Skip to main content

funder_partner: Bill & Melinda Gates Foundation

Millions of smallholders in Africa benefit from climate resilient drought-tolerant maize

Traditional maize storage in Tete province in Mozambique, April 27, 2015. CIMMYT/Tsedeke Abate
Traditional maize storage in Tete province in Mozambique, April 27, 2015. CIMMYT/Tsedeke Abate

NAIROBI, Kenya (CIMMYT) – At least 40 million smallholder farmers throughout sub-Saharan Africa are profiting from more than 200 new drought-tolerant varieties of maize produced as part of the Drought Tolerant Maize for Africa (DTMA) Project, according to scientists at the Center for International Maize and Wheat Improvement (CIMMYT).

The project, underway between 2007 and 2015, led to the development of varieties with traits preferred by farmers that have successfully made smallholders in 13 countries more resilient to the erratic effects of climate change on growing conditions.

“Smallholder farmers in this region plant maize varieties that are obsolete and end up getting poor harvests, but that’s changing now thanks to the gallant efforts of the DTMA team that has released and commercialized a large number of modern varieties,” said Tsedeke Abate, the CIMMYT scientist who led the project. “Thanks to the new drought-tolerant varieties, many families have managed to overcome harsh growing conditions and boost yields substantially.”

In 2014 alone, more than 5 million smallholder farmer households planted the new varieties on 2.1 million hectares (5.2 million acres), an area roughly the size of El Salvador. Overall, 54,000 metric tons of high quality seed were produced in 2014 through the DTMA project, which received funding from the Bill & Melinda Gates Foundation, Britain’s Department for International Development, the Howard G. Buffet Foundation and the U.S. Agency for International Development (USAID).

COMPLEX CHALLENGES

“The adoption of the improved drought tolerant seed varied from one country to another and each county had unique challenges that made it difficult for some farmers to take up the new varieties. Some farmers were not aware of the availability of the seed in their markets, for some the seed was not available or the price was high,” Abate said. “We worked with national seed companies in these countries to increase production of certified seed so that many more farmers can buy the seed at an affordable price as well as demonstrating the benefits of the new varieties.”

Anthony Mwega, a farmer and leader in Olkalili village, in Hai district a semi-arid area in northern Tanzania about 600 kilometers (370 miles) from the capital Dar es Salaam, beat the price constraint by mobilizing 66 farmers from his village and neighboring villages Makiwaru and Ngaikati to pool resources and buy 5 metric tons of HB513 – a drought-tolerant and nitrogen-use efficient variety – at a very affordable price from Meru Agro Tours and Consultant Seed Company.

“The overall purchasing price we bought the seed for was about 50 percent less than the market price because we bought it in bulk,” said Mwega. “I saw how good the maize performed in demonstrations organized by Meru Agro during the 2014 planting season with extremely low rains, and knew this is a variety that my people would definitely benefit from.”

Scientists project that millions more farmers will gain access to and plant the new varieties due to collaborations with more than 100 national seed companies, which continue to make a significant contribution to the improvement of seed systems in Angola, Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, Zimbabwe.

“Collaboration with CIMMYT through the DTMA project has been extremely instrumental in facilitating me to release my own varieties,” said Zubeda Mduruma of Aminata Seed Company in Tanga, Tanzania who has collaborated with CIMMYT both in maize breeding and production work since 1976.

“I was able to get some of the best germplasm, evaluate them through on-farm and on-station trials, and successfully released three of the best drought tolerant varieties in the market, including one quality protein DT variety that is very popular among women because of its nutritional value. With the quality of maize we get from CIMMYT, it’s very possible to release new improved varieties every year with much better yield compared to popular commercial varieties in our shops.”

The story of this success is told through a series of pictures and profiles of DTMA target countries. Each country profile illustrates the context of national maize production and the changes underway thanks to released drought-tolerant varieties.

The DTMA project will continue, first as the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) initiative. Under the project, which is funded by USAID, CIMMYT scientists aim to facilitate the production of close to 12,000 metric tons of certified seed for use by about 2.5 million people, in Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda and Zambia.

In partnership with the International Institute of Tropical Agriculture who partnered with CIMMYT in DTMA work, the new Stress Tolerant Maize for Africa project will also carry forward the success and invaluable lessons from DTMA and CIMMYT’s Improved Maize for Africa Soils project, to develop new stress tolerant varieties to help farmers mitigate multiple stresses that occur concurrently in farmers’ fields.

Read more:

The legacy of drought tolerant maize for Africa

Going further down the path to bolster Africa’s maize sector

Latest DT Maize Bulletin

Global wheat community discusses research, partnerships at Obregon pilgrimage

Scientist Sukhwinder Singh (L) hosts a discussion in the wheat fields at the CIMMYT research station in Obregon, Mexico. CIMMYT/Julie Mollins
Scientist Sukhwinder Singh (L) hosts a discussion in the wheat fields at the CIMMYT research station in Obregon, Mexico. CIMMYT/Julie Mollins

OBREGON, Mexico (CIMMYT) — For  hundreds of international agricultural development experts, an annual gathering in northern Mexico provides a vital platform for sharing and debating the latest wheat breeding news and research.

This year, more than 200 members of the wheat community from more than 30 countries met in the legendary wheat fields of Ciudad Obregon in Mexico’s state of Sonora to participate in Visitors’ Week, hosted by the Global Wheat Program (GWP) of the International Maize and Wheat Improvement Center (CIMMYT).

The event coincides with the birthday of Norman Borlaug, the late CIMMYT wheat breeder and Nobel Peace Prize laureate, known as the father of the Green Revolution for his contributions to global food security, many of which were undertaken in Obregon. This year, Visitors’ Week delegates toasted  his 102nd birthday at the Norman E. Borlaug Experimental Field research station.

The month of March also marks the peak wheat-growing season in Obregon, and participants attended a field day tour to see old and new wheat varieties, learn about CIMMYT programs and the latest research findings. Additionally, meetings and discussions were held with the goal of contributing to the improvement of wheat research across the globe by identifying key priorities.

INTERNATIONAL DIALOGUES

A brainstorming session between representatives from the British government and CIMMYT included discussions on collaborating on breeding for tolerance to high ambient temperatures, durable disease resistance, nitrogen use efficiency, and quality and nutrition.

Future collaborations between CIMMYT and Australia were explored with the Grains Research and Development Corporation and the CIMMYT-Australia-ICARDA Germplasm Exchange (CAIGE) group. 2Blades, a U.S.-based organization supporting the development of durable disease resistance in crop plants, joined the discussion and expressed the need to use safe, sustainable crop production strategies.

As part of discussions regarding international collaboration, the second meeting of the Expert Working Group on Nutrient Use Efficiency in wheat aimed to improve international coordination on NUE (nitrogen and other nutrients) research among Australia, Britain, France, Mexico, Italy, Spain and Germany.

During the NUE meeting, an executive committee was appointed, with Malcolm Hawksford, head of Plant Biology and Crop Science at Rothamsted Research as chair and Jacques Le Gouis, of the French National Institute for Agricultural Research, as vice chair.

As well, the International Wheat Yield Partnership (IWYP) held its first official conference during which IWYP director Jeff Gwyn discussed outcomes and objectives for the next 20 years.

Due to the large audience of global wheat researchers, the Borlaug Global Rust Initiative took the opportunity to launch its new project, Delivering Genetic Gain in Wheat (DGGW), supported by a $24 million grant from the Bill & Melinda Gates Foundation. Under the DGGW, CIMMYT scientists aim to mitigate serious threats to wheat brought about by climate change by developing and deploying new heat-tolerant, disease-resistant wheat varieties.

