, it’s isolated from farmers’ maize plots and certified as a quarantine site. “We still do not fully understand the variability in virus strains, whether the virus strains in Rwanda, Tanzania or Uganda are the same as the ones in Kenya,” said Mahuku.
After disease evaluations, all plant debris will be disposed of by incineration. The facility has received many visitors from universities, international organizations and public and private institutions. “There is a lot of interest in learning and knowing the disease,” Mahuku said.
It recently hosted two scientists from Ethiopia who will share the knowledge gained with their colleagues and will conduct surveys to assess whether the disease is in their country. “To see all this going well is breathtaking,” said CIMMYT technician Janet Kimunye, who is in charge of virus maintenance, inoculum production and inoculations in the field and has been involved in MLN research from the beginning, initially as a consultant to CIMMYT.
“We have assembled a really good team here; watching them work way into the night and weekend is heartening,” said Mahuku. “Everybody wants a solution to this problem that is threatening their food security.”
One of the greenhouses where artificial inoculum is produced and multiplied for research purposes.
Facts about the Facility:
Area planted: 15 ha
Number of rows: 49,500
Total germplasm: 19,539
Inoculated area: 6.5 ha
Disease expression: 4.5 ha is under disease evaluation as symptoms are expressing well
On 20-22 May, CIMMYT hosted a summit with researchers from Oak Ridge National Laboratory (ORNL), a U.S. Department of Energy facility that is the largest multipurpose science laboratory in the U.S. and a committed member of the Knowledge Systems for Sustainability community of practice.
CIMMYT and ORNL began interacting in 2011, with CIMMYT leadership visiting ORNL in 2013. This summit was the formal realization of the commitment between the two groups. Bram Govaerts, associate director of CIMMYT’S Global Conservation Agriculture Program, gave an overview of the necessity for collaboration by referring to a recent National Geographic article, “Feeding 9 Billion,” that offered a five-step plan to sustainably increase the global food supply:
1. Freeze agriculture’s footprint
2. Grow more on the farms we already have
3. Use resources more efficiently
4. Shift diets
5. Reduce waste
Photos: AC Staff
The first four suggestions, Govaerts pointed out, were being directly addressed at the summit. Technology developed at ORNL will play a major role, through the improved use of big data, assessment tools, sensors and controls. One example described by Jay Gulledge, director of ORNL’s Environmental Services Division, is a laser-based infrared computed tomography spectroscopy tool that can read the greenhouse gas emissions of an area.
Virginia Dale, ORNL Corporate Fellow in the Environmental Services Division, addressed how farmers, data specialists and others are having different conversations around the same topics. “When people talk about food security, they mean different things; there’s no agreement in the world.” To create a common starting point, Dale described ORNL’s efforts to determine specific environmental and socioeconomic sustainability indicators that add value to the entire community.
Photos: AC Staff
On the second day, the morning was dedicated to creative, collaborative brainstorming to specify work for each of the five task areas. Stan Wood, senior program officer in the Agricultural Policy and Global Development Program at the Bill & Melinda Gates Foundation, noted a recurring tension among all task groups between focusing on external audiences versus serving internal scientists’ needs. He described how the science community tends to ask for a model, while visitors to the Gates Foundation will ask “so what difference does it make?” Wood suggested focusing both on the practitioners (will it actually be helpful in the field?) and the beneficiaries (are they front and center?) to create a strong human narrative.
Molly Jahn, professor in the Laboratory of Genetics and Department of Agronomy at the University of Wisconsin-Madison, reviewed the partnership potential including commercial and media groups, common resources and a focus on near-term rather than hypothetical goals. “We’re on the edge, and not everything we commit to or try works,” she said. “Challenges happen, and that is part of the experiment. Those challenges themselves are deeply informative.”
CIMMYT Director General Tom Lumpkin closed the summit, describing Jahn as “a living matrix maker … she gets us out of our silos.” He continued, “so much could be done if we had all of the data, all of the research projects that have disappeared into paper recycling and digital trash cans.” Acknowledging the senior CIMMYT staff present, Lumpkin emphasized that they are people who have spent time “on the ground, in the villages, who have looked farmers in the face. They can bring a lot to the discussion.”
