Skip to main content

funder_partner: Bill & Melinda Gates Foundation

New initiative to improve access to high quality maize seed for African farmers

Research partners to develop new maize hybrid seed production system to help smallholder farmers access modern, high quality maize hybrid seed.

Pretoria, South Africa, 26 October 2018 An initiative launched in 2016 seeks to provide African smallholder farmers with better quality and high yielding hybrid maize seed.  The Seed Production Technology for Africa (SPTA) initiative strives to improve seed production systems to ensure that high-quality hybrid maize seed is available to smallholder farmers, as well as to deliver new hybrids with a high yield potential adapted for low fertility areas common in sub-Saharan Africa (SSA).

SPTA will utilize a technology provided by Corteva Agriscience, and implemented by the Agricultural Research Council of South Africa (ARC) alongside the International Maize and Wheat Improvement Center (CIMMYT), and the Kenya Agricultural and Livestock Research Organization (KALRO). Funded by the Bill & Melinda Gates Foundation, the four-year initiative will cost US$ 6.4 million.

“As Africa faces significant challenges of low maize yields, climatic extremes and variability, costly farm inputs, threats due to pests and diseases, and growing demand for food, it is critical to provide smallholder farmers with access to high quality and stress resilient modern maize hybrids to allow them to increase yields and incomes,” said Kingstone Mashingaidze, Senior Research Manager at ARC.

The SPTA process will address pressing seed production concerns in the region that include insufficient genetic purity due to pollen contamination resulting from improper or incomplete detasseling practices. As a result, small and medium seed companies are expected to produce greater volume of hybrid maize seed at lower cost. Partner seed companies in the region will access the technology royalty free.

Maize productivity in Africa lags behind other maize producing regions, and through SPTA more smallholders will improve their yield. Average maize yield in much of Africa is approximately 2 metric tons per hectare, which is less than 20 percent of the yield level in more productive parts of the world. Farmers cannot access or afford high quality seed. Only 57 percent of the SSA maize growing area is planted with recently purchased seed; a lot of hybrids grown in the region are obsolete – 15 years or older compared to an average of less than 5 years in highly productive regions.  In many situations, seeds of these older varieties are no longer suited for the climate and cropping environments that exist today.

Hybrid maize seed delivered through SPTA will have higher yield in low fertility environments. This will enable resource-constrained farmers to harvest more despite limited inputs like fertilizer. This means stronger livelihoods coupled with improved professionalism in the maize seed value chain for farmers, seed companies, consumers, and governments to deliver a more food-secure future.

SPTA originated from the Improved Maize for African Soils (IMAS) project that concluded in 2015. IMAS focused on developing maize hybrids that could use nitrogen fertilizer more efficiently to deliver higher yields under low fertility conditions prevalent in Africa. The IMAS project was funded by the Bill & Melinda Gates Foundation together with the United States Agency for International Development.

Issued by Agricultural Research Council

For more information contact:

Agricultural Research Council (South Africa)
Mary James
Tel: +27 (0) 18 299 6100, Cell: +27 84 817 2376, Email: JamesM@arc.agric.za

Corteva Agriscience (South Africa)
Barbra Muzata
Tel: +27-11-218-8600, Email: barbra.Muzata@pioneer.com

Notes to editors:

The Agricultural Research Council (ARC), a schedule 3A public entity, is a premier science institution that conducts research with partners, develops human capital and fosters innovation in support of the agricultural sector. The Agricultural Research Council provides diagnostic, laboratory, analytical, agricultural engineering services, post-harvest technology development, agrochemical evaluation, consultation and advisory services, food processing technology services as well as various surveys and training interventions. ARC has successfully collaborated with international partners in the WEMA project. ARC has successful partnerships with local seed companies for deployment of its products to smallholder farmers. For more information, visit the website at www.arc.agric.za

Corteva Agriscience, Agriculture Division of DowDuPont (NYSE: DWDP), is intended to become an independent, publicly traded company when the spinoff is complete by June 2019. The division combines the strengths of DuPont Pioneer, DuPont Crop Protection and Dow AgroSciences. Corteva Agriscience provides growers around the world with the most complete portfolio in the industry — including some of the most recognized brands in agriculture: Pioneer®, Encirca®, the newly launched Brevant Seeds, as well as award-winning Crop Protection products — while bringing new products to market through our solid pipeline of active chemistry and technologies. More information can be found at www.corteva.com.

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

Kenya Agricultural and Livestock Research Organization (KALRO) is a corporate body created under the Kenya Agricultural and Livestock Research Act of 2013 to establish suitable legal and institutional framework for coordination of agricultural research in Kenya with the following goals: Promote, streamline, co-ordinate and regulate research in crops, livestock, genetic resources and biotechnology in Kenya, and expedite equitable access to research information, resources and technology and promote the application of research findings and technology in the field of agriculture.

Are advisory apps a solution for collecting Big Data?

Big Data is transforming the way scientists conduct agricultural research and helping smallholder farmers receive useful information in real time. Experts and partners of the CGIAR Platform for Big Data in Agriculture are meeting on October 3-5, 2018, in Nairobi, Kenya, to share their views on how to harness this data revolution for greater food and nutrition security.

Jordan Chamberlin, Spatial Economist at CIMMYT, will give his insights on best practices on electronic data capture on October 4, 2018.

NAIROBI (Kenya) — Agronomic researchers face several challenges and limitations related to data. To provide accurate predictions and useful advice to smallholder farmers, scientists need to collect many types of on-farm data; for example, field size, area devoted to each crop, inputs used, agronomic practices followed, incidence of pests and diseases, and yield.

These pieces of data are expensive to obtain by traditional survey methods, such as sending out enumerators to ask farmers a long list of questions. Available data is often restricted to a particular geographical area and may not capture key factors of production variability, like local soil characteristics, fertilizer timing or crop rotations.

As a result, such datasets cannot deliver yield predictions at scale, one of the main expectations of Big Data. Digital advisory apps may be part of the solution, as they use crowdsourcing to routinize data collection on key agronomic variables.

The Taking Maize Agronomy to Scale in Africa (TAMASA) project has been researching the use of mobile apps to provide site-specific agronomic advice to farmers through agro-dealers, extension workers and other service providers.

At CIMMYT, one of the research questions we were interested in was “Why are plant population densities in farmers fields usually well below recommended rates?” From surveys and yield estimates based on crop-cut samples at harvest in Ethiopia, Nigeria and Tanzania, we observed that yields were correlated with plant density.

What was making some farmers not use enough seeds for their fields? One possible reason could be that farmers may not know the size of their maize field. In other cases, farmers and agro-dealers may not know how many seeds are in one packet, as companies rarely indicate it and the weight of each seed variety is different. Or perhaps farmers may not know what plant population density is best to use. Seed packets sometimes suggest a sowing rate but this advice is rather generic and assumes that farmers apply recommended fertilizer rates. However, farmers’ field conditions differ, as does their capacity to invest in expensive fertilizers.

To help farmers overcome these challenges, we developed a simple app, Maize-Seed-Area. It enables farmers, agro-dealers and extension workers to measure the size of a maize field and to identify its key characteristics. Then, using that data, the app can generate advice on plant spacing and density, calculate how much seed to buy, and provide information on seed varieties available at markets nearby.