ENCOURAGING ENGAGEMENT

With the hope of increasing data and information sharing, the International Wheat Improvement Network (IWIN) awarded Mehmet Nazım Dincer of Turkey the IWIN Cooperator Award for contributing data on international nurseries. Through a lottery, Dincer was selected from among researchers who provided data on international seed nurseries to IWIN in 2015. Dincer was awarded a one-week paid visit to ObregĂłn during GWP Visitors’ Week, and was also congratulated for his collaborative efforts during the festivities.

Another lottery will be held in November to select the next winner from among cooperators who return 2016 international nursery data. GWP director Hans Braun joked that he is not aware of other lotteries with so few participants in which the jackpot is a trip to Obregon, encouraging  IWIN cooperators to return their data and win.

Visitors’ Week is not only an important time for international collaborations and brainstorming, but also for capacity development and training early career scientists. Coinciding with this year’s Visitors’ Week was the GWP Basic Wheat Improvement Course (BWIC), a three-month training course for young and mid-career scientists focusing on applied breeding techniques in the field. In addition to attending Visitors’ Week events, trainees were offered special courses with guest lecturers.

Joining the BWIC at this time were winners of the 2016 Women in Triticum Award who alongside women trainees attended a “Women in Agriculture” discussion led by Jeannie Borlaug, daughter of Norman Borlaug, to discuss difficulties and successes women face in achieving equality in the science and agriculture sectors.

Tackling challenges to cereal production through cross-crop collaborations

Climate change is likely to have a huge impact on cereal farmers in India. Photo: Emma Quilligan/CIMMYT
Climate change is likely to have a huge impact on cereal farmers in India. CIMMYT/Emma Quilligan

EL BATAN, Mexico (CIMMYT) – Developing cereal crops that can withstand the effects of climate change will require global, integrated efforts across crops and disciplines, according to a recent research paper published in the journal “Global Food Security.”

The authors of “An integrated approach to maintaining cereal productivity under climate change” argue that cropping systems could become more resilient in the face of climate change through better coordination. Needs include characterizing target agro-ecosystems,  standardization of experimental protocols, comparative biology across cereals (and possibly other crops) and data sharing.

Better integration of research effort across the major cereal crops – including wheat, rice, maize, pearl millet and sorghum – is expected to boost productivity under heat and drought stress, thus helping to increase food security for people in less developed countries, many of which will be severely affected by climate change.

“Most of the big challenges in crop improvement are transnational, therefore a better globally integrated research effort is a triple win scenario,” according to  Matthew Reynolds, head of wheat physiology at the International Maize and Wheat Improvement Center (CIMMYT), and lead author of the paper. “It’s more efficient since duplication of effort is reduced, it’s synergistic since we learn simultaneously from multiple crops and environments [or cropping systems], and it’s faster to achieve impacts because outputs are disseminated more broadly.”

The paper itself is the result of a workshop held in New Delhi in November 2013, which was the first of its kind to bring together researchers from leading universities, CGIAR agricultural research centers, national agricultural research systems and the private sector – working across the five crops – to discuss areas of common interest and potential collaboration.

Wheat, rice, maize, pearl millet, and sorghum make up nearly 45 percent of calories consumed per capita worldwide and about 55 percent in least developed countries, according to the Food and Agricultural Organization of the United Nations. Cereal production is under threat from climate change, which subjects crops to heat and drought stress. Diminishing water supplies, increasing populations, urbanization, shifting diets and increasing demand for fodder and fuel is also putting pressure on cereal production. Taking all these factors into account, researchers project that yield growth rates of 1.2 percent to – 1.7 percent will be required to meet global demand and reduce malnutrition.

The authors of the paper, including representatives from the U.S. Agency for International Development and the Bill & Melinda Gates Foundation, identified priority traits for heat and drought tolerance across the cereal crops, and also called for more effective collaborations so that these traits can be modelled, tested at common phenotyping platforms and the resulting data shared with other researchers worldwide as global public goods.

“This paper has provided a baseline about what needs to be done,” said O.P. Yadav, director of the Central Arid Zone Research Institute at the Indian Council of Agricultural Research. “It has also shown what is achievable, once various institutes decide to work together with a common goal and become collaborative stakeholders in increasing the resilience of diverse cropping systems.”

Combating malnutrition: a new zinc-rich variety of wheat

VeluBlogpic
A farmer feeds harvested wheat crop into a thresher as a woman collects de-husked wheat in a field at Kunwarpur village, Allahabad in India’s Uttar Pradesh website. Credit: Handout

V.K. Mishra and Ramash Chand are professors at Banaras Hindu University in Varanasi, India. Arun Joshi is a wheat breeder at CIMMYT. Any views expressed are their own.

One of the side-effects of the Green Revolution, which began in the 1960s and led to large increases in crop production, has been a change in the cropping patterns in many parts of India.

Farmers have shifted to crops with higher yields. In the Indo-Gangetic plains, for example, rice and wheat have replaced many other crops. This has reduced crop diversity, affected dietary patterns, and led to malnutrition due to a poor supply of proteins, vitamins, iron and zinc.

Wheat is the staple diet in Uttar Pradesh and Bihar. Farmers in those states typically have very small landholdings and consume about 70 per cent of the food they produce. One essential mineral missing from their diet is zinc. A zinc deficiency leads to malfunctioning of several proteins and enzymes, and manifests itself in a variety of diseases, including diarrhea, skin and respiratory disorders.

One way of making up for this kind of deficiency is to provide fortification by adding missing nutrients to food, but this is complex for several reasons, including price increases, the problem of quality control, and the possibility of adulteration.

We tested the genetic bio-fortification technology for enhancing the zinc content in wheat crops under the HarvestPlus project of CIMMYT and the International Center for Tropical Agriculture, funded by the Bill & Melinda Gates Foundation. Bio-fortification is a seed-driven technology that enables crops to extract a higher amount of zinc from the soil and store it in the edible parts.

Through cross-breeding, we produced several thousand wheat genotypes and screened them for high zinc content and high yield. In India, a new variety would be unacceptable if it does not deliver a higher yield than the varieties already under cultivation. We isolated several of these cross-bred varieties that had both high zinc and high yield, and put them through field trials. The existing varieties of wheat crop had 29 parts per million (ppm) of zinc and the varieties we selected had 40 to 45 ppm of zinc.

These field trials were conducted at 70 different locations. Two specific varieties of wheat were then distributed to about 5,000 farmers for cultivation.

The next stage is national trials, which will be conducted by the Indian Council of Agricultural Research (ICAR). The first thing that ICAR does is to put the recommended varieties to disease trial. The ICAR tests take about three years. One of the varieties, BHU-35, has recently cleared the disease-testing stage and is ready to be released in Uttar Pradesh for cultivation, after a few more regulatory clearances.

Seven other varieties are currently undergoing disease testing, and in the next few years, many other zinc-rich wheat crops will be ready for cultivation.

This story was originally published in The Indian Express.

Cereal systems in South Asia show diverse benefits of conservation agriculture

Conservation agriculture (field at right) protects wheat from damage due to water stagnation experienced in a conventional field, visible in the blackening of the wheat (left field). Photo: CIMMYT/ Sapkota
Conservation agriculture (field at right) protects wheat from damage due to water stagnation experienced in a conventional field, visible in the blackening of the wheat (left field). CIMMYT/Tek Sapkota

Julianna White is program manager for low emissions agriculture at the CGIAR Research Program on Climate Change, Agriculture and Food Security. Tek Sapkota is a scientist with the International Maize and Wheat Improvment Center and lead author of the study. Any opinions expressed are their own.

