Skip to main content

funder_partner: Bill & Melinda Gates Foundation

Building global capacity to combat wheat blast

Researchers and experts from 15 countries convened in Zambia, between 4-15 March 2024, for an international training on wheat blast disease screening, surveillance, and management.

Wheat blast, caused by pathogen Magnaporthe oryzae pathotype triticum, is threatening global wheat production especially in warmer and humid regions. The disease was first observed in Parana state of Brazil in 1985 and subsequently spread to Bolivia, Paraguay, and Argentina. Outside of South America, wheat blast incidences were recorded for the first time in Bangladesh in 2016 and in Zambian wheat fields in 2018.

To mitigate the impact of this potential plant pandemic, the Zambia Agriculture Research Institute (ZARI), in collaboration with CIMMYT and other partners, organized a comprehensive training for building research capacity and raising awareness within the local and international community, especially in at-risk countries.

ā€œThis collaborative effort, supported by various international partners and funders, underscores the importance of global cooperation in addressing agricultural challenges such as wheat blast. The objective of the training was to empower researchers with knowledge and tools for enhanced wheat production resilience in regions vulnerable to this destructive disease,ā€ said Pawan Kumar Singh, principal scientist and project leader at CIMMYT. Singh collaborated with Batiseba Tembo, wheat breeder at ZARI-Zambia, to coordinate and lead the training program.

Thirty-eight wheat scientists, researchers, professors, policymakers, and extension agents from countries including Bangladesh, Brazil, Ethiopia, India, Kenya, Mexico, Nepal, South Africa, Sweden, Tanzania, United Kingdom, Uruguay, Zambia, and Zimbabwe convened at the Mt. Makulu Central Research Station in Chilanga, Zambia.

ā€œWheat blast is a devastating disease that requires concerted efforts to effectively manage it and halt further spread. The disease is new to Africa, so developing capacity amongst country partners before the disease spreads more widely is critical,” said Tembo.

Participants at the International Training on Wheat Blast Screening and Surveillance. (Photo: CIMMYT)

Highlights from the training: discussions, lab exercises, and field visits

During the training, participants engaged in lectures, laboratory exercises, and field visits. There were insightful discussions on key topics including the fundamentals of wheat blast epidemiology, disease identification, molecular detection of the wheat blast pathogen, isolation and preservation techniques for the pathogen, disease scoring methods, disease management strategies, and field surveillance and monitoring.

The course also provided practical experience in disease evaluation at the Precision Phenotyping Platform (PPP) screening nursery located in Chilanga research station. This involved characterization of a diverse range of wheat germplasm with the aim of releasing resistant varieties in countries vulnerable to wheat blast. Additionally, participants undertook field visits to farmers’ fields, conducting surveillance of wheat blast-infected areas. They collected samples and recorded survey data using electronic open data kit (ODK) capture tools.

Participants listen to a lecture by B.N. Verma, director of Zambia Seed Co., on the history of wheat production in Zambia. (Photo: CIMMYT)

ā€œThe killer disease needs to be understood and managed utilizing multi-faceted approaches to limit the expansion and damages it can cause to global wheat production. The Bangladesh Wheat and Maize Research Institute (BWMRI) is willing to share all the strategies it deployed to mitigate the effect of wheat blast,ā€ said Golam Faruq, BWMRI’s director general.

Participants visited seed farms to gain practical insights into seed production processes and quality assurance measures. These visits provided first-hand knowledge of seed selection, breeding techniques, and management practices crucial for developing resistant wheat varieties. Participants also visited research sites and laboratories to observe advanced research methodologies and technologies related to wheat blast management. These visits exposed them to cutting-edge techniques in disease diagnosis, molecular analysis, and germplasm screening, enhancing their understanding of effective disease surveillance and control strategies.

Field visit. (Photo: CIMMYT)

ā€œThe training and knowledge sharing event was a significant first step in developing understanding and capacity to deal with wheat blast for partners from several African countries. It was wonderful to see the efforts made to ensure gender diversity among participants,ā€ said Professor Diane Saunders from the John Innes Centre, UK.