View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)
View of the interface of the Maize-Seed-Area app on mobile phones and tablets. (Photo: CIMMYT)

Maize-Seed-Area is developed using the Open Data Kit (ODK) format, which allows to collect data offline and to submit it when internet connection becomes available. In this case, the app is also used to deliver information to the end users.

Advisory apps usually require some input data from farmers, so advice can be tailored to their particular circumstances. For example, they might need to provide data on the slope of their field, previous crops or fertilizer use. Some additional information may be collected through the app, such as previous seed variety use. All this data entered by the user, which should be kept to a minimum, is routinely captured by the app and retrieved later.

Hello, Big Data!

As the app user community grows, datasets on farmer practices and outcomes grow as well. In this case, we can observe trends in real time, for instance on the popularity of different maize varieties.

In a pilot in western Kenya, in collaboration with Precision Agriculture for Development (PAD), some 100 agro-dealers and extension workers used the app to give advice to about 2,900 farmers. Most of the advice was on the amount of seed to buy for a given area and on the characteristics of different varieties.

Data showed that the previous year farmers grew a wide range of varieties, but that three of them were dominant: DK8031, Duma43 and WH505.

Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.
Preferred variety of maize for sample farmers in western Kenya (Bungoma, Busia, Kakamega and Siaya counties), February-March 2018.

A phone survey among some 300 of the farmers who received advice found that most of them anticipated to do things differently in the future, ranging from asking for advice again (37 percent), growing a different maize variety (31 percent), buying a different quantity of seed (19 percent), using different plant spacing (18 percent) or using more fertilizer (16 percent).

Most of the agro-dealers and extension workers have kept the app for future use.

The dataset was collected in a short period of time, just two months, and was available as soon as app users got online.

The Maize-Seed-Area pilot shows that advisory apps, when used widely, are a major source of new Big Data on agronomic practices and farmer preferences. They also help to make data collection easier and cheaper.

TAMASA is supported by the Bill and Melinda Gates Foundation and is implemented by the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), the International Plant Nutrition Institute (IPNI) and Africa Soil Information Service (AfSIS).

Mutating diseases drive wheat variety turnover in Ethiopia, new study shows

Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.
Yellow spores of the fungus Puccinia striiformis f.sp. tritici, which causes stripe rust disease in wheat. Photo: CIMMYT/Mike Listman.

Rapidly emerging and evolving races of wheat stem rust and stripe rust disease—the crop’s deadliest scourges worldwide—drove large-scale seed replacement by Ethiopia’s farmers during 2009-14, as the genetic resistance of widely-grown wheat varieties no longer proved effective against the novel pathogen strains, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT).

Based on two surveys conducted by CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) and involving more than 2,000 Ethiopian wheat farmers, the study shows that farmers need access to a range of genetically diverse wheat varieties whose resistance is based on multiple genes.

After a severe outbreak in 2010-11 of a previously unseen stripe rust strain, 40 percent of the affected farm households quickly replaced popular but susceptible wheat varieties, according to Moti Jaleta, agricultural economist at CIMMYT and co-author of the publication.

“That epidemic hit about 600,000 hectares of wheat—30 percent of Ethiopia’s wheat lands—and farmers said it cut their yields in half,” Jaleta said. “In general, the rapid appearance and mutation of wheat rust races in Ethiopia has convinced farmers about the need to adopt newer, resistant varieties.”

The fourth most widely grown cereal after tef, maize, and sorghum, wheat in Ethiopia is produced largely by smallholder farmers under rainfed conditions. Wheat production and area under cultivation have increased significantly in the last decade and Ethiopia is among Africa’s top three wheat producers, but the country still imports on average 1.4 million tons of wheat per year to meet domestic demand.

National and international organizations such as EIAR, CIMMYT, and the International Centre for Agricultural Research in the Dry Areas (ICARDA) are working intensely to identify and incorporate new sources of disease resistance into improved wheat varieties and to support the multiplication of more seed to meet farmer demand.

New wheat varieties have provided bigger harvests and incomes for Ethiopia farmers in the last decade, but swiftly mutating and spreading disease strains are endangering wheat’s future, according to Dave Hodson, CIMMYT expert in geographic information and decision support systems, co-author of the new study.

Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.
Ethiopian wheat farmers like Abebe Abora, of Doyogena, have benefitted from adopting high-yielding wheat varieties but face threats from fast mutating races of wheat rust disease pathogens. Photo: CIMMYT/Apollo Habtamu.

“In addition to stripe rust, highly-virulent new races of stem rust are ruining wheat harvests in eastern Africa,” he explained. “These include the deadly Ug99 race group, which has spread beyond the region, and, more recently, the stem rust race TKTTF.”

As an example, he mentioned the case of the wheat variety Digalu, which is resistant to stripe rust and was quickly adopted by farmers after the 2010-11 epidemic. But Digalu has recently shown susceptibility to TKTTF stem rust and must now be replaced.

“In rust-prone Ethiopia, the risks of over-reliance on a widely-sown variety that is protected by a single, major resistance gene—Digalu, for example—are clearly apparent,” he added. “CIMMYT and partners are working hard to replace it with a new variety whose resistance is genetically more complex and durable.”

Hodson said as well that continuous monitoring of the rust populations in Ethiopia and the surrounding region is essential to detect and respond to emerging threats, as well as to ensure that the key pathogen races are used to screen for resistance in wheat breeding programs.

Hodson and partners at the John Innes Centre, UK, and EIAR are leading development of a handheld tool that allows rapid identification of disease strains in the field, instead of having to send them to a laboratory and lose precious time awaiting the results.

CIMMYT and partners are also applying molecular tools to study wheat varietal use in Ethiopia. “There are indications that yields reported by farmers were much lower than official statistics, and farmer recollections of varietal names and other information are not always exact,” Hodson explained. “We are analyzing results now of a follow-up study that uses DNA fingerprinting to better document varietal use and turnover.”

The authors would like to acknowledge the Standing Panel for Impact Assessment (SPIA) for financing, the Diffusion and Impacts of Improved Varieties in Africa (DIIVA) project that supported the first survey in 2011, and Cornell University, the Bill & Melinda Gates Foundation, and United Kingdom’s Department for International Development (DFID) through the Durable Rust Resistance in Wheat (DRRW, now called Delivering Genetic Gain in Wheat) project for support for the second survey in 2014.

Timothy J. Krupnik

Timothy Krupnik has worked in agricultural research for development in Asia, sub-Saharan Africa, and the Caribbean. At CIMMYT, he leads a multi-disciplinary and multi-cultural research team that comprises the Sustainable Agrifood Systems program’s Innovation Sciences in Agroecosystems and Food Systems theme across Asia.

This team spans disciplines and brings together technical skills ranging from systems agronomy, remote sensing, socioeconomics, climatology, agricultural engineering, and modeling and data science. The team’s research generates real-world impact by addressing key knowledge gaps, developing tools, and facilitating partnerships that increase productivity, sustainability and resilience in the context of the region’s biophysical, economic, and sociocultural diversity.