Research shows conservation agriculture increases the income of farmers, moderates canopy temperatures, improves irrigation productivity and reduces greenhouse gas emissions in cereal systems in the Indo-Gangetic plains.

Conservation agriculture practices are also climate-smart, meaning they help farmers adapt to climate change while minimizing greenhouse gas emissions, found researchers from CIMMYT, the Borlaug Institute for South Asia and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

In an August 2015 article in the Journal of Integrative Agriculture, researchers report that a comprehensive literature review and evidence collected from on-farm trials showed that conservation agriculture – defined as minimal soil disturbance and permanent soil cover combined with appropriate rotations – improved farmers’ income, helped crops sustain or adapt to heat and water stresses, and reduced agriculture’s contribution to greenhouse gas emissions in cereal systems in South Asia.

Farmer Ram Shubagh Chaudhary in his wheat fields, in the village of Pokhar Binda, Maharajganj district, Uttar Pradesh, India. He alternates wheat and rice, and has achieved a bumper wheat crop by retaining crop residues and employing zero tillage. He is one of the farmers working in partnership with the Cereal Systems Initiative for South Asia (CSISA). CIMMYT is one of the many partners involved in CSISA, a collaborative project designed to decrease hunger and increase food and income security for resource-poor farm families in South Asia through development and deployment of new varieties, sustainable management technologies, and policies, led by the International Rice Research Institute (IRRI) and funded by the Bill & Melinda Gates Foundation and the USAID. Chaudhary carries out many different experiments, including comparisons of varieties, sowing dates, herbicides, and other variables, and gives demonstrations of his fields to other farmers. Photo credit: CIMMYT.
Farmer Ram Shubagh Chaudhary in his wheat fields, in the village of Pokhar Binda, Maharajganj district, Uttar Pradesh, India. He alternates wheat and rice, and has achieved a bumper wheat crop by retaining crop residues and employing zero tillage. CIMMYT/Petr Kosina

Farmers reap economic benefits

Conservation agriculture recommends minimal soil disturbance, most commonly tillage. Farmers who practiced zero tillage saved 23 percent in production costs by avoiding preparatory tillage and reducing the number of times fields were irrigated, while reaping the same or slightly higher yields.

Minimizing heat stress

High temperatures during the maturity stage cause wheat to decrease grain size, lowering overall yields, a phenomenon known as “terminal heat effect.” Farmers who practice conservation agriculture avoid this heat stress because residues left on the surface of the field conserve soil moisture, enhancing transpiration and creating a cooling effect – thus avoiding reduced yields caused by terminal heat effect.

Efficient use of water resources

Researchers found multiple examples that the zero tillage component of conservation agriculture led to significant water savings in both rice and wheat systems. Water savings accrued across systems. In rice-wheat systems, retention of wheat residues reduces water use in rice, and retention of rice residues causes reduced water use in wheat. Non-requirement of preparatory tillage advances the planting times thereby increasing rainwater-use efficiency and utilizing residual moisture from the previous crop.

Decrease in greenhouse gas emissions

Minimizing soil disturbance allows for soil carbon to accumulate, causing a net soil carbon gain. Although scientists are still debating the extent of soil carbon sequestered through conservation agriculture, indirect emissions reductions are numerous: less power and fuel consumption due to decreased tillage in conservation agriculture, decreased labor from machines and humans, and slower depreciation of equipment.

Business-as-usual production practices such as conventional tillage and farmers’ nutrient and irrigation management systems are greenhouse gas-intensive, while zero tillage reduces energy consumption in land preparation and crop establishment and efficient use of water resources reduces energy needs from pumping. Leaving residues in the field increases soil health and fertility, thereby reducing the need for chemical fertilizers.

Researchers found that, on average, farmers could save 36 liters of diesel per hectare, equivalent to a reduction in 93 kg CO2 emission per hectare per year by practicing zero tillage for land preparation and crop establishment in the rice-wheat system typical on the Indo-Gangetic Plain. Given that 13.5 million hectares are under rice-wheat system cultivation in the region, this represents a reduction of 12.6 megatons of CO2 equivalent.

New technologies increase uptake of conservation agriculture

Despite excellent productivity, economic gains and environmental benefits, adoption of conservation agriculture in South Asia is still relatively slow, most likely due to various technological and socio-economic factors. It takes years and ample evidence for farmers to change the entrenched habit of tillage with planting. And it is a process.

For example, some farmers have adopted zero-tillage in wheat production, primarily to facilitate early planting, lower production costs and increase yields (and therefore profitabilitiy). However, these same farmers still prefer to practice tillage and puddling (wet-tillage) in their rice crops for weed control and reduction in percolation loss of water/nutrient. Also, farmers tend to burn crop residues to facilitate planting with the zero-tillage drill. To realize the full potential of conservation agriculture, all crops in rotation have to be brought under zero tillage, and crop residues will have to be used as soil surface mulch.

Due to the recent development of the “Turbo Happy Seeder,” which can drill seed and fertilizer directly through loose and anchored crop residues, farmers are gradually moving towards zero tillage across the agriculture system.

Farmers who practice conservation agriculture also must adjust their nutrient management systems in order to maximize crop productivity decrease costs. Conventional fertilizer recommendations have been calibrated based on tillage-based systems are thus not necessarily appropriate for conservation agriculture systems, including nutrient stewardship (applying the right source of fertilizer at the right time in right place using right method).

Crop residue management is essential for continuous coil cover, an important component of conservation agriculture, but farmers are faced with competing uses of crop residue as livestock feed, fuel, mulch and compost. Local adaptive research is needed to address strategic residue and nutrient management, weed control and scale-appropriate machinery development.

Such a paradigm shift in crop management requires a mindset transition among farmers and other value chain actors, including researchers, extension agents, market players and other institutions. Though it is recognized that transition takes time, recent progress and development in weed control and nutrient management systems signal that practice of conservation agriculture is growing across the region, including among different socio-economic groups and farm typologies.

CCAFS and CIMMYT continue research and implementation of low emissions agriculture across the globe. See also the regional focus on conservation and climate-smart agriculture in South Asia.

Drought tolerant maize: Long-run science, investments, and partnerships pay off in Africa

New hybrid helps farmers beat drought in Tanzania. With seed of a maize hybrid developed by the Drought Tolerant Maize for Africa (DTMA) project and marketed by the company Meru Agro Tours and Consultant Limited, Valeria Pantaleo, a 47-year-old farmer and mother of four from Olkalili village, northern Tanzania, harvested enough grain from a 0.5-hectare plot in 2015 to feed her family and, with the surplus, to purchase an ox calf for plowing, despite the very poor rains that season. “I got so much harvest and yet I planted this seed very late and with no fertilizer,” said Pantaleo, who was happy and surprised. “I finally managed to buy a calf to replace my two oxen that died at the beginning of the year due to a strange disease.” In 2015 Meru Agro sold 427 tons of seed of the hybrid, HB513, known locally as “ngamia,” Kiswahili for “camel,” in recognition of its resilience under dry conditions. The company plans to put more than 1,000 tons of seed on the market in 2016. Photo: Brenda Wawa/CIMMYT
New hybrid helps farmers beat drought in Tanzania. With seed of a maize hybrid developed by the Drought Tolerant Maize for Africa (DTMA) project and marketed by the company Meru Agro Tours and Consultant Limited, Valeria Pantaleo, a 47-year-old farmer and mother of four from Olkalili village, northern Tanzania, harvested enough grain from a 0.5-hectare plot in 2015 to feed her family and, with the surplus, to purchase an ox calf for plowing, despite the very poor rains that season. “I got so much harvest and yet I planted this seed very late and with no fertilizer,” said Pantaleo, who was happy and surprised. “I finally managed to buy a calf to replace my two oxen that died at the beginning of the year due to a strange disease.” In 2015 Meru Agro sold 427 tons of seed of the hybrid, HB513, known locally as “ngamia,” Kiswahili for “camel,” in recognition of its resilience under dry conditions. The company plans to put more than 1,000 tons of seed on the market in 2016. Photo: Brenda Wawa/CIMMYT

This story is one of a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.