Regional network to scale impact of dryland crops in sub-Saharan Africa

The Dryland Crops Program (DCP), in collaboration with National Agricultural Research and Extension Systems (NARES) partners, IITA, Alliance Bioversity & CIAT, and other African institutions, has established the African Dryland Crop Improvement Network (ADCIN). Aiming to strengthen partnerships and collaboration among partner institutions, the network focuses on improving dryland crops through crop enhancement. The ADCIN will have regional governance bodies in West and Central Africa (WCA) and Eastern and Southern Africa (ESA).

Consultative approach to establish ADCIN and governance structure

In 2021, CIMMYT was asked to lead a CGIAR varietal improvement and seed delivery project for dryland crops with an initial focus in Africa and funding from the Bill & Melinda Gates Foundation, the United States Agency for International Development (USAID), and the CGIAR Accelerated Breeding Initiative. This aligns with CIMMYT’s 2030 strategic objectives, which will contribute to shaping the future of agriculture to drive climate resilience, sustainable and inclusive agricultural development, and food and nutrition security.

As CIMMYT embarked on its work to further strengthen the work on dryland crops, it held a series of consultation meetings with several NARES in the region. A joint consultation workshop with NARES and CGIAR colleagues was held in Senegal in February 2022. This was followed by the broader network members and stakeholders meeting in Ghana in January 2023. These events brought together experts and representatives from the WCA and ESA regions and various partner institutions to discuss the best approaches to improve the impact of our work on dryland crops through crop improvement. Experts discussed within and across disciplines defining breeding targets using socio-economic and gender information, developing modern breeding processes and approaches, seed systems, data-science, and forging new models of partnerships.

Stakeholders from CGIAR and NARES convene in Ghana for a meeting. Experts, partner institutions, and representatives from the WCA and ESA regions, engage in comprehensive discussions to advance dryland crop improvement strategies. (Photo: Eagle Eye Projects)

One significant outcome of these meetings was the recommendation to establish a formal regional dryland crop improvement network to strengthen and enhance the current partnership among NARES and CGIAR partner institution and scientists. Establishing a governance structure for this network for effective coordination and monitoring of the network partnerships was also recommended. It was agreed that this network will have two regional bodies, one each in ESA and WCA, with their own steering committees.

Later in 2023, two initial regional steering committees were formed following consultations with CGIAR and NARES partners. The goal of the committees is to improve crop varieties in the region while ensuring equitable resource allocation and promoting collaboration among network partners. Each committee is expected to provide regional governance and oversight for the diverse dryland crop networks that operate in each region. Specific roles and responsibilities include prioritizing capacity development activities for network members, approving and allocating budgets for development plans, reviewing infrastructure needs, budgeting and accounting for investments, mobilizing resources from donors, coordinating collaboration among partners, monitoring and evaluating performance, supporting policy issues, and resolving disputes among members.

The African Dryland Crops Improvement Network (ADCIN) structure.

Critical role of steering committees for sustainability of ADCIN

The WCA steering committee comprises 14 members: 11 from NARES and three from CGIAR, met in Saly, Senegal in August 2023. The ESA committee comprises 12 members: nine from NARES and three from CGIAR, met in Nairobi, Kenya. Both committees explored their roles and responsibilities.

The ESA and WCA committees proposed, represented, and discussed several strategic areas. They developed and implemented strategies to enhance capacity and infrastructure, promote effective budget management, establish regional learning mechanisms, and lead resource mobilization to ensure sustained support for the DCP initiatives.

Members of the WCA Steering Committee meet in Senegal for a strategic meeting. (Photo: CIMMYT)

AlliThe committees also discussed the network’s vision, terms of reference, committees’ governance (by-laws), and a review of the network agreement. They also defined the network’s aspirations and aligned its resources to regional and national infrastructure needs and priorities.

A significant outcome from the meetings was CIMMYT’s allocation of US $1 million to the committees to facilitate personnel and infrastructure development. This budget allocation was decided upon after careful deliberation on how to best use the available resources to meet the network’s needs. Both committees then agreed to call for proposals in various capacity development areas.