Afriseeds´ David Lungu displays a cob of the company’s maize at an outgrower’s farm in Chongwe, Zambia. Photos: Florence Sipalla
Seed companies play an important role in providing smallholder farmers access to improved seed.
CIMMYT’s breeding and seed systems teams have been supporting Afriseed – a brand produced under the flagship of Stewards Globe Limited – to build its product offering and give farmers more options. The company has recently added high-yielding, drought-tolerant maize hybrids (GV635 and GV638) to its portfolio, which includes open-pollinated varieties (OPVs) and legumes such as beans, cowpeas, groundnuts and soybeans. Stewards Globe has received technical assistance through the CIMMYT-led Drought Tolerant Maize for Africa (DTMA) and Sustainable Intensification of Maize-Legume Systems for the Eastern Province of Zambia (SIMLEZA) projects.
“We don’t have a breeding program, and we need the partnership until we are big enough to develop one,” said Stephanie Angomwile, the acting chief executive officer at Stewards Globe, which has been working with the Alliance for a Green Revolution in Africa (AGRA) since 2010. Both AGRA and DTMA are funded by the Bill & Melinda Gates Foundation (B&MGF), while SIMLEZA is funded by the United States Agency for International Development (USAID).
CIMMYT seed systems specialist Peter Setimela has a discussion with Stewards Globe acting chief executive officer Stephanie Angomwile, center, and production manager Emma Sekelechi at the Agriseeds production field on the outskirts of Lusaka, Zambia.
Afriseed production manager Emma Sekelechi got practical training on seed production and hand-pollination techniques during a visit to the CIMMYT-Harare research station in Zimbabwe, where she learned how to synchronize the flowering dates of the male and female parents. The training is important because the company is now making the transition from growing OPVs to hybrids, and hybrid production needs more technical skills than OPV production does. She also attended a weeklong training session for maize technicians held at the Natural Resources Development College (NRDC) in Lusaka, Zambia, supported by DTMA and SIMLEZA projects.
Afriseed works with approximately 170 smallholder farmers on contract to multiply seed, but it is exploring the option of working with fewer farmers who have larger plots of land. “On-farm cleaning and storage of seed” are challenges, Angomwile said. The company is working on an aggressive marketing drive to popularize the new varieties through demonstration plots, providing demonstration packs (100 grams each), working with more agro dealers and holding field days for farmers to evaluate the crops. “Fake seed will not give you anything,” Afriseed marketing manager Mike Chungu told the farmers. “Use seed that comes from a reputable dealer and is approved by the Seed Control and Certification Institute (SCCI).”
Dr. Thomas A. Lumpkin, CIMMYT director general, welcomed members of the CGIAR Fund Council to the El Batán campus on 9 May by promising them “a taste of the new CIMMYT.”
The Fund Council, a representative body of donors and other stakeholders, is the decision-making body of the CGIAR Fund. Its first onsite meeting of 2014 was held 7-8 May in Mexico City, hosted by Mexico’s SAGARPA, and many of the members visited the El Batán campus the following day for a series of presentations and tours that gave them a first-hand look at CIMMYT’s work. Lumpkin opened the day with an overview of CIMMYT’s unique history and its value to the international community, reminding the council members that in some developing countries, up to 90 percent of wheat and maize crops are from CIMMYT-derived seeds.
Photo: Nicolás Crossa
He also outlined some of the challenges and achievements in the regions where CIMMYT operates:
Africa
The continent is spending US $18 billion per year on wheat imports, Lumpkin said, but it is capable of growing enough wheat to meet all its demand with the right farming methods, training and policy environment. High temperatures and droughts brought on by climate fluctuations pose a severe problem, as do epidemics of new diseases. However, the quick response to the appearance of maize lethal necrosis (MLN) provides a model for responding to future diseases —thanks to generous funding from the Bill & Melinda Gates Foundation and ingenious work by CIMMYT scientists, we were able to begin releasing MLN-resistant germplasm in just two years.
Americas
MasAgro is an exciting initiative that has already posted impressive gains in Mexico’s national effort to increase grain production and reduce hunger. In the past year, CIMMYT has reorganized the program to align with the Mexican government’s National Crusade Against Hunger (Cruzada Nacional Contra el Hambre). In addition to ongoing work in Colombia, recent visits by government representatives of Bolivia and Ecuador mean that CIMMYT’s work in Latin America may expand.