EL BATAN, Mexico (CIMMYT) — In the early 1990s, before climate change caught popular attention, the United Nations Development Programme (UNDP) provided funding for an international team of scientists in Mexico to find a better way to breed resilient maize for farmers in drought-prone tropical areas.

Fast forward several decades and that scientific concept is now reality. By early 2016 more than 2 million farmers were acquiring and growing drought-tolerant varieties from that early research in 13 countries of sub-Saharan Africa, a region where maize, the number-one food crop, frequently fails under erratic rainfall and lethal droughts.

Survival of the fittest

The core methodology, developed at CIMMYT, was to genetically select maize lines that survive and yield grain under controlled drought or low soil nitrogen on experimental plots. This imparts tolerance in maize to both dry conditions during flowering and grain-filling, when the plant is particularly sensitive to stress, and to the nitrogen-depleted soils typical of small-scale farms in the tropics.

Maize plants are designed with male flowers, called tassels, at the top, and female flowers, known as silks, which emerge later from young ears and catch pollen. Research in the 1970s had shown that, under drought, maize plants whose silks appear soonest after tassels also produce more grain, according to Greg Edmeades, a retired maize physiologist who led development of CIMMYT’s drought breeding system in the 1980s-90s.

“We used that trait, known as anthesis-silking interval, as a key yardstick to select maize lines and populations that did well under drought,” he explained, citing important contributions from his post-doctoral fellows Marianne BĂ€nziger, Jorge Bolaños, Scott Chapman, Anne Elings, Renee Lafitte, and Stephen Mugo. “We discovered that earlier silking meant plants were sending more carbohydrates to the ear.”

Ground-truthing the science

In their studies, Edmeades and his team subjected many thousands of maize lines to stress testing on desert and mid-altitude fields in Mexico, dosing out water drop by drop. Reported in a series of journal papers and at two international conferences on maize stress breeding, their results outlined a new approach to create climate-resilient maize.

“The idea was to replicate the two most common and challenging nemeses of resource-poor farming systems, drought and low nitrogen stress, in a controlled way on breeding stations, and to use this to select tolerant varieties,” said BĂ€nziger, now Deputy Director General for Research and Partnerships at CIMMYT. “After eight cycles of selection for reduced anthesis-silking interval under controlled drought stress, Greg’s model maize population gave 30 percent more grain than conventional varieties, in moderate-to-severe drought conditions.”

But could the approach be implemented in developing country breeding programs, where researchers typically tested and showcased high-yielding, optimally-watered maize?

Capitalizing on several years’ experience in Edmeades’ team, in 1996 BĂ€nziger aimed to find out, moving to CIMMYT’s office in Zimbabwe and beginning work with breeders in the region to develop Africa-adapted, stress tolerant maize.

“African farmers grow maize by choice,” she explained. “If you give them access to varieties that better withstand their harsh conditions and reduce their risk, they may invest in inputs like fertilizer or diversify crop production, improving their incomes and food security.”

The efforts started by BĂ€nziger and several other CIMMYT scientists in sub-Saharan Africa involved large, long-running projects in the region’s major maize-growing areas, with co-leadership of the International Institute of Tropical Agriculture (IITA), extensive and generous donor support, and the critical participation of regional associations, national research programs, private seed companies, and non-governmental organizations. Partners also pioneered innovative ways for farmers to take part in testing and selecting varieties and worked to foster high-quality, competitive seed markets.

The most recent initiative, Drought Tolerant Maize for Africa (DTMA), has been responsible for the development and release of more than 200 drought tolerant varieties. A new phase aims by 2019 to attain an annual production of as much as 68,000 tons of certified seed of resilient maize, for use by approximately 5.8 million households and benefitting more than 30 million people in the region. 

Maize stress breeding goes global

Selecting for tolerance under controlled moisture stress has proven so successful that it is now a standard component of maize breeding programmes in Africa, Asia, and Latin America, according to Edmeades.

“The long pursuit of drought tolerance in maize shows how successful research-for-development demands doggedness and enduring donor support,” said Edmeades, who credits former CIMMYT scientists P.R. Goldsworthy, Ken Fischer, and Elmer Johnson with laying the groundwork for his studies. “And, as can be seen, many donors and partners have helped greatly to amplify the impact of UNDP’s initial investment.”

Over the years, generous funding for this work has also been provided by the Bill & Melinda Gates Foundation; the Federal Ministry for Economic Cooperation and Development, Germany (GTZ); the Howard G. Buffett Foundation; the International Fund for Agricultural Development (IFAD); the Swedish International Development Agency (SIDA); the Swiss Agency for Development and Cooperation (SDC); the UK Department for International Development (DFID); and the US Agency for International Development (USAID).

This short history of drought tolerance breeding for tropical maize was developed in collaboration with UNDP, as part of CIMMYT and UNDP’s 50th anniversary celebrations, which coincide in 2016. To read the version published by UNDP, click here.

See also these stories about farmers’ circumstances and advances on drought tolerant maize in Africa:
* Peter’s resolve to grow maize amidst poor yields due to harsh climate and poor seeds.
* A 2011 post in Roger Thurow’s “Outrage and Inspire” blog.

 

 

Amidst intense drought, investment in scientific research is key

Grandmother harvests drought-tolerant maize in Lobu village, Koromo, Hawassa Zuria district, Ethiopia. (Photo: P. Lowe/CIMMYT)
Grandmother harvests drought-tolerant maize in Lobu village, Koromo, Hawassa Zuria district, Ethiopia. (Photo: P. Lowe/CIMMYT)

EL BATAN, Mexico (CIMMYT) – El Niño drought-related stress is triggering hunger and food insecurity that will endanger food security for 40 million people in southern Africa, according to the World Food Programme. While not as tangible as humanitarian aid, long-term scientific research is key to addressing the major drought threatening parts of Central America, Africa and Asia. Government fiscal tightening makes it hard to defend investments in research against projects where the results may be immediate and obvious – but long-term investment equals long-term impact.

Reduced harvests due to drought
South Africa, which is normally a regional exporter, will need to import 5 to 6 million tons of maize to mitigate the widespread crop failure. As the continent’s largest maize producer this is having a knock on effect on the region. Zimbabwe, which depends on food imports from South Africa, declared a state of disaster last month, due to drought. Malawi and Mozambique have also experienced soaring food prices. Millions in the region will need food assistance, which means massive imports. In much of southern Africa, 30 – 50 day delays in the onset of rains has caused curtailed planting, setting the scene for widespread crop failure.

Ethiopia is experiencing the worst drought in decades, with more people requiring food assistance in 2016 than at any point since 2005, according to the Famine Early Warning Systems Network. In the central and eastern part of the countries crop production is down by 25 to 70% after the lowest rains in more than 50 years.

The El Niño related drought is not limited to Africa. India is set to harvest its smallest wheat crop in six years, with production down by five percent, following two successive poor monsoon seasons. But the biggest concern is that the region could experience major drought episodes like the Horn of Africa drought 1981- 1984 and the South Africa drought 1992, causing massive social disruption and human suffering.