They also elected the leadership for the committees. The WCA committee elected four officials: the chairperson, vice-chairperson, secretary, and financial secretary. The ESA committee elected three officials, including the chairperson, vice-chairperson, and secretary.

Subcommittees were also formed to oversee the operations of the steering committees and ensure a comprehensive approach to achieving the network’s goal. ā€œThese subcommittees are focused on capacity development, finance and monitoring, evaluation and learning and networks sustainability,ā€ said Happy Daudi, the ESA steering committee secretary.

Kevin Pixley, director of CIMMYT’s Dryland Crops Program, highlighted the importance of regional steering committees in promoting agricultural progress, food security, nutritional stability, resources, and partnerships.

“The creation of the ADCIN marks a pivotal moment in our collective journey towards sustainable agricultural development,ā€ said Pixley. ā€œBy bringing together the expertise and resources of CGIAR and NARES partners, ADCIN embodies our shared commitment to turning the challenges of dryland agriculture into opportunities for growth, resilience, and prosperity for the farmers and the communities we serve.”

The meetings also provided an opportunity for the committees to initiate the selection of a unified name for the network. The African Dryland Crop Improvement Network (ADCIN) was decided through a consensus-driven naming process among network members.

The ADCIN also establishes a critical support network for Africa-NARES and breeding programs through the ESA and WCA regional networks, allowing them to co-design and co-implement projects, leverage regional resources and capacity, and sustain dryland crop improvement activities through alignment of investment with priorities, capacity building, and connect the network to other initiatives.

Accelerating progress: from governance to brand identity

Subsequently, the two committees met in December 2023 to discuss and finalize previously discussed key areas. Significant progress had been made in reviewing and confirming the terms of reference and bylaws, which are required for smooth operations and a clear understanding of the governance structure among all the network members.

Following a thorough review and deliberation, the committees agreed on a set of criteria and a template for the call for proposals. The call was made public in December 2023, with submissions due by January 30, 2024. The ESA and WCA steering committees reviewed the applications and communicated the results to the successful applicants. Out of nearly 100 applications submitted, 19 successful candidates are from WCA and 13 from ESA.

Recognizing the importance of a strong and consistent identity, the steering committees established guidelines for the branding and marking process. Part of this process includes creating a logo, which will be shared with the steering committees and the network for a final selection and approval. This step is crucial in developing a visual identity that reflects the network’s values and objectives.

Reinventing collaborative efforts for the future with a unique model

The network and the steering committees operate on an inclusive model in which CGIAR, NARES, and regional stakeholders collaborate to allocate resources for regional projects. This approach not only addresses each region’s unique needs but also ensures tailored development of infrastructure, human capacity, and coordination, increasing the impact on dryland crop cultivation.

ā€œThis is a one-of-a-kind collaborative model that was meticulously developed within the region by both CGIAR and NARES, who jointly decided on strategic priorities for regional projects and allocated a budget to support their region,” said Harish Gandhi, associate program director. ā€œThe ā€˜fit principle’ is critical for infrastructure and human capacity development, as well as improving regional coordination.ā€

This collaboration is about more than just pooling resources; it’s also about leveraging unique strengths, knowledge, and perspectives to create synergies that will help address complex regional challenges effectively. The network can respond to the specific needs of each region and places the onus of responsibility on the steering committees, allowing them to make critical regional decisions. By ensuring that projects are designed with a thorough understanding of regional needs, ADCIN aims to achieve more long-term and significant results.

Harnessing econometric and statistical tools to support climate-resilient agriculture

Globally, climate extremes are adversely affecting agricultural productivity and farmer welfare. Farmers’ lack of knowledge about adaptation options may further exacerbate the situation. In the context of South Asia, which is home to rural farm-based economies with smallholder populations, tailored adaptation options are crucial to safeguarding the region’s agriculture in response to current and future climate challenges. These resilience strategies encompass a range of risk reducing practices such as changing the planting date, Conservation Agriculture, irrigation, stress-tolerant varieties, crop diversification, and risk transfer mechanisms, e.g., crop insurance. Practices such as enterprise diversification and community water conservation are also potential sector-specific interventions.