South Asia
Constraints to germplasm exchange are a major challenge in the region, and the impact of climate change, population growth and water shortages is most acute here. CIMMYT’s expertise can help farmers make the necessary shift from water-intensive rice to cotton and maize. The Borlaug Institute for South Asia (BISA) is a bright spot in the region, already hosting field days that draw thousands of farmers. Lumpkin then shared some of the recent successes of the CRPs. From MAIZE, he singled out the Striga weed management program; the increase in maize seed fortified with essential nutrients; and small farm mechanization, with a particular focus on developing equipment that women farmers can comfortably use. Highlights from the WHEAT program include the adoption of zero-tillage in Kazakhstan and the wheat boom in Ethiopia, where yields have doubled in a decade.
Photo: Xochiquetzal Fonseca
From there, Lumpkin moved on to the future of CIMMYT, which will continue to undergo rapid growth and change. Exciting new programs and technologies will shape the way we fulfill our mission:
BISA
Launched in 2011 in collaboration with the Indian Council for Agricultural Research (ICAR), the institute now has full UN privileges and is working to improve the region’s agricultural practices. An example of the way BISA is helping Indian farmers is a technique that allows them to seed wheat into standing cotton, saving them a month of growing time. The president of Pakistan has agreed to co-fund the institute in his country, Lumpkin said, and the U.S. ambassador to Pakistan will fund new facilities and a farm.
International Wheat Yield Project (IWYP)
CIMMYT is part of a new international consortium that seeks to improve wheat yield by 50 percent within 20 years. The type of project that IWYP may fund is an effort to increase the photosynthetic efficiency of wheat from 1 percent to 1.5 percent. While the amount of change may seem insignificant, such a breakthrough would have enormous impact, allowing farmers to grow more wheat on the same amount of land using no more water, fertilizer or labor. Seed funding by MasAgro helped begin the funding pledges, which are currently at US $50 million.
Technology
Lumpkin singled out several technologies in use or in the pipeline that will increase yields and help mitigate the effects of climate change, water shortages and disease epidemics: • Doubled haploid maize inducer lines developed for the tropics.
• Use of helicopter- and blimp-mounted drone sensors to take quick, accurate measurements in the fields.
• The GreenSeeker system, which is already saving participating Mexican farmers US $100/hectare.
• Hybrid wheat – The quest for hybrid wheat varieties is so important to the world food supply that big companies have teamed up with CIMMYT to achieve that goal while still looking out for the developing world.
The past and future changes at CIMMYT can perhaps best be summarized by the evolving attitude toward our gene bank, which houses more than 175,000 accessions and is the largest in the world. In the past, Lumpkin said, the gene bank was regarded as a museum. But today, as through projects like Seeds of Discovery, CIMMYT scientists carefully analyze the small variations among the accessions, aware that those might lead to big discoveries. “The gene bank,” Lumpkin said, “is not a museum.”
Anderson with Dr. Thomas Lumpkin, CIMMYT director general, in the main lobby.
Pamela Anderson, director of agricultural development at the Bill & Melinda Gates Foundation, visited the CIMMYT campus in El Batán, Mexico, on 6 May to get a closer look at CIMMYT’S work.
Pamela Anderson with a jar of maize seed in the gene bank.
Anderson leads the BMGF team that works to reduce hunger and poverty for millions of farming families in Sub-Saharan Africa and South Asia by increasing agricultural productivity in a sustainable way. She joined the foundation in 2014 from the CGIAR Consortium, where she was director general of the International Potato Center (CIP).
Before that, she was senior entomologist at the International Center for Tropical Agriculture (CIAT) in Cali, Colombia. Anderson has conducted research in agricultural entomology and plant virus epidemiology related to food security and income generation for resource-poor populations and authored numerous publications on these topics.
Andrew Chavangi demonstrates the use of a seed counter.
Amini Mataka, a research officer for CIMMYT’s Southern Africa Regional Office in Zimbabwe, was one of many Water Efficient Maize for Africa (WEMA) scientists and technicians who experienced difficulty using data generation and processing equipment.