Krupnik has published over 120 peer-reviewed papers, policy briefs, chapters and books, and has led the development of numerous extension modules, decision support tools, and early warning systems.

Bekele Geleta Abeyo

Bekele Geleta Abeyo works on germplasm development, variety release, early generation seed multiplication, demonstration and popularization of new wheat varieties with recommended packages to realize better yield gains on farmers’ fields with NARS partners for nine sub-Saharan African countries.

He facilitates germplasm exchange among NARs within and across countries, NARS capacity building through training and mentoring of young professionals, material support by developing competitive and compelling projects pertinent to the country, data and experience sharing, and joint publication of new research findings.

He also organizes national, regional and international conferences and workshops, creating networks among NARs in the region, representing CIMMYT and the Global Wheat Program (GWP) in various forums. He liaises with government officials, institutions, and offices at various levels for collaboration effective partnerships.

New guides help agricultural scientists think gender in research design

EL BATAN, Mexico (CIMMYT) – A new set of resources has been released to aid agricultural researchers integrating gender sensitivities into their research for development projects. The guidance notes are based on findings from GENNOVATE, a global comparative gender norms research initiative, funded by the Bill & Melinda Gates Foundation.

“Integrating gender into research is challenging,” said the project leader Lone Badstue. “The purpose of these GENNOVATE resources is to inspire and help scientists who are not gender experts to think gender into their own work.”

Agricultural research often fails to use gender analysis, which provides important information on women’s and men’s different needs and opportunities in agriculture, Badstue said.

(Photo: CIMMYT)
(Photo: CIMMYT)

In a bid to turn the tide, GENNOVATE initiated a series of tools and guides to give evidence about gender roles in agriculture, challenge assumptions and provide gender-inclusive data collection instruments that are easily accessible to researchers.

“These resources provide evidence-based inputs and recommendations on how to integrate gender considerations in research on, for example, climate-smart-agriculture, conservation agriculture, mechanization, farmer training events and more,” said Badstue. “Some of the tools have broad geographical relevance, while others have a regional or even country-level focus.”

The resources draw on GENNOVATE research, which focuses on how gender norms influence women’s and men’s abilities to learn about, adopt and adapt innovations in agriculture and natural resource management. This research initiative runs across multiple CGIAR research programs to provide contextually grounded evidence on how gender interacts with access to information, resources and decision-making processes.

Access the GENNOVATE resources below:

Entry points for enabling gender equality in agricultural and environmental innovation

Enhancing the gender-responsiveness of your project’s technical farmer training events

Embedding gender in Conservation Agriculture R4D in sub-Saharan Africa

Integration of gender considerations in Climate-Smart Agriculture R4D in South Asia

Challenging gender myths: Promoting inclusive wheat and maize research for development in Nepal

LADDER OF POWER AND FREEDOM: Qualitative data collection tool to understand local perceptions of agency and decision making

These and additional upcoming resources can be found on the GENNOVATE website.

Pakistan seminar highlights roles of women and youth in wheat-based agriculture

CIMMYT and the Pakistan Agricultural Research Council are set to hold a seminar on women and youth in wheat-based farming systems on March 8. Photo: CIMMYT archives
CIMMYT and the Pakistan Agricultural Research Council are set to hold a seminar on women and youth in wheat-based farming systems on March 8. Photo: CIMMYT archives

ISLAMABAD, Pakistan (CIMMYT) – As part of activities around 2018 International Women’s Day, the International Maize and Wheat Improvement Center (CIMMYT) and the Pakistan Agricultural Research Council (PARC) will hold a seminar on women and youth in wheat-based farming systems: How do women and youth contribute? What are their problems and concerns? How can their issues be addressed to increase farm productivity and benefit all household members?

The event will draw some 70 participants from public, private, and academic organizations, including high-level wheat sector officials, social scientists from all Pakistan provinces, and scientists from CIMMYT, the global leader in publicly-funded research on maize and wheat and related farming systems.

Among other topics, speakers will share and discuss Pakistan-specific findings from GENNOVATE, a large-scale qualitative study by CGIAR during 2014-16, based on focus groups and interviews involving more than 7,500 rural men and women in 26 developing countries.

The event, which takes place in the Inspire Meeting Hall, Agricultural Economics Research Institute (AERI), NARC Premises, Park Road, Islamabad, on Thursday, 8 March from 8:45 to 11:30 a.m., will feature presentations followed by question and answer sessions and discussions and will be chaired by Ghulam Muhammad Ali, Director General, NARC, and Dr. Imtiaz Muhammad, Country Representative, CIMMYT Pakistan.

The program includes Muhammad Khair and Zarmina Achakzi from Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), who will highlight the role of women in farming in Balochistan and factors that limit their income and social status. Sidra Majeed and Nusrat Habib of the Agricultural Economics Research Institute (AERI), NARC, will present on gender roles and responsibilities in Pakistan.

From CIMMYT, Mulunesh Tsegaye, a research associate, will describe GENNOVATE findings on women and youth’s roles in wheat-based agriculture in Khyber Pakhtunkhwa and Baluchistan provinces. Consultant Sidra Minhas will share gender-related results from 14 agricultural program evaluations in Pakistan and how better to address gender dynamics in project design, programming, monitoring, and evaluation. Kristie Drucza, gender and social development research manager, will introduce results of three quantitative surveys that highlight the need for greater participation of women in agriculture research to raise the sector’s productivity and profitability.

The theme of 2018 International Women’s Day is #PressforProgress, and encourages global momentum in striving for gender parity.

According to the Food and Agriculture Organization (FAO), women make up 43 percent of the agricultural workforce in developing countries, but for many access to resources and services is severely restricted and they are often left out of decisions regarding use of income—even that which they earn.

You can obtain a two-page summary of the GENNOVATE report “Gender and Innovation Processes in Wheat-Based Systems” by clicking on the title.

GENNOVATE is supported by generous funding from the World Bank; the CGIAR Gender & Agricultural Research Network; the government of Mexico through MasAgro; Germany’s Federal Ministry for Economic Cooperation and Development (BMZ); numerous CGIAR Research Programs; and the Bill & Melinda Gates Foundation. 

For further information or interviews:

Kashif Syed, Communications Specialist, CIMMYT
k.syed@cgiar.org, cell: +92 (334) 5559205

Dr. Akhter Ali, Agricultural Economist, CIMMYT
akhter.ali@cgiar.org

Dr. Kristie Drucza, Gender and Social Development Research Manager, CIMMYT, Ethiopia
k.drucza@cgiar.org

Screening cycle for deadly MLN virus set to begin in Kenya during April 2018

The maize lethal necrosis (MLN) artificial inoculation screening site in Naivasha, Kenya will begin its phenotyping (screening/ indexing) cycle of 2018 at the begining of January 2018 and in four other intervals. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.

In 2013, the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural & Livestock Research Organization (KALRO) jointly established the MLN screening facility at the KALRO Naivasha research station in Kenya’s Rift Valley with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture.