Atlas of Climate Adaptation in South Asian Agriculture (ACASA) aims to identify hazard-linked adaptation options and prioritize them at a granular geographical scale. While doing so, it is paramount to consider the suitability of adaptation options from a socioeconomic lens which varies across spatial and temporal dimensions. Further, calculation of scalability parameters such as economic, environmental benefit, and gender inclusivity for prioritized adaptation are important to aid climatic risk management and developmental planning in the subcontinent. Given the credibility of econometric and statistical methods, the key tenets of the approach that are being applied in ACASA are worth highlighting.

Evaluating the profitability of adaptation options

Profitability is among the foremost indicators for the feasible adoption of any technology. The popular metric of profitability evaluation is benefit-to-cost ratio. This is a simple measure based on additional costs and benefits because of adopting new technology. A benefit-to-cost ratio of more than one is considered essential for financial viability. Large-scale surveys such as cost of cultivation and other household surveys can provide cost estimates for limited adaptation options. Given the geographical and commodity spread, ACASA must resort to the meta-analysis of published literature or field trials for adaptation options. For example, a recent paper by International Food Policy Research Institute (IFPRI) based on meta-analysis shows that not all interventions result in a win-win situation with improvements in both tradable and non-tradable outcomes. While no-till wheat, legumes, and integrated nutrient management result in an advantageous outcome, there are trade-offs between the tradable and non-tradable ecosystem services in the cases of directed seed rice, organic manure, and agroforestry2.

Quantification of adaptation options to mitigate hazards

Past studies demonstrate the usefulness of econometric methods when analyzing the effectiveness of adaptation options such as irrigation, shift in planting time, and crop diversification against drought and heat stress in South Asia. Compared to a simple cost-benefit approach, the adaptation benefits of a particular technology under climatic stress conditions can be ascertained by comparing it with normal weather conditions. The popular methods in climate economics literature are panel data regression and treatment-based models. Subject to data availability, modern methods of causal estimation, and machine learning can be used to ascertain the robust benefits of adaptation options. Such studies, though available in literature, have compared limited adaptation options. A study by the Indian Council of Agricultural Research-National Institute of Agricultural Economics and Policy Research (ICAR-NIAP), based on ā€˜Situation Assessment Survey of Agricultural Households’ of National Sample Survey Office (NSSO), concluded that though crop insurance and irrigation effectively improve farm income and reduce farmers’ exposure to downside risk, irrigation is more effective than crop insurance1.

Statistical models for spatial interpolation of econometric estimates

Since ACASA focuses on gridded analysis, an active area of statistical application is the spatial interpolation or downscaling of results to a more granular scale. Many indicators used for risk characterization are available at coarser geographical units or points from surveys. Kriging is a spatial interpolation method where there is no observed data. Apart from spatial interpolation of observed indicators, advanced Kriging methods can be potentially used to interpolate or predict the estimates of the econometric model.

ACASA’s approach involves prioritizing adaptation options based on suitability, scalability, and gender inclusivity. Econometric and statistical methods play a crucial role in evaluating the profitability and effectiveness of various adaptation strategies from real world datasets. Despite challenges such as limited observational data and integration of econometric and statistical methods, ACASA can facilitate informed decision-making in climate risk management and safeguard agricultural productivity in the face of climatic hazards.


1 Birthal PS, Hazrana J, Negi DS and Mishra A. 2022. Assessing benefits of crop insurance vis-a-vis irrigation in Indian agriculture. Food Policy 112:102348. https://doi.org/10.1016/j.foodpol.2022.102348

2 Kiran Kumara T M, Birthal PS, Chand D and Kumar A. 2024. Economic Valuation of Ecosystem Services of Selected Interventions in Agriculture in India. IFPRI Discussion Paper 02250, IFPRI-South Asia Regional Office, New Delhi.