Drought tolerant crops are an insurance against hunger and crop failure.
Given the severity of drought, scientific researchers are faced with the challenge to devise seed and farming practices that offer farmers greater resilience under this stress. Ongoing work to develop drought tolerant varieties has proved successful but needs renewed support and expansion.
Various maize landraces and wild relatives of wheat have withstood harsh conditions for thousands of years. Exploiting the drought-tolerances they possess and involving the use of molecular markers to better understand the genetic basis of drought tolerance has helped breeders select for better drought tolerance.  This is not a quick fix. It can cost up to $600,000 and take seven years to produce a single maize hybrid.  Hybrids tend to be more drought tolerant because they are more robust, implying deeper roots that allows the plant to capture more water.

Crop conditions at a glance as of January 28. (Source: Geoglam Global Agricultural Monitoring)
Crop conditions at a glance as of January 28. (Source: Geoglam Global Agricultural Monitoring)

CIMMYT is working with national partners in Ethiopia to rapidly get drought tolerant maize and wheat seed to farmers as part of the United States Agency for International Development (USAID) funded Emergency Seed Response in Ethiopia project. The USAID and Bill and Melinda Gates Foundation funded Drought Tolerant Maize for Africa project has brought 184 distinct varieties to farmers, mostly hybrids that yield on average 49% more grain than open-pollinated varieties, and yield higher than or equal to currently available varieties on the market.

A single seed can make the difference between hunger and prosperity, but seed alone is not enough. Imagine a Ferrari that is designed to travel at high speed on a freshly paved highway, driving along a dirt road. It will either break down or drive badly. The same thing happens with seed that is planted without smart farming practices designed to increase efficiency. There are many factors that need to be considered, including: right planting date, water conserving tillage methods, and fertilizer. If you can establish the plant well, it is more likely to perform well when drought stress really hits.

Plant a seed today
Massive investments are required today in order for farmers to benefit from effective technologies in the future given that benefits from agricultural research tend to come to fruition after a considerable time lag. Today, parts of Central America, Africa and Asia desperately need food assistance – but the need for investment in agricultural research for development will only intensify as more countries face drought and other climate-related stress. As the proverb asks: “When is the best time to plant a tree?” Twenty years ago. “The second-best time?” Today.

Reviewing progress and impacts of two core maize projects as they wind up work in sub-Saharan Africa

Joseph Mulei on his farm in Machakos County, Kenya, where he planted several drought tolerant hybrid maize varieties including Drought Tego and Sawa (DSL H103). Photo: Brenda Wawa/CIMMYT.
Joseph Mulei on his farm in Machakos County, Kenya, where he planted several drought tolerant hybrid maize varieties including Drought Tego and Sawa (DSL H103). Photo: Brenda Wawa/CIMMYT.

About 100 partners from diverse institutions including CIMMYT, the International Institute of Tropical Agriculture (IITA), national agricultural research systems (NARS), the private sector, and donors gathered recently at a joint meeting of the Drought Tolerant Maize for Africa (DTMA) and Improved Maize for African Soils (IMAS) projects held in Addis Ababa on 14–17 September 2015. The participants came from 15 African countries, plus India, New Zealand, and USA.

This first joint meeting, opened by Fentahun Mengistu, Director General of the Ethiopian Institute of Agricultural Research, marked the end of the two projects, which will officially complete their work in December 2015 across 14 target countries in sub-Saharan Africa (SSA). The meeting reviewed the progress made in Africa through the projects over the last 5 and 8 years, respectively.

The two projects released 200 unique improved maize hybrids and open-pollinated varieties (OPVs) with drought tolerance (DT) and nitrogen-use efficiency (NUE), which are traits favored by smallholder farmers. These varieties – some which combine both traits– not only yield much more under moderate or severe drought stress, but also utilize more efficiently the small amounts of fertilizers most farmers can afford to apply to their maize.

Speaking on the importance of maize breeding work in Africa, B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on MAIZE, said, “Solutions to the world’s food challenges need the benefit of improved maize varieties that yield well for farmers both in ‘good’ and ‘bad’ years, withstanding the crippling effects of climatic changes and other stresses.”

DTMA efforts to commercialize DT varieties have enabled 43 million people to access and benefit from these varieties. This, coupled with efforts to promote the new improved DT varieties by small- and medium-scale seed companies, has been instrumental in DTMA’s success. As John McMurdy, from the United States Agency for International Development (USAID), said, “It is very important to create awareness of these improved varieties, particularly the fact that they are excellent even during normal rains. Farmers need to know these key characteristics so they can appreciate and benefit from the seed. I am glad that the next phase of CIMMYT’s work is geared towards reaching out to farmers; this is essential in maize work.”

Influencing policies to support the adoption of improved varieties within partner institutions

Eliamani Saitati, a farmer in Olkolili village in northern Tanzania, shows her harvest from HB513, a variety that is both nitrogen-use efficient and drought tolerant.
Eliamani Saitati, a farmer in Olkolili village in northern Tanzania, shows her harvest from HB513, a variety that is both nitrogen-use efficient and drought tolerant. Photo: Brenda Wawa/CIMMYT

Both DTMA and IMAS targeted policy makers within partner institutions to facilitate adoption of new improved varieties. A policy issue highlighted at the meeting was replacing old and obsolete varieties with the new improved varieties, viewed as critical for adapting to climate change and improving smallholders’ livelihoods.

Meeting participants were divided into two groups and visited major maize seed companies in Ethiopia, where they observed the performance of various DT varieties and learned about ongoing variety replacement. The sites visited included Ethio VegFru Company, Ano Agro Industry, Meki-Batu Cooperative Seed Company, Shalo Farm, and Bako Agricultural Research Centre, which is Ethiopia’s national center of excellence for maize research. At the Centre, they were hosted by, among others, Tolera Keno, who is EIAR’s National Maize Research Coordinator.

An old variety, BH660, which has been on the market for the last quarter century, is now gradually being replaced by BH661, an improved DT hybrid. According to Fekadu Berhane, Production Manager at Ethio VegFru Company, farmers were most concerned about BH660’s late maturity of about 160 days. “Their numerous complaints obviously led to a drastic decline in the market,” explained Fekadu. “The switch to BH661 has taken two years. In 2015, we produced and distributed 60 tons of BH661 seed in the west, south, and southwest of the Oromia Region, and farmers are getting a minimum of 8 tons per hectare.”

Ano Agro Industry began operating Ethiopia’s first private seed-producing commercial farm 23 years ago. Significantly, some of their early maize hybrids from that time are still in production. “We are partnering with CIMMYT to replace these old hybrids and demonstrate new varieties, including BH546 and BH547, which are both drought tolerant,” explained Tesfaye Kumsa, Managing Director at Ano Agro Industry. “We have now started producing basic seed. We also educate farmers on management of improved varieties, since management alone accounts for the greatest proportion of yield– sometimes by a factor of up to three or four times in terms of yield obtained.”

Continuous dialogue with policy makers at the Kenya Plant Health Inspectorate Services (KEPHIS) bore fruit in 2014, when Kenya’s Variety Release Committee included performance in low-nitrogen soil as a special trait for maize variety release. This reaffirms the high premium KEPHIS accords to performance in poor soils, setting the pace for other regulatory bodies in SSA to recognize and address the challenge.