But after attending the “Towards Quality Data through Effective and Efficient Use of Equipment in WEMA” training course held in Nairobi, Kenya, on 15-22 March, this is no longer the case. “I can now confidently and competently use the Motorola Scanner, make it compatible with computers and use Fieldbook to analyze data and prepare nurseries and trials,” Mataka said.
According to Stephen Mugo, CIMMYT Global Maize Program principal scientist and CIMMYT-WEMA team leader, these difficulties encouraged WEMA to train 28 scientists and technicians from CIMMYT and national agricultural research systems from the five WEMA countries – Kenya, Mozambique, South Africa, Tanzania and Uganda. The training provided participants with skills in the preparation of nurseries and trial design and seed preparation using Fieldbook; the printing of seed packet and field labels in Fieldbook; the basics of data collection using equipment and data analysis using appropriate software; and the use and care of computers, printers, seed counters, threshers and data collection equipment.
Patrick Chomba demonstrates how the bulk sheller operates. Photo: Wandera Ojanji
Caroline Thatelo, senior research technician for the Agricultural Research Council-South Africa, learned how to use Fieldbook, a tool developed by CIMMYT maize breeders for managing experiments and data analysis using the open-source data analysis software “R.” “We had problems using Fieldbook when we started,” Thatelo said. “But the practical demonstrations we have gone through have now made me perfect in the use of Fieldbook. I can now create an inventory, a seed increase nursery, a nursery to form single crosses, a stock list, consolidate inventories, generate trials and analyze data for single- and multi-location sites using Fieldbook.”
To some, like Gabriel Ambani, senior technician at the Kenya Agricultural Research Institute (KARI)-Kakamega, Kenya, the training was an eye-opener. “Before this training, I had no hands-on experience on the use of most of the equipment we were trained on, particularly the Motorola Scanner, label printers and bulk sheller,” he said. “I now have increased competence and am looking forward to applying my gained knowledge and skills to effectively use the equipment.”
Caroline Thatelo receives her certificate of completion from Sylvester Oikeh.
Sylvester Oikeh, WEMA project manager, called on the participants to put their new skills into use. “I want to see improvements in data collection and analysis. Do not be afraid to use the equipment and Fieldbook,” he said. “You are bound to make mistakes. But through the mistakes, you will figure out the right way to operate the equipment and use Fieldbook. You will get it right after several attempts.”
Several CIMMYT scientists and technicians helped organize and facilitate the workshop, including breeders Stephen Mugo and Yoseph Beyene; technicians Andrew Chavangi, John Gakunga and Collins Juma; and Joel Mbithi, CIMMYT-Kiboko farm manager. WEMA Phase II is funded by the Bill & Melinda Gates Foundation, the United States Agency for International Development-Feed the Future initiative and the Howard G. Buffett Foundation.
A training course held in Tanzania provided maize breeders with hands-on experience in using molecular markers for quality control analysis (genetic identity, genetic purity and parentage verification), germplasm characterization, marker-assisted backcrossing and marker-assisted recurrent selection.
The Water Efficient Maize for Africa (WEMA) project is on-track to produce and distribute at least 25 drought-tolerant maize hybrids for farmers in Kenya, Mozambique, South Africa, Tanzania and Uganda during its second phase.
In 2013, the project commercially released 15 drought-tolerant maize hybrids, with 84 more nominated for national performance trials. “This is a rare feat,” said Sylvester Oikeh, WEMA project manager, during the project’s Sixth Annual Review and Planning meeting from 7 to13 February. “In the history of maize research in Africa, only one entity – WEMA – has released 15 hybrids in a single year.”
At its inception in 2008, WEMA promised to develop and deploy maize varieties that would not only tolerate moderate drought but also provide 20 to 35 percent more grain yield than currently available commercial hybrids. Buoyed by the success of the breeding pipelines in Phase I (2008-2013), the partnership set the 25-hybrid target in February 2013 for Phase II (2013-2017).