MLN was first discovered in Kenya in 2011 and quickly spread to other parts of eastern Africa; the disease causes premature plant death and unfilled, poorly formed maize cobs, and can lead to up to 100 percent yield loss in farmers’ fields.

CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm (for hybrid, inbred and open pollinated varieties) against MLN in a quarantined environment.

This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 120,000 accessions (more than 210,000 rows of maize) from more than 15 multinational and national seed companies and national research programs.

Partners can now plan for annual MLN Phenotyping (screening/ indexing) during 2018 with the schedule listed below. The improved and streamlined approach for MLN phenotyping should enable our partners to accelerate breeding programs to improve resistance for Maize MLN for sub-Saharan Africa.

 

2018  annual phenotyping (screening/ indexing) schedule:

When the seeds are available  Planting Period – Planned MLN Screening / Indexing
December Second Week of January MLN Indexing
March Second week of April MLN Screening
June Second Week of July MLN Indexing
August Second Week of September MLN Screening
October Second week of November MLN Indexing

 

More information about the disease and resources for farmers can be found on CIMMYT’s MLN portal.

 

Please note that it can take up to six weeks to process imports and clear shipments.

For assistance in obtaining import permits and necessary logistics for the upcoming screening, please contact:

Dr. L.M. Suresh
Tel: +254 20 7224600 (direct)

Email: l.m.suresh@cgiar.org

CIMMYT–Kenya, ICRAF House
United Nations Avenue, Gigiri
P.O. Box 1041–00621
Nairobi, Kenya.

Emergency seed fuels quick farm recovery in drought-affected Ethiopia

Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.
Worker rogueing a wheat seed production plot. Photo: CIMMYT/A.Habtamu.

In response to Ethiopia’s worst drought in 50 years and the country’s critical shortage of maize and wheat seed for sowing in 2016, Ethiopian organizations, seed producers, and the International Maize and Wheat Improvement Center (CIMMYT) partnered to deliver to farmers over 3,400 tons of high quality seed that was sown on more than 100,300 hectares.

“We went three years without rain,” says farmer Usman Kadir, whose 1.5-hectare homestead in Wanjo Bebele village, Halaba Special Woreda, supports a household of 11 persons. “We were able to eat thanks to emergency food programs.” In 2017, Kadir used emergency maize seed to sow half a hectare and harvested 3 tons, getting his farm back on its feet. “If more new improved varieties come, we want to work with you and expand our farming operation.”

Funded by the U.S. Agency for International Development (USAID) and Office of Foreign Disaster Assistance (OFDA) of the U.S. Ethiopia mission, seed relief complemented international and national food aid, helping farm families to quickly grow crops after several seasons of erratic or failed rains in Ethiopia and the catastrophic 2015-16 El Niño droughts. At that time, more than 10 million people struggled to find food, as eastern Ethiopia faced crop losses from 50 to 90 percent of expected yields.

“This effort helped rescue the food security and livelihoods of more than 271,000 rural households and 1.6 million individuals in Ethiopia’s Amhara, Oromia, Tigray, and SNNP regions, and strengthened seed systems to address future climate, disease, and pest crises,” said Bekele Abeyo, CIMMYT wheat scientist who led the seed relief initiative.

Farmers are using maize and wheat varieties suitable for drought-affected areas and resistant to prevalent crop diseases. Photo: CIMMYT/A.Habtamu
Farmers are growing maize and wheat varieties suitable for drought- and disease-affected areas. Photo: CIMMYT/ A. Habtamu

Wheat and maize: Mainstays of food security

Agriculture provides 42 percent of Ethiopia’s GDP, 77 percent of employment, and 84 percent of exports. Subsistence, smallholder farmers predominate, making their living from less than two hectares of land. Wheat and maize are the most important crops for food security; they are also at the center of Ethiopia’s increasingly vibrant agricultural output markets and have been the focus in recent years of public investment to raise national production.

Maize and wheat production in Ethiopia depends on rainfall, making the unpredictable weather patterns caused by climate change exceptionally detrimental here. Various studies predict an average 30 percent reduction in farm incomes due to climate change impacts, including greater extremes in temperatures and rainfall (floods, droughts) and the emergence of new pest and disease strains. Research shows that reduced precipitation is already holding back wheat yields.

To address this, experts identified maize and wheat varieties suitable for drought-affected areas and highly resistant to prevalent crop diseases. Of the maize varieties, some 10 percent were quality protein maize, which carries enhanced levels of key amino acids for protein synthesis in humans.

“This effort also provided training for district and zonal development agents in crop protection, agronomy, drought mitigation practices, and seed systems,” said Abeyo. “Finally, five women seed producer associations received wheat seed threshers and a large union of farmer seed producer cooperatives received a maize sheller through the initiative. This equipment will greatly expedite their operations and contribute to the expanded and more reliable access of farmers to affordable, quality seed in the future.”

Partners and contributors

Emergency relief seed was sourced through diverse CIMMYT partnerships, including producers in the USAID-funded “Drought Tolerant Maize for Seed Scaling Project” (DTMASS) and “Wheat Seed Scaling Initiative.” Stakeholders included the Ministry of Agriculture and Natural Resources (MoANR), the Bureau of Agriculture and Natural Resources (BoANR), public and private seed companies/enterprises, farmer cooperative unions, federal and regional research institutes, and non-government organizations working in target areas. With funding from the Bill & Melinda Gates Foundation, Ethiopia’s Agricultural Transformation Agency (ATA) helped deliver seed to drought-affected districts and jointly organized training and workshops.

Click here to read a full report on the emergency seed relief initiative. 

Success in mainstreaming CSISA-supported agricultural technologies

Since 2015, the Cereal Systems Initiative for South Asia (CSISA) has been working with Krishi Vigyan Kendras (KVKs) – agricultural extension centers created by the Indian Council for Agricultural Research – to generate evidence on best management practices for improving cropping system productivity in the Eastern Indo-Gangetic Plains.

Lead
Billboard Campaign on early sowing and zero tillage wheat. Photo: CSISA

Technologies and management practices essential to this research include early wheat sowing, zero tillage and the timely transplanting of rice. In response to clear evidence generated through the CSISA–KVK partnership, Bihar Agriculture University (BAU) announced in October 2017 that all KVKs in Bihar would promote early wheat sowing starting November 1. KVKs promoted this intervention by placing notices, which were designed by CSISA, on roadsides.

BAU also directed the KVKs to act as commercial paddy nurseries, supplying healthy rice seedlings in a timely manner to farmers.

Pairing these rice and wheat interventions is designed to optimize system productivity through the on-time rice transplanting of rice during Kharif (monsoon growing season), allowing for the timely seeding of zero-till wheat in Rabi (winter growing season).

Under the CSISA–KVK partnership, KVKs have supported early wheat sowing by introducing local farmers to the practice of sowing zero tillage wheat immediately after rice harvesting.

Evidence has shown that early sowing of wheat increases yields across Bihar and Eastern Uttar Pradesh. KVK scientists have begun to see the importance of breaking the tradition of sowing short duration varieties of wheat late in the season, which exposes the crops to higher temperatures and reduces yields.