In addition, close collaboration with partners and donors, in particular USAID and the Bill & Melinda Gates Foundation (BMGF), enabled IMAS to make concrete headway in addressing the maize lethal necrosis (MLN) disease that has rapidly emerged as a major threat to maize farming in East Africa since 2011. The IMAS project rapidly identified diverse sources of MLN tolerance in its germplasm base and, currently, MLN-tolerant maize is being widely disseminated across East Africa, while newly identified sources of tolerance are being shared with other CIMMYT-Africa breeding projects. Gary Atlin, from BMGF, observed that “In the four years since MLN was discovered, we now have hybrids that have significantly better tolerance to MLN. IMAS is credited with a rapid response to MLN, which has affected breeding work in the region.”

To bring improved DT and NUE seeds to the farmers, collaboration with seed companies and NARS has been an important pillar of DTMA and IMAS work. Abebe Menkir, DTMA project leader at IITA, attributed this strength to “a clearly defined product development plan and harnessing the strengths of the right partners to deliver varieties and hybrids.”

In 2014 alone, production of certified DT and NUE maize seed across 14 target countries was 54,000 metric tons for the benefit of 40.2 million people. Production of these seeds was spearheaded by small- and medium-scale companies that accessed the improved seeds free of charge.

The adoption and uptake of these varieties varies from one country to another. Depending on the type of variety – hybrid or OPV – the adoption rate for DT maize ranges from 18 to 80%, with hybrids getting adopted much faster because of their yield advantage, estimated at 49% compared to improved OPVs currently on the market.

Participants in the joint DTMA and IMAS meeting held in Addis Ababa, Ethiopia. Photo: CIMMYT
Participants in the joint DTMA and IMAS meeting held in Addis Ababa, Ethiopia. Photo: CIMMYT

Farmers in countries such as Nigeria and Malawi are leading in the adoption of DT maize varieties, largely because of favorable government policies that have made access to the improved varieties much easier and more affordable. These farmers have reported higher yields from the DT varieties compared to non-DT varieties.

The next step for CIMMYT and its partners is to increase adoption of improved DT and NUE varieties and replace the old, obsolete, climate-vulnerable varieties with multiple stress tolerant improved maize varieties to effectively face current and emerging challenges.

Plans for this are already being implemented through various initiatives, including the project Drought Tolerant Maize for Africa Seed Scaling (DTMASS). DTMASS will work closely with seed companies to produce 12,000 metric tons of certified DT seed in the next three years. The aim is to ensure seed availability to smallholders at affordable prices, and to sustain seed demand among these farmers.

Starting in 2016, IMAS conventional NUE breeding will begin a new phase by fusing with DTMA in a proposed new project dubbed “Stress Tolerant Maize for Africa.” This project aims to develop improved multiple-stress-tolerant varieties that can effectively face current and emerging challenges.

Given the increased threat of climate change and other stresses to African agriculture, collaborative efforts among major maize projects in Africa will be prioritized by CIMMYT in the coming years. This joint meeting paved the way for collaboration, as it included – for the first time – other maize projects such as Water Efficient Maize for Africa, SIMLESA and TAMASA to identify and create synergies with DTMA and IMAS in the next phase. These projects will continue to draw from one key resource – improved maize varieties, some which have been developed jointly– to maximize impact for Africa’s smallholder farmers.

Cereal Systems Initiative for South Asia enters Phase III: focus on scalability and strategic partnerships

In eastern India, CSISA increased adoption of early sowing of wheat and zero tillage by demonstrating the benefits in farmers’ fields. Photo: Vinaynath Reddy.
In eastern India, CSISA increased adoption of early sowing of wheat and zero tillage by demonstrating the benefits in farmers’ fields. Photo: Vinaynath Reddy.

Growth rates of staple crop yields in South Asia are insufficient to meet the region’s projected demands. Forty percent of the world’s poor live in South Asia, and the area comprising eastern India, Bangladesh, and Nepal has the world’s largest concentration of impoverished and food insecure people. At the same time, resource degradation, declining labor availability, and climate change (frequent droughts and rising temperatures) pose considerable threats to farming system productivity and rural livelihoods. By 2050, 30% of South Asia’s wheat crop is likely to be lost due to higher temperatures, experts say.

Continue reading

Supporting sustainable and scalable changes in cereal systems in South Asia

Srikanth Kolari/CIMMYT
Srikanth Kolari/CIMMYT

The rates of growth of staple crop yields in South Asia are insufficient to meet the projected demands in the region. With 40 percent of the world’s poor living in South Asia, the area composed of eastern India, Bangladesh and Nepal has the largest concentration of impoverished and food insecure people worldwide. At the same time, issues of resource degradation, declining labor availability and climate change (frequent droughts and rising temperatures) pose considerable threats to increasing the productivity of farming systems and rural livelihoods. Thirty percent of South Asia’s wheat crop is likely to be lost due to higher temperatures by 2050, experts say.

“These ecologies are regionally important for several reasons,” said Andrew McDonald, Project Leader, Cereal Systems Initiative for South Asia, CIMMYT. “First, they have a higher density of rural poverty and food insecurity than any other region. Second, yield gaps for cereal staples are higher here than elsewhere in South Asia – highlighting the significant growth potential in agriculture.”

According to McDonald, there has been some successes due to increased investment and focus on intensification in these areas over the past 10 years. A CIMMYT-led initiative, the Cereal Systems Initiative for South Asia (CSISA) has contributed to major outcomes such as rapid uptake of early-planted wheat, the use of zero-tillage seed drills and long-duration, high-yielding wheat varieties in eastern India.

CSISA, in close collaboration with national partners, has been working in this region since 2009 to sustainably enhance the productivity of cereal-based cropping systems, as well as to improve the livelihoods of millions of smallholder farmers.

“Climate-resilient practices are gaining confidence in the areas we are working. More than 500,000 farmers adopted components of the early rice-wheat cropping system in Bihar and eastern Uttar Pradesh last year,” said R.K. Malik, Senior Agronomist, CIMMYT. “Early sowing can protect the crop from late-season heat damage and increase yields. It’s a non-cash input that even smallholders can benefit from and is one of the most important adaptations to climate change in this region.”

To increase the spread of these innovations and increase farmers’ access to modern farming technologies, CSISA is working to strengthen the network of service providers.

“This region has a large number of smallholder farmers and ownership of machines by smallholders is often not economically viable,” highlighted Malik. “In Indian states of Bihar, Odisha and eastern Uttar Pradesh, CSISA has facilitated more than 2,100 progressive farmers to become local entrepreneurs through relevant skills, information and training during the last three years.”

The U.S. Agency for International Development and the Bill & Melinda Gates Foundation have recently approved Phase III of CSISA, running from December 2015 to November 2020. Building on the momentum and achievements of Phase I and II, Phase III will work to scale up innovations, strengthen local capacity and expand markets to support the widespread adoption of climate-resilient agricultural technologies in partnership with the national and developmental partners and key private sector actors.

“CSISA has made its mark as a ‘big tent’ initiative that closes gaps between research and delivery, and takes a systems approach that will continue to be leveraged in Phase III through strategic partnerships with national agricultural systems, extension systems and agricultural departments and with civil society and the private sector,” said McDonald.

Implemented jointly with International Rice Research Institute and International Food Policy Research Institute, the main four outcomes of Phase III focus on technology scaling, mainstreaming innovation into national systems, development of research-based products and reforming policies for faster technology adoption.

Photo Feature: Major Impacts of CSISA

Yield gap analysis key to meeting future crop demand

Major crop yields are currently not increasing fast enough to meet demand on existing farmland. Ensuring food security while protecting rainforests, wetlands, and grasslands depends on achieving the highest possible yields with limited land, if we hope to feed a population of more than 9 billion people by 2050.