Also in 2013, WEMA helped smallholder farmers harvest the drought-tolerant maize variety WE1101, sold under the brand name DroughtTEGO™, said Denis Kyetere, executive director of the African Agricultural Technology Foundation (AATF). The hybrid recorded impressive sales in Kenya, according to Gospel Omanya, AATF’s seed systems manager and WEMA deployment team leader. From September 2013 to January 2014, farmers purchased 42.5 tons of the 72 total tons of seed distributed to seed companies. Omanya expects additional sales and adoption of the hybrid, due to its outstanding performance – an average yield of 4.5 tons per hectare (t/ha) during the short rain season, compared to Kenya’s average maize yield of 1.8 t/ha. WE1101 is one of the hybrids developed using breeding lines from the Drought Tolerant Maize for Africa (DTMA) project. Natalie DiNicola, vice president for Europe and Africa for Monsanto, lauded WEMA partners for the achievement. “Thank you for making it happen, for getting the products into the hands of farmers,” DiNicola said.
Uganda Minister of State for Agriculture Nyiira Zerubabel also praised the progress. “Your effort in addressing maize production constraints and increasing productivity levels are highly commendable,” stated Nyiira in a speech read on his behalf by Okaasai Opolot, Uganda’s director of crop resources, during the official opening of the meeting. He urged the project partners to deliver a holistic package to the farmers. “Your work should ensure that the varieties you develop achieve the expected performance that delivers high quantities and qualities by addressing these issues: good crop and post-harvest management practices and productivity, access to markets for rural farmers, efficient seed systems to boost productivity, and value addition initiatives that will improve rural incomes.”
Participants experienced the best of WEMA breeding and testing in Uganda when they visited Namulonge Research Station, where confined field trials of MON810 and other WEMA conventional hybrids are under way. Lawrence Kent, senior program officer of agriculture, science and technology for the Bill & Melinda Gates Foundation, urged WEMA partners to aim for higher impact over the next four years. “We must generate and reach more farmers with products. I am excited about the promising MON810 results so far and I urge you to seize the opportunity and forge ahead with commercializing it and making it available to needy farmers.”
(Seated from right) John MuMurdy, international research and biotechnology advisor, USAID; Natalie DiNicola, Monsanto’s vice president for Europe and Africa; Lawrence Kent, senior program officer, Agriculture, Science and Technology, the Bill & Melinda Gates Foundation; Okaasai Opolot, Uganda’s director of crop resources; and Denis Kyetere, executive director, the Africa Agricultural Technology Foundation. Speaking is B.M. Prasanna, director of CIMMYT’s global maize program. Photos: Wandera Ojanji/CIMMYT
B.M. Prasanna, director of CIMMYT’s global maize program, noted that maize lethal necrosis (MLN) disease had serious consequences on seed production and delivery and crop production in 2013. “Seed shipments were restricted,” said Prasanna, “and maize cultivation was shut down in affected areas, limiting seed production and breeding activities.” At the same time, said Prasanna, the MLN threat is an opportunity to replace old varieties on the market with higher-yielding, resistant ones. More than 2,000 maize lines were screened under natural infections of MLN in two seasons in Kenya during 2013. “We found clear-cut responses and identified some very promising resistance,” Prasanna said.
He added that the resistance would be speedily incorporated into breeding lines and populations through screening at the MLN facility in Naivasha and use of the doubled haploid facility in Kiboko, both inaugurated in March 2013. Partners are also following protocols circulated by CIMMYT to ensure the pathogen-free production and exchange of maize breeding materials. The WEMA advisory board has recommended that the project intensify the breeding of conventional maize varieties for Mozambique and Tanzania, engage large seed companies to use WEMA products, develop exclusive licensing for current products and encourage governments to facilitate trials of transgenic maize.
WEMA Phase II is funded by the Bill & Melinda Gates Foundation, the U.S. Agency for International Development (USAID) and the Howard G. Buffett Foundation.
The CIMMYT-Africa seed systems team met in Nairobi, Kenya, on 7 February to take stock of progress in 2013, identify challenges and brainstorm on turning those challenges into opportunities. Global Maize Program (GMP) Director B.M. Prasanna and members of the breeding, communications and socioeconomics teams also attended.