Across the annual cropping cycle, monsoon variability threatens the rice phase and terminal heat threatens the wheat phase, with significant potential cumulative effects on system productivity. The combined interventions of early wheat sowing, zero tillage wheat and rice nurseries for timely planting help mitigate the effects of both variable monsoon and high temperatures during the grain-filling stage.

In 2016–17, data collected across seven KVKs (333 sites) indicated that yields declined systematically when wheat was planted after November 10. When planting was done on November 20 — yields declined by 4%, November 30 – 15%, December 10 – 30%, reaching a low when planting was done on December 20 of a 40% reduction in yield.

Rice yields are also reduced significantly if transplanting is delayed beyond July 20. The timing of rice cultivation, therefore, is important in facilitating early sowing in wheat without any yield penalty to rice.

KVKs are working to generate awareness of these important cropping system interventions, as well as others, deep in each district in which they work. CSISA supports their efforts and strives to mainstream sustainable intensification technologies and management practices within a variety of public- and private sector extension systems as capacity building are core to CSISA Phase III’s vision of success.

The Cereal Systems Initiative for South Asia project is led by the International Maize and Wheat Improvement Center with partners the International Rice Research Institute and the International Food Policy Research Institute and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

Ethiopian farmers profit from scaled-up, fast-track production of disease resistant wheat seed

A sunny November day brings hundreds of farmer seed producers to Doyogena, a scenic highland village in Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). The visitors form a bustling line to collect more than $90 each – on average – in profits from representatives of the Zereta Kembata Seed Multiplication and Marketing Union.

Farmers in line at Doyogena. Photo: CIMMYT/A. Habtamu
Ethiopian farmer seed producers collect payment at the Zereta Kembata Seed Multiplication and Marketing Union facility, in  Doyogena. Photo: CIMMYT/A. Habtamu

“The union receives seed grown by more than 1,100 farmers, several hundred of whom are women, belonging to 8 farmer cooperatives,” said Yosief Balewold, general manager of the union.

With help from Ethiopia’s Agricultural Transformation Agency, Zereta Kembata began in 2016 to collect, clean, pack, and sell seed of wheat, potato, sorghum, and faba bean. “This year we marketed nearly 27 tons of the new, disease resistant wheat seed; that’s enough to sow around 270 hectares of the crop.”

Pitted against a yearly onslaught of fast-evolving fungal diseases that can infect as much as $200 million worth of the crops they are growing, more than 75,000 small-scale wheat farmers in Ethiopia’s 4 major wheat-growing regions will have gained access by late 2017 to a vital asset—over 400 tons of new, disease resistant wheat varieties of wheat seed, much of it produced by other farmers.

Marketed in tandem with science-based recommendations for growing wheat, the annual seed supply has steadily increased since 2014 through the Wheat Seed Scaling Initiative, led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the U.S. Agency for International Development (USAID).

“We’re energizing and diversifying Ethiopia’s wheat seed sector, partly by involving and benefitting both formal and farmer seed producers, including women and men,” said Bekele Abeyo, a CIMMYT scientist who leads the project.

With money from union shares purchased by farmer cooperatives and a regulatory 30 percent reinvestment of earnings, the union is building a large warehouse to store seed. In a smaller shack nearby sits a 0.75 ton steel seed cleaner donated by the Wheat Seed Scaling Initiative, which has been working with Zereta Kembata and other seed producers identified as outstanding by SNNP policymakers.

Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples' Region (SNNP), has been a member of a seed production cooperative for four years. “Because of modern technology such as improved wheat varieties, farming is better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu
Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP), has been a member of a seed production cooperative for four years. “Modern technology such as improved wheat varieties has made farming better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu

“Ethiopia has seen a rapid rise in recent years of new and deadly strains of stem rust and yellow rust, wheat adversaries since biblical times that have lately mutated to overcome resistance genes bred into many modern wheat varieties,” said Ayele Badebo, a CIMMYT wheat pathologist based in Ethiopia. “Farmers must swiftly begin to sow a range of varieties bearing new resistance genes, but limited access to the seed has been a bottleneck.”

In addition to assisting government-managed seed producers and 4 seed companies, through the initiative CIMMYT supports 10 farmer unions that purchase, pack, and sell the seed grown by numerous farmer cooperatives, as well as 12 farmer seed production associations, including 5 women’s groups, who profit from growing and selling quality seed of the new varieties.

“The Seed Scaling Initiative gives wheat farmers 25-50 kilograms of wheat seed, based on land availability, to kick-start their seed production operation,” explained Terefe Fitta, manager of the Seed Scaling Initiative. “The farmers pay back the ‘loan’ at harvest with the same amount of seed, which is given to other prospective farmer seed producers, and so on.”

A critical innovation of the initiative has been to link farmer seed producers directly with sources of “early-generation” seed, principally state and federal researchers. “The project has also brought on board laboratories that monitor seed production and test harvested seed, certifying it for marketing,” said Badebo, citing those accomplishments as lasting legacies of the Initiative.

Women seize chance to advance

Recognizing the critical role of women in Ethiopian agriculture and rural communities, the Seed Scaling Initiative is supporting several women’s seed producer groups. An example is the Tembo Awtena Women’s Seed Producers Association, in Angacha District, SNNP.

Established in 2014, Tembo Awtena is the first women’s cooperative in the district. The group first tried to bake and sell bread but reformed in 2015 to produce seed, having heard that it was profitable from other farmer cooperatives.

Through the Seed Scaling Initiative, CIMMYT gave the association around two tons of seed to start and Ethiopia’s Southern Seed Enterprise purchased the entire first year of seed production at a 20 percent premium over market price because the quality was so good, according to Amarech Desta, Tembo Awtena chairwoman.

Amarech Desta, Tembo Awtena chairwoman. Photo: CIMMYT/A. Habtamu
Amarech Desta (left), Tembo Awtena chairwoman, with fellow farmer and association member Desalech Ashamo. Photo: CIMMYT/A. Habtamu

“In 2016, with support from CIMMYT, we sold more than $7,400 worth of seed,” said Desta, adding that word of the association’s success had attracted 30 additional women farmers in 2017, bringing the total membership to 133.

Desalech Ashamo, an association member who is a single head of household, received nearly $300 for the seed she grew in 2017 and used the earnings to paint her house. “A big advantage is that all our seed is sold in one lot, rather than piecemeal, so we receive a lump sum that can be used for a significant household project.”

Desta explained that, despite Angacha being a very traditional community, men support women’s seed production activities. “My husband knows the benefits are for all and the men even help us with field activities.”

Tembo Awtena members are especially pleased at being one of the three women’s seed production groups in the Oromia and SNNP regions to receive seed threshers recently through the Seed Scaling Initiative. Association members had been threshing the wheat seed manually, a long and laborious process, according to Desta. “With the new machine we will be able thresh in one hour what would take us three days by hand,” she said.

The chairwoman also has plans for an office, a storage area, a milling machine, opening a shop to sell farm supplies, and gaining recognition and publicity to share their story with others who may benefit.