Crop productivity varies across the globe, depending on environment, inputs, and practices (Sadras et al., 2015). Calculating an area’s yield gap––the difference between irrigated or rainfed crops and actual yields––will allow us to estimate future yield increase and productivity gaps of crops and cropping systems.

The Global Yield Gap Atlas (GYGA) seeks to provide the best available estimates of yield gaps globally using current average farm yields and yield potential (Yp) for irrigated environments, or water-limited yield potential (Yw) for rainfed environments (Van Ittersum et al., 2013). GYGA has calculated yield gaps for major food crops in participating countries across agroecological zones.

Continue reading

Changing the pace of maize breeding in Africa through doubled-haploid technology

Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT
Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT

Two words – accelerated breeding – are synonymous to doubled-haploid (DH) based maize breeding. This was the core message shared with 56 maize breeders from 10 African countries who recently participated in a two-day training workshop organized by CIMMYT’s Global Maize Program (GMP) in Nairobi, Kenya, from September 23–24, 2015. The breeders benefited from the knowledge and experience of resource persons from public and private institutions in France, Germany and USA who have dedicated years of research on the DH technology that is changing the pace of maize breeding.

The resource persons for the training workshop included Tim Cupka (AgReliant Genetics, USA), Thomas Lubberstedt (Iowa State University, USA), Wolfgang Schipprack (University of Hohenheim, Germany), Dominic Marc and Regis Brassart (Limagrain, France), and CIMMYT’s B.M. Prasanna, Vijay Chaikam, Yoseph Beyene and Sotero Bumagat.

The DH technology shortens the breeding cycle significantly by developing 100 percent homozygous lines within 2–3 seasons compared to conventional breeding that takes at least 7–8 seasons to develop inbred lines with 98–99 percent homozygosity. While tracing the evolution of DH technology in maize, B.M Prasanna, Director of both GMP and the CGIAR Research Program MAIZE remarked, “This is a significant reduction of time, labor and important resources. There is a great opportunity for maize breeders in Africa to modernize the breeding programs using DH technology, coupled with molecular markers. It is particularly important to enhance genetic gains while effectively dealing with an array of stresses crippling maize production in sub-Saharan Africa.”

While commercial seed industries across the world have benefited significantly from this technology, the uptake among the institutions of the national agricultural research systems (NARS) and the small- and medium-scale enterprise (SME) seed companies in sub-Saharan Africa (SSA) is significantly low. This is due to various reasons, particularly lack of awareness about the power of DH technology.

To address this challenge, CIMMYT in partnership with Kenya Agricultural and Livestock Research Organization (KALRO) established the maize DH facility – the first of its kind in SSA – at the Kiboko Maize Research Station in Kenya in September 2013. The facility offers DH development service to NARS and SME seed companies – with financial support from Bill & Melinda Gates Foundation.

“Establishing and operating such a facility requires significant technical know-how and is not an easy task,” said Prasanna. “It is more practical for our NARS and SME seed company partners to utilize the facility at Kiboko to develop DH lines with diverse genetic backgrounds through the DH development service offered by CIMMYT, make effective selections, and use well-selected DH lines in hybrid breeding programs. The purpose of the training workshop is to make breeders aware of the tremendous opportunities to integrate DH lines in maize breeding programs”.

Sure-footed progress – Africa’s maize breeding on the right path

It is estimated that about 70 to 80 percent of new maize hybrids being produced currently by major seed companies in the world, especially in North America and Europe, contain one or more doubled-haploid lines, with DH-based maize hybrids covering about 40 to 50 million hectares worldwide.

Tim Cupka, a highly experienced maize breeder at AgReliant Genetics, USA, emphasized that DH technology has changed the face of maize breeding in his organization. “The developed world is intensively practicing DH-based maize breeding. There is so much value that can be created through this technology not just for public and private maize breeding programs and seed companies in Africa, but ultimately for the farmers,” noted Tim.

For farmers and breeders, the greatest value is that DH technology reduces the amount of time (by one-third) it takes to create new commercial hybrids. “Instead of taking 12 years to develop a superior hybrid, we are now developing new hybrids within 6 to 7 years, which means we can get superior genetics to the farmers much faster than ever before! This is key to strengthening the livelihood of millions of farmers across the world. That is our success as breeders,” Tim concluded.

GMP in Africa has effectively integrated DH and molecular marker technologies in its product development pipeline. More than 92,000 DH lines have been developed so far from CIMMYT bi-parental populations at the DH facilities at Kiboko and Agua Fria, Mexico. In addition, significant contributions have been made over the last few years by Monsanto and DuPont Pioneer in developing DH lines in CIMMYT’s Africa-adapted maize genetic backgrounds through the Water Efficient Maize for Africa and Improved Maize for African Soils projects. “CIMMYT has so far released 32 DH-based maize hybrids in Kenya, Uganda, Tanzania, and South Africa between 2012 and 2015.These hybrids showed excellent performance under optimum, drought and low-nitrogen stress conditions,” reported Yoseph Beyene, a CIMMYT Maize Breeder based at Nairobi, Kenya. He also added that the five DH lines have been recently identified for release as CIMMYT maize lines.

In addition, more than 5,000 DH lines have been screened by CIMMYT for maize lethal necrosis (MLN) disease under artificial inoculation at the MLN Screening Facility at Naivasha, Kenya; promising lines have been identified offering tolerance to the disease. Therefore, DH technology can be a powerful tool to accelerate development of MLN-tolerant maize hybrids for sub-Saharan Africa.

Participants at the workshop got an opportunity to visit the DH facility at Kiboko in Makueni County, Kenya, where they saw the DH breeding process. The tour was facilitated by Sotero Bumagat, Maize DH Facility Manager, CIMMYT–Kenya. “This is a new experience and a very enriching one,” remarked Lwanga Kasozi from the Agricultural Research Institute in Tanzania. “I have seen and understood DH-based breeding both in theory as well as practice. It is my desire to see our organization in Tanzania embrace this technology. I will play my part to share this experience and knowledge.”.

Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT
Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT

The Alliance for a Green Revolution in Africa (AGRA), also nominated its scientists to participate in the training workshop. In addition, AGRA sponsored the participation of nine maize breeders from different NARS institutions in SSA to participate in the workshop.

Kingbird released in Ethiopia to combat new stem rust threat

Kingbird released in Ethiopia to combat new stem rust threat. Credit: Linda McCandless

Farmers in Ethiopia are banking on Kingbird, the latest variety of wheat to be released by the Ethiopian Institute for Agricultural Research (EIAR). Kingbird is resistant to Ug99, the devastating race of stem rust first identified and subsequently race-typed as TTKSK in 1999, and TKTTF, a new stem rust race identified in 2012 that raged through so many Ethiopian farmers’ fields in 2013 and 2014.

The scourge of wheat farmers the world over, stem rust can quickly turn a wheat field into black stalks empty of grain when environmental conditions are optimal.

The new variety was evaluated at multiple locations in Ethiopia during the 2014 season and approved for release in 2015. “Kingbird offers new hope for resource-poor farmers in stem rust prone areas of Ethiopia,” said Fentahun Mengistu, EIAR Director General. “It is expected to replace the varieties Hawi and Pavon-76 in lowland areas, and complement Kakaba, Ogolcho, Shorima and a few other mid-altitude varieties.”

As Ronnie Coffman, vice-chair of the Borlaug Global Rust Initiative (BGRI), the international network of scientists, breeders and national wheat improvement programs that cooperated on the release of Kingbird, pointed out, crop diseases do not respect international boundaries. “Wheat farmers the world over are threatened by outbreaks of new races of yellow and stem rust of wheat on an almost yearly basis. It takes persistent and continually evolving international efforts to protect staple crops like wheat on a global scale.”