Blog written by Prem Chand, ICAR-NIAP, India and Kaushik Bora, BISA-CIMMYT, India

Unlocking insights from literature: exploring adaptation options in ACASA

To address the vulnerability of increased climate risks which impact agriculture, it is imperative to identify location-specific adaptation options. Atlas of Climate Adaptation in South Asian Agriculture (ACASA) is working on identifying commodity specific hazards at different geographical regions and the key adaptation options aligned with geography and hazards. This has been done for major cereal crops (rice, wheat, and maize), coarse grains (millets), oilseeds (coconut, mustard), legumes and vegetable crops (chickpea, potato), livestock, and fisheries. In ACASA, Systematic Literature Review (SLR) serves as a fundamental tool to identify key climate adaptation options and assess their effectiveness, considering agroecological factors.

Literature reviews are a customary approach for researchers to grasp existing knowledge and findings. The SLR methodically establishes clear research objectives, employs structured search queries to identify relevant literature, applies defined exclusion criteria, and extracts data for scientific analysis. This structured approach facilitates mapping the literature, validating findings, identifying gaps, and refining methodologies thereby minimizing biases, and ensuring comprehensive coverage of evidence.

Commodity-specific research questions, aligned with the problem/population, intervention, comparison/consequences, outcome, and time PICO(T) framework, have been used to guide the search process. By utilizing keywords specific to these questions, ACASA sourced literature from reputable databases such as Web of Science, Scopus, Google Scholar, and local databases of South Asian countries: Bangladesh, India, Nepal, and Sri Lanka. Local databases and gray literature further bolstered the understanding of local conditions and broadened the coverage of studied literature.

Systematic Literature Review (SLR)

The searched literature was then filtered using the well-established Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) framework. PRISMA provides a minimum set of evidence-based literature to be used for further analysis. Let us look at maize as an example of a commodity under analysis in ACASA. For maize, a total of 1,282 papers were identified and based on four exclusion criteria pertaining to adaptation options, quantitative assessment, hazard, and risk only of which 72 papers were shortlisted. The PRISMA framework supported in getting a manageable dataset for in-depth analysis while ensuring transparency in the overall filtering process.

After filtering through PRISMA, a bibliometric analysis was conducted which contained research trend analysis, regional distribution patterns, adaptation option categorizations, and a co-occurrence analysis. Useful patterns in popularity of studied adaptation options, hazards, and their linkages were observed through this analysis. For instance, drought was the most studied hazard, while pest diseases and economics were major hazard impacts studied for the maize literature. In terms of adaptation options, stress tolerant varieties were the most popular adaptation option. Further, co-occurrence analysis provided linkages between adaptation options and hazards, and demonstrated that researchers have also studied bundled technologies.

SLR helped understand the effectiveness of certain adaptation options. Going ahead, this step will be fully realized through a ā€œmeta-analysisā€ which will be pivotal in quantifying the evidence and prioritizing adaptation options for different agroecologies. SLR has proven to be an effective research method to build a comprehensive database that can be used across different thematic areas of ACASA. Adaptation options enlisted through SLR can be further substantiated through expert elicitations via heurism, crop modelling, cost-benefit analysis, and other important pillars of ACASA to identify efficient and cost-effective options.

SLR also provided the ACASA team with the opportunity to identify certain literature gaps such as uneven geographical coverage and excessive emphasis on certain adaptation options versus the rest. Conceptualization of systematically reviewing climate adaptation options in the South Asian context by integrating bibliometric and meta-analysis adds novelty to the current efforts of ACASA.

Blog written by Aniket Deo, BISA-CIMMYT India; Niveta Jain, ICAR-IARI India; Roshan B Ojha, NARC Nepal; and Sayla Khandoker, BARI Bangladesh

Greater successes through NARS partnerships

Map: BISA works with National Agricultural Research Systems (NARS) of South Asia to develop ACASA.

Atlas of Climate Adaptation in South Asian Agriculture (ACASA) is different from many projects supported by our team. I would love to dive into the promising features of the ACASA platform and the exciting technical advances being made, but I want to focus here on how the Borlaug Institute for South Asia (BISA) has organized this program for greater and longer-term impact.

BISA is a strong regional partner and is the lead institution for the ACASA program. In fact, we could have simply asked BISA to build the ACASA platform and known they would make a great technical product. However, our goal is not just to have great technical products, but also to improve the lives of small-scale producers. For any great technical product to deliver impact, it must be used.