The “double-up legume system” improves food security in Malawi by increasing yield and farmers’ incomes. Photos: Christian Thierfelder
Gently undulating plains and green maize fields dominate the landscape of central Malawi as far as the eye can see. The ridges, furrows and bare soil in between, resulting from traditional land preparation, are common. Heavy rainfalls and accelerated soil erosion turn the Chia Lagoon, connected to Lake Malawi, brown and murky. The continued loss of soil fertility and the need to adapt to climate variability led CIMMYT and its partners to introduce conservation agriculture (CA) in Malawi in 2005.
The Nkhotakota district, where conservation agriculture systems have been widely adopted, shows changes in the landscape, such as residue-covered soil surfaces along the roadsides. Farmers are embracing the new CA concepts and are successfully growing maize directly planted with a pointed stick. CIMMYT and partner organizations including Total LandCare and the Ministry of Agriculture, funded by the International Fund for Agricultural Development, support these efforts. The impacts of CA in Malawi are obvious. More than 30,000 farmers in the central part of the country have been informed about the practices and now use them on their own fields, which is a direct result of CIMMYT science and the concerted efforts of private, governmental extension and national research organizations.
Farmer Christopher Helima shows a new drought-tolerant maize variety grown using conservation agriculture.
Farmer Belemoti Sikelo, from the Mwansambo Extension Planning Area, has participated in the program for more than eight years. “I used to be a farmer that always ran out of maize grain in February or March and had to work for other farmers in the area to enable my family and me to survive,” Sikelo said. “Since I started using conservation agriculture practices, we have always had enough food during the critical months. I have expanded the land area under conservation agriculture on my farm and I have also tried conservation agriculture without expensive herbicides; I believe it is possible to apply conservation agriculture techniques without chemical weed control, but it needs good management and residue cover to reduce the weed pressure. Farmers around me come and visit my demonstration plots and ask me about my secrets for a good-looking maize crop. They admire the fields where I have planted groundnuts and maize under conservation agriculture.”
Disease pressure on traditionally monocropped maize has forced farmers to rotate maize with cowpeas, groundnuts and pigeonpea. Through diversified crop rotations, they have managed to control the parasitic weed striga (Striga asiatica L.), fungal diseases and damage from white grubs, the larvae of the black maize beetle (Phyllophaga ssp. and Heteronychus spp.). As an added advantage, they have improved family nutrition and have surplus produce to sell in local markets.
A team of researchers from Brazil, Malawi, Mexico and Zimbabwe visited longterm on-station and on-farm CA trials and demonstrations in central Malawi during 4-8 February to monitor progress and impact, in their quest to sustainably intensify smallholder farming systems.
The use of conservation agriculture multiplies these benefits. Legumes such as groundnuts, cowpeas and soybeans can be grown on flat soil with half the row spacing, which is not possible under the conventional ridge and furrow system. The increased plant population has more than doubled grain yield, provides better ground cover and reduces soil erosion. The need to grow more food on the same land area has spurred innovation. To increase legume production, farmers have started to adopt the “double-up legume system.” Growing legumes with different growth habits side-byside – for example pigeon pea with cowpea or groundnuts – increases farmers’ yields and incomes even more, while also improving food security.
Lastly, drought-tolerant maize varieties provided by the Bill & Melinda Gates Foundation-funded Drought Tolerant Maize for Africa (DTMA) project were recently introduced and are being tested under different crop management systems. With the new stress-tolerant maize cultivars, farmers can now overcome seasonal dry spells and to grow longer season varieties. The risk of crop failure is reduced under conservation agriculture due to better moisture retention on residue-covered fields. This important benefit will be key in the coming years, as temperatures will likely increase and rainfalls become more erratic.
DTMA seed systems specialist Peter Setimela (right) with BBC journalist Stephen Sackur, who chaired the meeting’s opening session. Photo: Peter Setimela
By Peter Setimela/CIMMYT
CIMMYT Seed Systems Specialist Peter Setimela participated in the Global Forum for Innovations in Agriculture from 3-5 February in the United Arab Emirates. The theme of the conference was “driving innovation for an agricultural revolution.” More than 1,800 delegates and 120 exhibitors were hosted by Deputy Prime Minister Sheikh Mansour bin Zayed and the Bill & Melinda Gates Foundation (BMGF).