“Kingbird’s multi-disease resistance attributes combined with good bread-making quality and good yield performance led to its release in South Africa and Kenya a few years back,” said Ravi Singh, senior wheat scientist at CIMMYT, whose team is instrumental in making the initial crosses for most new wheat introductions in the developing world.

The pipeline for developing varieties such as Kingbird has been directed by the Durable Rust Resistance in Wheat (DRRW) project at Cornell University, acting as BGRI secretariat, since 2008. CIMMYT, the international Center for Agricultural Research in the Dry Areas (ICARDA), national agricultural research systems, and 22 other institutions assist in the effort. Generous support is provided by the Bill & Melinda Gates Foundation and the UK Department of International Development (DFID).

To read more on Kingbird’s development and spread and the efforts to protect world wheat production, check out the BGRI blog, “How Kingbird moved across East Africa.” A poster abstract by Zerihun Tadesse, wheat breeder at the EIAR, may be found here.

Rust-resistant wheat varieties, new rust races, surveillance, monitoring, and gene stewardship will be topics at the 2015 BGRI Technical Workshop, 17-20 September, and the International Wheat Congress, 20-25 September, both in Sydney, Australia. Follow the conversations at #BGRI2015 and #IWC9.

CIMMYT wheat breeder Sridhar Bhavani talks about the recently discovered virulence of TKTTF on Robin in Kenya, and Digelu in Ethiopia, and the new Kingbird release here.

Replacing gender myths and assumptions with knowledge

CIMMYT Director General Martin Kropff speaks on the topic of ‘Wheat and the role of gender in the developing world’ prior to the 2015 Women in Triticum Awards at the Borlaug Global Rust Initiative Workshop in Sydney on 19 September.

If we are to be truly successful in improving the lives of farmers and consumers in the developing world, we need to base our interventions on the best evidence available. If we act based only on our assumptions, we may not be as effective as we could be or, even worse, actively cause harm.

One example is the common perception that women are not involved in the important wheat farming systems of North Africa and South Asia. By recognizing and engaging with these myths, we are beginning to build a more sophisticated understanding of how agriculture works as a social practice.

Currently, there are only a few published studies that take a closer examination of the roles played by women in wheat-based farming systems. These studies have found that, in some cases, men are responsible for land preparation and planting, and women for weeding and post-harvest activities, with harvest and transport duties being shared. Between different districts in India, huge variations may be found in the amount of time that women are actively involved in wheat agriculture. This shows that some careful study into the complexities of gender and agricultural labor may hold important lessons when intervening in any particular situation.

We must also never assume that, just because women are not as involved in agriculture in a particular context, they can not benefit from more information. In a survey carried out by CIMMYT researcher Surabhi Mittal in parts of rural India, it was found that women used a local cellphone agricultural advisory service just as much as men, and that this knowledge helped them get more involved in farming-related decision-making.

Gender is not just about women

For all that it is important to include women, along with other identity groups in project planning, implementation and data collection, it is important not to get into the trap of thinking that gender-integrated approaches are just about targeting women.

For example, the World Health Organization estimates that micronutrient deficiency affects at least two billion people around the world, causing poor health and development problems in the young. The effects of micronutrient deficiency start in the womb, and are most severe from then through to the first two years of life. Therefore it would make sense to target women of childbearing age and mothers with staple varieties that have been bio-fortified to contain high levels of important micronutrients such as zinc, iron or vitamin A.

However, to do so risks ignoring the process in which the decision to change the crop grown or the food eaten in the household is taken. Both men and women will be involved in that decision, and any intervention must therefore take the influence of gender norms and relations, involving both women and men, into account.

The way ahead

To move forward, each component of the strategy for research into wheat farming systems at CIMMYT also has a gender dimension, whether focused on improving the evidence base, responding to the fact that both women and men can be end users or beneficiaries of new seeds and other technologies, or ensuring that gender is considered as a part of capacity-building efforts.

Already, 20 of our largest projects are actively integrating gender into their work, helping to ensure that women are included in agricultural interventions and share in the benefits they bring, supplying a constant stream of data for future improvement.

We have also experienced great success in targeting marginalized groups. For instance, the Hill Maize Research Project in Nepal, funded by the Swiss Agency for Development and Cooperation (SDC) alongside the U.S. Agency for International Development (USAID), focused on food-insecure people facing discrimination due to their gender or social group. By supporting them to produce improved maize varieties in community groups, the project managed not only to greatly increase their incomes, but also to improve their self-confidence and recognition in society.

CIMMYT researchers are also among the leaders of a global push to encode gender into agricultural research together with other international research partnerships. In over 125 agricultural communities in 26 countries, a field study of gender norms, agency and agricultural innovation, known as GENNOVATE, is now underway. The huge evidence base generated will help spur the necessary transformation in how gender is included in agricultural research for development.

Further information:

The Borlaug Global Rust Initiative, chaired by Jeanie Borlaug Laube, has the overarching objective of systematically reducing the world’s vulnerability to stem, yellow, and leaf rusts of wheat and advocating/facilitating the evolution of a sustainable international system to contain the threat of wheat rusts and continue the enhancements in productivity required to withstand future global threats to wheat. This international network of scientists, breeders and national wheat improvement programs came together in 2005, at Norman Borlaug’s insistence, to combat Ug99. The Durable Rust Resistance in Wheat (DRRW) project at Cornell University serves as the secretariat for the BGRI. The DRRW, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA) and the FAO helped establish the BGRI a decade ago. Funding is provided by the UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation. For more information, please visit www.globalrust.org.

CIMMYT is the global leader in research for development in wheat and maize and related farming systems. CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat to improve food security and livelihoods. CIMMYT belongs to the 15-member CGIAR Consortium and leads the Consortium Research Programs on wheat and maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.

Follow the #BGRI2015 hashtag on social media

Twitter: @CIMMYT, @KropffMartin and @GlobalRust

Video: maize lethal necrosis threatens Africa’s food security

Felister Makini, KALRO (Crop System)

Maize, one of Africa’s most important food crops, is under real threat because of maize lethal necrosis (MLN). The disease has adversely affected maize fields in Kenya and its neighbors (DR Congo, Ethiopia, Tanzania, Uganda, Rwanda and South Sudan). There are fears that it is spreading rapidly across most maize-growing areas in the region, causing massive losses to both farmers and seed companies. Unless urgent measures are taken, it could get out of control and lead to a major food crisis in the region.

But what are the implications for farmers and seed companies currently bearing the brunt of MLN? This is a question that scientists, policy makers, regulators and seed companies tried to answer during the recently concluded International Conference on MLN Diagnostics and Management in Africa, held in Nairobi on 12-14 May 2015.

As you will see in this video, despite the grim realities of MLN, the ringing message to farmers from B.M. Prasanna, Global Maize Program Director, is “Hope, hope, hope!”

This message of optimism that a solution will be found was mirrored by others. “We will be successful; we should not feel defeated,” said Joe DeVries, Director of the Program for Africa Seed Systems in Alliance for a Green Revolution in Africa (AGRA).

Other key speakers at the conference included Stephen Mugo, CIMMYT’s Regional Representative for Africa, Gary Atlin, Senior Program Officer at the Bill & Melinda Gates Foundation, George Bigirwa, AGRA’s Head of the Regional Team for East and Southern Africa, and Felister Makini, Deputy Director of Kenya Agricultural and Livestock Research in charge of cropping systems.

View the full video of key speakers above or here.