From day one, the ACASA program has not just kept the users’ needs in mind, indeed they have kept the users themselves engaged on the project. By establishing strong, financially supported partnerships with the National Agricultural Research Systems (NARS) in Bangladesh, India, Nepal, and Sri Lanka, they are achieving four key outcomes, among many others:

  1. Benefit from local expertise regarding national agricultural practices, climate risks, and solutions
  2. Leverage NARS connections to national and subnational decision makers to inform product requirements
  3. Establish national ownership with a partner mandated to support users of the product
  4. Strengthen climate adaptation analytics across South Asia through peer-to-peer learning.

These outcomes lead to more accurate and appropriate products, user trust, and the long-term capacity to maintain and update the ACASA platform. The latter being essential given the constantly improving nature of our understanding of and predictions around climate and agriculture.

If this model of working has such advantages over ā€œif you build it, they will comeā€, you might wonder why we do not use it in all cases. This approach requires divergence from business-as-usual for most researchers and is not without a cost. The BISA team are not only putting deep emphasis on the technical development of this product, but they are also spending considerable time, effort, and budget to create a program structure where the NARS are catalytic partners. The NARS teams are empowered on the project to contribute to methodologies used beyond their national boundaries, they have the task of making the best data available and validating the outputs, the responsibility of understanding and representing stakeholder requirements, and the ownership of their national platform for long-term use. BISA has developed a structure of accountability, provided funding, facilitated team-wide and theme-specific workshops, and shared decision-making power, which all presents additional work.

In the end, we encouraged this approach because we see too many decision support tools and platforms developed by international researchers who merely consult with users a few times during a project. These efforts may result in building captivating products, meeting all the needs brainstormed by the research team, but their future is sitting in a dusty (and unfortunately crowded) corner of the internet. While this approach seems fast and efficient, the efficiency is zero if there is no value gained from the output. So, we look for other ways to operate and engage with partners, to work within existing systems, and to move beyond theoretically useful products to ones that are used to address needs and can be evolved as those needs change. BISA has been an exemplary partner in building and supporting a strong ACASA team, and we are eager to see how each NARS partner leverages the ACASA product to generate impact for small-scale producers.

Tess Russo is a senior program officer at the Bill & Melinda Gates Foundation, based in Seattle, United States.Ā Ā 

Unlocking the power of collaboration in global wheat science

CIMMYT Global Wheat Program (GWP) scientists visited National Agricultural Research Systems (NARS) partners in Pakistan, Nepal, and India during February 2024. The key purpose was to review current approaches and explore new opportunities to enhance collaborative wheat improvement activities.

NARS partners described their current priorities and recent changes in their activities, while CIMMYT shared recent modernization efforts of its wheat breeding and highlighted opportunities to enhance collaborative wheat improvement. GWP representatives included Interim Wheat Director Kevin Pixley, and scientists Naeela Qureshi, Velu Govindan, Keith Gardner, Sridhar Bhavani, T.P. Tiwari, and Arun K Joshi.

Representatives from the Pakistan Agricultural Research Council (PARC) and CIMMYT meet to identify chances for improved cooperation in wheat breeding research. (Photo: Awais Yaqub/CIMMYT)

Planning the future of South Asian wheat

In each country, CIMMYT and NARS leaders held a one-day meeting to review and plan their wheat improvement partnership, with attendance from 25-30 wheat scientists in each country. The sessions aimed to review and identify bottlenecks to the wheat impact pathway in each country, describe recent changes in the breeding programs of CIMMYT and NARS partners, and prioritize and agree updates to the NARS-CIMMYT wheat improvement collaborations.

NARS partners highlighted their wheat improvement programs through field visits to research stations. Visitors attended Wheat Research Institute (ARI), Faisalabad and National Agricultural Research Center (NARC), Islamabad in Pakistan; National Wheat Research Program (NWRP), Bhairahawa and National Plant Breeding & Genetics Research CenterĀ (NPBGRC), Khumaltar in Nepal; and Indian Institute of Wheat and Barley Research (IIWBR), Punjab Agricultural University (PAU), Borlaug Institute for South Asia (BISA), and the Indian Agricultural Research Institute (IARI) in India.