Power from valued partnerships

The success of the Wheat Seed Scaling Initiative depends on the commitment and contributions of diverse national and global partners, among them the Ethiopian Institute of Agricultural Research (EIAR) and state and district level officials in the Amhara, Oromia, SNNP, and Tigray regions, which are home to 90 percent of Ethiopia’s nearly 5 million wheat farmers.  Most of the varieties come from breeding lines of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA); a number were developed through the Delivering Genetic Gain in Wheat (formerly Durable Rust Resistance in Wheat) project, led by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under their UKAid project.

New crop varieties that counter climate change: a best bet for farmers

 

Stress-tolerant maize varieties are helping farmers produce more food despite climate change. Photo: Johnson Siamachira/CIMMYT.
Stress-tolerant maize varieties are helping farmers produce more food despite climate change. Photo: Johnson Siamachira/CIMMYT.

MEXICO CITY (CIMMYT) – As the world’s changing climate makes it more difficult to feed a growing population, smallholder farmers need sustainable solutions to improve food security and livelihoods while adapting to the impacts of climate change. Stress tolerant crop varieties offer much-needed answers, as one of the “10 best bet innovations for adaptation in agriculture” according to a new working paper from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

The paper taps into decades of agricultural research for development conducted by CGIAR research centers to identify the top innovations for climate adaption in agriculture. As world leaders convene for the UN Climate talks in Bonn this week and make a potential decision on agriculture, countries are being encouraged to adopt and advance best practices in their National Adaptation Plans.

Climate change has led to increased incidences of drought, heat and extreme weather events as well as crop pests and diseases, all of which can severely limit the growth of staple crops such as maize, wheat, rice and potato. As the demand for staple crops such as maize is expected to increase by 60 percent by 2050, this poses a grave danger for global food production.

CGIAR Research Centers and Programs have long worked to develop stress tolerant crop varieties that allow smallholder farmers to sustainably increase food security despite climate change. One key example of this work is the Drought Tolerant Maize for Africa project, implemented through the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize (MAIZE) with support from the Bill and Melinda Gates Foundation. From 2010-2016, the project released over 200 stress tolerant maize varieties for smallholder farmers in 13 countries in Africa, which has the potential to generate between $362 million to $590 million over a 7 year period through both yield gains and reduced yield variability.

On-farm trials have found that climate resilient maize varieties yielded up to 20 percent more maize under stress prone conditions, and double in severe stress environments, such as the El Niño event of 2015/16. This can significantly increase household income and food security. A recent study on drought-tolerant maize varieties in Zimbabwe found that climate resilient maize could provide farming families with an additional 9 months of food, or $240 per hectare, in drought-prone regions. Based on these results, drought-resilient crops have been dubbed a Tesla-like innovation for agriculture by Dr. Bruce Campbell, Director of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

The benefits are not limited to Africa alone—in South Asia, 18 pre-commercial heat tolerant maize hybrids from the Heat Tolerant Maize for Asia (HTMA) have been licensed. Of these, 6 have broad adaptation across agro-ecological zones in South Asia (suggesting they likely possess both heat and drought tolerance) and 12 hybrids had good adaptation to specific mega-environments in Bangladesh, Bhutan, India, Nepal and Pakistan.

To be successful, crop breeding needs to stay several steps ahead of climate change. The paper argues that strengthened breeding systems, using the latest technologies, together with more open international exchange of germplasm, and rapid change in varieties are fundamental components of this adaptation strategy. In addition, strengthened breeding pipelines for climate resilient maize also offer the co-benefit of faster development of maize with pest and disease resistance or enhanced nutrition in addition to tolerance to other stresses. In Malawi, Zambia and Zimbabwe maize varieties are now on the market with both drought tolerance and high pro-vitamin A content, which can prevent blindness in children. Research is currently underway to develop drought and heat tolerant, nutritionally enhanced maize rich in pro-vitamin A and zinc.

CIMMYT, MAIZE and other CGIAR research centers and programs are dedicated to supporting smallholder farmers in climate change adaptation by delivering stress tolerant crop varieties through strengthened breeding systems, cutting-edge technologies and the open exchange of international germplasm. The adaption innovations outlined in this working paper must be considered and supported in the search for a food secure, climate resilient future for all.

For more information on the 10 innovations highlighted in this paper, please click here.

At this year’s UN Climate Talks at COP23 in Bonn, Germany, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Click here to read more stories in this series and follow @CIMMYT on Facebook and Twitter for the latest updates.

CIMMYTNEWSlayer1

Borlaug Dialogue delegates widen net to curb threat from fall armyworm

2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize
The 2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about the fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize

DES MOINES, Iowa (CIMMYT) – World Food Prize laureates have joined forces with an international alliance battling the fall armyworm (Spodoptera frugiperda), an aggressive pest indigenous to the Americas with a voracious appetite, now widespread throughout Africa.

The 2002 World Food Prize laureate, Pedro Sanchez, currently a research professor at the University of Florida, addressed delegates at the Borlaug Dialogue conference in Des Moines, Iowa, which is timed each year to coincide with annual World Food Prize celebrations.

Sanchez described the severity of the challenge posed by the pest, which has a host range of more than 80 plant species, including maize, a staple food on which millions of people throughout sub-Saharan Africa depend for their food and income security.

Fall armyworm activities not only put food security, livelihoods and national economies at risk, but also threaten to undo recent hard-earned crop production gains on the continent, Sanchez said.

“Hopefully, it will be controlled; it will never be eradicated,” Sanchez said. “I think the fate of African food security really hinges now on this clear and present danger. It threatens to reverse the gains achieved in the last 10 years. It’s the epitome of an invasive species.”

The pest, which has no known natural predators, can cause total crop losses, and at advanced larval development stages can be difficult to control even with synthetic pesticides. The female fall armyworm can lay up to a thousand eggs at a time and can produce multiple generations very quickly without pause in tropical environments. The moth can fly 100 km (62 miles) a night, and some moth populations have even been reported to fly distances of up to 1,600 kilometers in 30 hours, according to experts.

Sanchez said that Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank, and Rob Fraley, 2013 World Food Prize laureate and chief technology officer at Monsanto, had united with him to urgently “raise the alarm” about the threat from the pest.

By joining forces as laureates, we aim to really bring attention to this issue to avoid a food crisis, Adesina said. Mobile phones should be effectively used in the fight against the pest, he said.

“There’s just no better way in which farmers can detect, recognize and send information very fast to extension agents or universities that can allow them to identify it and get the information they need to deal with it,” he said, adding that the new African Development Bank initiative Technologies for African Agricultural Transformation (TAAT), will play a key role in fighting the fall armyworm.

Projections by the Centre for Agriculture and Biosciences International, (CABI), indicate that if left unchecked, the fall armyworm could lead to maize yield losses of around $2.5 to $6.2 billion a year in just 12 of the 28 African countries where the pest has been confirmed.

Joint force

In April, the International Maize and Wheat Improvement Center (CIMMYT), the Food and Agriculture Organization of the United Nations (FAO) and the Alliance for a Green Revolution in Africa (AGRA) hosted an international joint stakeholders meeting in Nairobi, committing to an integrated pest management strategy to tackle the pest.

CIMMYT, the U.S. Agency for International Development (USAID), and experts from several national and international research organizations, are currently developing a detailed field manual on Fall Armyworm management in Africa, said B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, who spoke at a Borlaug Dialogue side event with a panel of scientific experts.

Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins
Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins

“The manual will offer protocols and best management practices related to fall armyworm scouting, monitoring and surveillance; biological control; pesticides and pesticide risk management; host plant resistance; pheromones and sustainable agro-ecological management of fall armyworm, especially in the African context,” Prasanna said, adding that the pest has so far devastated at least 1.5 million hectares of maize in just six countries.

A Southern Africa Regional Training-of-Trainers and Awareness Raising Workshop on Fall Armyworm management was conducted in Harare, Zimbabwe, from Oct. 30 to Nov. 1, while a similar workshop for Eastern Africa is scheduled for Nov. 13 to 15 in Addis Ababa, Ethiopia, and for West Africa in early 2018.

The workshops are aimed at supporting pest control and extension actors to effectively scout, determine the need for intervention, and apply specific practices to control the pest in maize and other crops, Prasanna said.

Fall armyworm toolbox

Prasanna announced that the CIMMYT team in Africa is intensively evaluating maize germplasm for resistance to fall armyworm. Initial experiments have indicated some promising breeding materials, which need to be validated further and utilized in product development and deployment pipelines, he said.

“The crisis is quickly escalating due to the loss of quality maize seed in production fields, and the extensive and indiscriminate use of low cost highly toxic pesticides,” Prasanna said.

“We need to quickly bring awareness among the farming communities in Africa about environmentally safer approaches of Fall Armyworm management,”  he said, adding that the international community can learn from the experiences of Brazil and the United States, where the pest has been endemic for  several decades.

“Sustainable agro-ecological management at the field and landscape levels is key,” Prasanna said. “We must make our solutions affordable to smallholder farmers.”

Panelist Mark Edge, director of collaborations for developing countries at agrochemical and biotechnology company Monsanto, said that integrated pest management, collaboration and public-private sector partnerships would be key to fighting the pest.

“First and foremost, it really is about an integrated pest management system – we’re not trying to propose that biotechnology is a silver bullet for this,” he said. “We need to continue to use many different technologies and biotechnology is one very powerful tool that we have in the toolbox.”

Over the past 10 years, the Water Efficient Maize for Africa (WEMA) a Monsanto-CIMMYT partnership project funded by the Bill & Melinda Gates Foundation and USAID has led to the development of almost 100 hybrid varieties effective against drought and a Bt – or biological pesticide – trait effective against the maize stem borers (Chilo partellus and Busseola fusca). The varieties will be available royalty-free to smallholder farmers.

“Insect resistance together with drought is our target; we’ve made tremendous progress over the past 10 years,” Edge said. “In the Americas, we still have challenges with fall armyworm, but we’re certainly able to control it to where farmers are actually able to get very good yields and manage the pests very effectively.”

Smallholder farmers need access to these varieties as soon as possible, so the focus should be on getting regulatory approvals in place by encouraging governments to support the technology, Edge said. The Bt trait varieties will need to be managed carefully so they do not develop resistance to the pest, he added.

“Scientists alone are not going to carry the day on this,” Edge said. “We need to bring together the science on this, but we also need the political will to help make that happen.”

Panelist Segenet Kelemu, director general of the International Institute of Insect Physiology and Ecology (ICIPE), said that techniques used to fight the stem borer have proven effective against the fall armyworm, although experiments are ongoing to craft an integrated pest management strategy to control various stages of the pest from egg to moth. The continent will face deepening challenges from insects due to climate change, she said.

“If there were capacity on the ground, fall armyworm would have been identified sooner,” Kelemu said. “We need a more comprehensive way and a global partnership to tackle this.”

Panelist Gregg Nuessly, a pest management researcher and the director of the Everglades Research and Education Center at the University of Florida, said that the fall armyworm could be effectively controlled through an integrated pest management approach.

“Success in control is not only possible, it’s quite common in the Western Hemisphere,” Nuessly said.

Related stories:

Borlaug Dialogue delegates to discuss strategy for tackling fall armyworm in Africa

Multi-pronged approach key for effectively defeating fall armyworm in Africa

Zimbabwe enacts new strategy in fall armyworm fight

Global experts meet to develop fall armyworm emergency plan for Africa

Fall armyworm in Africa: quick and coordinated regional response required

Scientists tackle deadly fall armyworm infestation devastating Africa

CIMMYTNEWSlayer1

 

First blast resistant, biofortified wheat variety released in Bangladesh

Members of National Technical Committee of NSB evaluating BAW 1260 in the field. Photo: CIMMYT
Members of National Technical Committee of NSB evaluating BAW 1260, the breeding line used to develop BARI Gom 33. Photo: CIMMYT

DHAKA, Bangladesh (CIMMYT) — As wheat farmers in Bangladesh struggle to recover from a 2016 outbreak of a mysterious disease called “wheat blast,” the country’s National Seed Board (NSB) released a new, high-yielding, blast-resistant wheat variety, according to a communication from the Wheat Research Centre (WRC) in Bangladesh.

Called “BARI Gom 33,” the variety was developed by WRC using a breeding line from the International Maize and Wheat Improvement Center (CIMMYT), a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, according to Naresh C. Deb Barma, Director of WRC, who said the variety had passed extensive field and laboratory testing. “Gom” means “wheat grain” in Bangla, the Bengali language used in Bangladesh.

“This represents an incredibly rapid response to blast, which struck in a surprise outbreak on 15,000 hectares of wheat in southwestern Bangladesh just last year, devastating the crop and greatly affecting farmers’ food security and livelihoods, not to mention their confidence in sowing wheat,” Barma said.

Caused by the fungus Magnaporthe oryzae pathotype triticum, wheat blast was first identified in Brazil in 1985 and has constrained wheat farming in South America for decades. Little is known about the genetics or interactions of the fungus with wheat or other hosts. Few resistant varieties have been released in Brazil, Bolivia and Paraguay, the countries most affected by wheat blast.

The Bangladesh outbreak was its first appearance in South Asia, a region where rice-wheat cropping rotations cover 13 million hectares and over a billion inhabitants eat wheat as main staple.

Many blast fungal strains are impervious to fungicides, according to Pawan Singh, a CIMMYT wheat pathologist. “The Bangladesh variant is still sensitive to fungicides, but this may not last forever, so we’re rushing to develop and spread new, blast-resistant wheat varieties for South Asia,” Singh explained.

The urgent global response to blast received a big boost in June from the Australian Centre for International Agricultural Research (ACIAR), which funded an initial four-year research project to breed blast resistant wheat varieties and the Indian Council of Agricultural Research (ICAR), which also provided grant to kick-start the work in South Asia. Led by CIMMYT, the initiative involves researchers from nearly a dozen institutions worldwide.

Chemical controls are costly and potentially harmful to human and environmental health, so protecting crops like wheat with inherent resistance is the smart alternative, but resistance must be genetically complex, combining several genes, to withstand new mutations of the pathogen over time.

Key partners in the new project are the agricultural research organizations of Bangladesh, including the Bangladesh Agricultural Research Institute (BARI), and the Instituto Nacional de Innovación Agropecuaria y Forestal in Bolivia, which will assist with large-scale field experiments to select wheat lines under artificial and natural infections of wheat blast.