The GWP team also visited: Faisalabad Agricultural University, with a special focus on collaborative zinc biofortification work in Pakistan; farmers’ fields in Nepal to see participatory evaluations of elite wheat lines (candidates for release as new varieties) and to hear from farmers about challenges and expectations from improved varieties; and the Lumbini Seed Company to learn about the crucial role of seed companies, bottlenecks, and opportunities in the pathway from research to impact in farmers’ fields.

NARS scientists and directors in all three countries were enthusiastic about the opportunities for enhanced partnership to adopt some of the modernizing technologies that AGG has brought to CIMMYT. Partners are especially keen to –

  1. Receive earlier generation varieties, segregating breeding lines to empower them to select in their own environments.
  2. Model and explore strategies to shorten their breeding cycles.
  3. Apply quantitative genetics tools to better select parents for their crossing blocks.
  4. Adopt experimental designs that improve efficiency.
  5. Explore opportunities for co-implementing improvement programs through shared testing schemes, communities of practice (e.g. for quantitative genetics or use of exotic germplasm to address challenges from climate change), and more.
A highlight of the trip in Nepal: visiting on-farm trials, where farmers share insights about their preferences for improved varieties, where they often mentioned tolerance over lodging. (Photo: CIMMYT)

ā€œThe visit provided CIMMYT and NARS wheat scientists with the opportunity to exchange experiences and ideas, and to explore ways of enhancing collaborations that will strengthen our joint impact on wheat farmers and consumers,ā€ said Pixley.

Following these visits, the Bangladesh Wheat and Maize Research Institute (BWMRI) soon reached out to CIMMYT to request a similar review and planning meeting, with a vision to modernize and strengthen their wheat improvement partnership.

Collaboration across the seed system value chain

Collaboration among diverse seed value chain actors is essential to improving seed systems for dryland crops in Kenya and contributing to food security in an era marked by climate change. This holistic approach is essential at a time when sustainable agricultural practices are increasingly becoming pertinent in semi-arid and high-potential areas, as emphasized by participants attending a multi-stakeholder seed systems meeting in Nairobi.

The Kenya Drylands Crop Seed Systems Workshop in February 2024 brought together various stakeholders from the agricultural sector, including farmers, policymakers, researchers, and the private sector. The main aim of this meeting was to identify practical ways to address critical challenges in the seed system for key dryland crops—pigeon pea, chickpea, groundnut, millets, and sorghum—essential to the livelihoods of millions in Kenya. Organized by CIMMYT and the Kenya Agricultural and Livestock Research Organization (KALRO), this collaborative effort aimed to gather insights and jointly develop a seed systems strategy to strengthen a seed supply system that matches grain demand for these essential grains.

A group photo of the participants in the Kenya Drylands Crop Seed Systems Workshop. (Photo: Maria Monayo/CIMMYT)

While moderating the discussion, Patrick Ketiem, director of agricultural mechanization research at KALRO, highlighted the importance of the situation. ā€œThe demand for drought-tolerant dryland crops and varieties is a clarion call for breeders to innovate further,ā€ he explained. This reflects a broader trend across the country, where even high-potential areas are shifting to dryland crops in response to unpredictable weather patterns.

Addressing farmer needs

The workshop allowed participants to delve into the intricacies of seed systems, from varietal preferences to market readiness, highlighting the importance of collaboration among breeders, distributors, and farmers. Moses Siambi, CIMMYT’s regional director for Africa, emphasized the importance of integrating passion with science to make a tangible difference in the lives of farmers. ā€œOur work is not just about developing varieties,ā€ Siambi remarked. ā€œIt’s about improving livelihoods and ensuring that the benefits of our research reach the smallholder farmer,ā€ he explained, emphasizing the broader impact of CIMMYT’s efforts to boost agricultural productivity, food security, and livelihoods in the face of climate change.