Other partners include national and provincial research organizations in India, Nepal and Pakistan, as well as Kansas State University (KSU) and the U.S. Department of Agriculture-Agricultural Research Services (USDA-ARS). The U.S. Agency for International Agricultural Development (USAID) has also supported efforts to kick-start blast control measures, partnerships and upscaling the breeding, testing and seed multiplication of new, high-yielding, disease resistant varieties through its Feed the Future project.

BARI Gom 33 was tested for resistance to wheat blast in field trials in Bolivia and Bangladesh and in greenhouse tests by the USDA-ARS laboratory at Fort Detrick, Maryland. International partnerships are critical for a fast response to wheat blast, according to Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program.

“Worldwide, we’re in the middle of efforts that include blast surveillance and forecasting, studies on the pathogen’s genetics and biology, integrated disease management and seed systems, as well as raising awareness about the disease and training for researchers, extension workers, and farmers,” said Braun.

With over 160 million people, Bangladesh is among the world’s most densely populated countries. Wheat is Bangladesh’s second most important staple food, after rice. The country grows more than 1.3 million tons each year but consumes 4.5 million tons, meaning that imports whose costs exceed $0.7 billion each year comprise more than two-thirds of domestic wheat grain use.

WRC will produce tons of breeder’s seed of BARI Gom 33 each year. This will be used by the Bangladesh Agricultural Development Corporation (BADC) and diverse non-governmental organizations and private companies to produce certified seed for farmers.

“This year WRC will provide seed to BADC for multiplication and the Department of Agricultural Extension will establish on-farm demonstrations of the new variety in blast prone districts during 2017-18,” said Barma.

As an added benefit for the nutrition of wheat consuming households, BARI Gom 33 grain features 30 percent higher levels of zinc than conventional wheat. Zinc is a critical micronutrient missing in the diets of many of the poor throughout South Asia and whose lack particularly harms the health of pregnant women and children under 5 years old.

With funding from HarvestPlus and the CGIAR Research Program on Agriculture for Nutrition, CIMMYT is leading global efforts to breed biofortified wheat with better agronomic and nutritional quality traits. The wheat line used in BARI Gom 33 was developed at CIMMYT, Mexico, through traditional cross-breeding and shared with Bangladesh and other cooperators in South Asia through the Center’s International Wheat Improvement Network, which celebrates 50 years in 2018.

Stable window 1 and 2 (W1W2) funding from CGIAR enabled CIMMYT and partners to react quickly and screen breeding lines in Bolivia, as well as working with KSU to identify sources of wheat blast resistance. The following W1 funders have made wheat blast resistance breeding possible: Australia, the Bill & Melinda Gates Foundation, Canada, France, India, Japan, Korea, New Zeland, Norway, Sweden, Switzerland, the United Kingdom and the World Bank. The following funders also contributed vital W2 funding: Australia, China, the United Kingdom (DFID) and USAID.

Borlaug Dialogue delegates to discuss strategy for tackling Fall Armyworm menace in Africa

BODDUPALLI-Maruthi-PrasannaDES MOINES, Iowa (CIMMYT) – Without proper control methods, the Fall Armyworm (FAW) menace could lead to maize yield losses estimated at $2.5 to $6.2 billion a year in just 12 of the 28 African countries where the pest has been confirmed, scientists from the Centre for Agriculture and Biosciences International, (CABI) reported recently.

The devastating insect-pest, which originated in the Americas, is capable of causing damage to more than 80 different plant species, although the pest prefers maize, a major food staple in sub-Saharan Africa on which millions of people depend.

Scientists estimate that Africa will need an investment of at least $150 to $200 million annually over at least the next five years to mitigate potential Fall Armyworm damage through the use of effective management options, and to undertake research on strategic areas for devising and deploying an integrated pest management strategy.

“Fall Armyworm is one of the world’s most deadly crop pests, effectively managing this insect-pest requires an urgent multi-disciplinary and multi-stakeholder response,” said B.M Prasanna, director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize.

ArmywormImagePrasanna will be participating in the 2017 Borlaug Dialogue in Des Moines, Iowa, and will part of a panel discussion, on October 19, titled “Fall Armyworm: A clear and present danger to African Food Security” to discuss the strategic approach for managing the pest in Africa. This will follow a short presentation on October 18, by Pedro Sanchez, the  2002 World Food Prize laureate, on the status and impact of Fall Armyworm in Africa.

As part of an internationally coordinated strategic integrated pest management approach to tackle the FAW in Africa, CIMMYT and the U.S. Agency for International Development (USAID), together with experts from several national and international research organizations, are currently developing a comprehensive field manual. The manual will provide protocols and best management practices related to Fall Armyworm scouting, monitoring and surveillance; biological control; pesticides and pesticide risk management; host plant resistance; and sustainable agro-ecological management of Fall Armyworm, especially in the African context.

Regional training-of-trainers and awareness generation workshops are also being planned for November 2017 in southern and eastern Africa, and in West Africa in the first quarter of 2018. The training workshops are aimed at supporting pest control and extension actors to effectively scout, determine the need for intervention, and appropriately apply specific practices to control the pest in maize and other important crops in Africa.

For further information or to arrange interviews on-site or remotely, please contact Julie Mollins, CIMMYT communications: j.mollins (at) cgiar (dot) org

EVENT DETAILS

WHAT: B.M. Prasanna will be part of a panel discussion titled “Fall Armyworm: A clear and present danger to African Food Security” at the Borlaug Dialogue symposium to discuss the strategic approach for managing the pest in Africa.

WHEN: October 19, 2017, 7 a.m. to 8:30 a.m.

WHEREDowntown Des Moines Marriott Hotel, 700 Grand Ave., Des Moines, Iowa.

WHO: B.M. Prasanna has been director of CIMMYT’s Global Maize Program since 2010 and the CGIAR Research Program on MAIZE since June 2015. Based in Nairobi, Kenya, Prasanna leads a multi-disciplinary CIMMYT-Global Maize Program team of 45 scientists located in sub-Saharan Africa, Latin America and Asia. Prior to joining CIMMYT, Prasanna served as a faculty member and maize geneticist at the Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, under the Indian Council of Agricultural Research (ICAR), for nearly two decades. Since 2012, Prasanna has led intensive multi-institutional efforts to effectively tackle Maize Lethal Necrosis (MLN) in eastern Africa. He oversaw the establishment of a state-of-the-art Maize Doubled Haploid (DH) Facility in Kiboko, Kenya in 2013. He has also led the development of several successful public-private partnership projects and recognized with several awards and honors in India for his contributions to maize research, post-graduate teaching and human resource development.

ABOUT BORLAUG DIALOGUE: An annual three-day conference that attracts more than 1,200 delegates from around the world to discuss global food security and nutrition. The Borlaug Dialogue, which features scientists, policymakers, business executives and farmers, coincides with World Food Day and the awarding of the World Food Prize.

ABOUT CIMMYTThe International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies. CIMMYT website: http://staging.cimmyt.org