Moses Siambi, CIMMYT’s regional director for Africa, engages in a conversation with a participant. (Photo: Maria Monayo/CIMMYT)

Chris Ojiewo, partnerships and seed systems lead at CIMMYT, explained the vision for the Dryland Crops program, referencing the journey of the Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project, which was a culmination of a decade of research aimed at introducing new, diverse, and farmer-preferred crop varieties to farming communities through a variety of seed delivery models.

ā€œThe essence of our endeavor is to ensure that the genetic gains from our breeding efforts result in real benefits for the farmers,ā€ he said. ā€œDeveloping seed varieties with the end-user in mind is crucial to ensure that crops not only reach the farmers but also meet their specific needs effectively.ā€

Chris Ojiewo, partnerships and seed systems lead at CIMMYT, provides insights on the future of the Dryland Crops program, leveraging ten years of research from AVISA. (Photo: Maria Monayo/CIMMYT)

Improving seed systems

The workshop discussions also highlighted the importance of innovation in seed delivery models and the need for increased investment in the dryland crops sector as essential strategies for addressing current challenges and capitalizing on new opportunities. Investment decisions will be guided by granular data on local grain demand, enhancing seed production planning. Additionally, insights from institutions such as the Agriculture and Food Authority (AFA) and the State Department of Agriculture, consolidating per capita consumption data, will aid in determining the requisite seed supply per capita. Moreover, there is need for a mechanism for facilitating knowledge through consolidating data from existing projects that tackle comparable challenges related to food security and seed accessibility.

Lusike Wasilwa, crops systems director at KALRO, who represented the organization’s director general at the event, stressed the importance of seeds in agriculture. ā€œFrom genes to gains, our focus is on developing climate-smart, nutritious crops that not only enhance soil health but also ensure food security in Kenya,ā€ Wasilwa said. She further highlighted the importance of soil health and market development in achieving sustainable food production in arid and semi-arid lands, promoting biodiversity, and sustainable land management practices.

Lusike Wasilwa, the crops systems director at KALRO, who represents the organization’s director general at the event, emphasizes the importance of seeds in agriculture. (Photo: Maria Monayo/CIMMYT)

Cross-cutting issues

The workshop also addressed regulatory and control measures in seed production with Stellamaris Mulika, principal seed inspector from the Kenya Plant Health Inspectorate Service (KEPHIS), highlighting the importance of stringent quality control measures to ensure the dissemination of quality seed of superior crop varieties.

The importance of gender inclusivity and youth engagement in agriculture was also acknowledged, reflecting women and youth’s critical role in legume and cereal variety selection, diversifying seed sources, and meaningfully contributing to the seed value chain. Veneza Kendi, a student at Jomo Kenyatta University of Agriculture and Technology (JKUAT), proposed several interventions to increase investment capacity for farmers and aggregators, mainly from the assurance of high yields from certified seeds to farmers, serving as a motivation.

Gloria Mutheu, a seed merchant at Dryland Seed Company, highlighted the need for government support in investing in the grain sector, citing the school feeding program as an initiative to pull seed demand. Mutheu urged the government to expand the crop types in legumes and cereals, such as chickpeas, included in these school feeding programs to increase demand. This, she argued, would gradually establish an inclusive seed system for increasing uptake of these underutilized but opportunity nutrient-dense crops.

Gloria Mutheu, a seed merchant at Dryland Seed Company, and Veneza Kendi, a student at Jomo Kenyatta University of Agriculture and Technology (JKUAT), discuss the vital role of youth in the seed systems value chain. (Photo: Maria Monayo/CIMMYT)

The consensus was clear: to enhance the seed systems for dryland crops, there must be collaboration across the entire value chain—from breeders to farmers, from policymakers to the private sector. This integrated approach is critical for Kenya’s climate change adaptation, food security, and promotion of sustainable agricultural practices.

Spearheaded by CIMMYT with financial support from the Bill and Melinda Gates Foundation and the United States Agency for International Development (USAID), the AVISA project seeks to improve breeding and seed systems of dryland crops, as well as the livelihoods of small-scale producers and consumers in sub-Saharan Africa. CIMMYT is leveraging this opportunity to advance research and expand its influence through its 2030 strategy that shapes the future of agriculture as a driver of food and nutrition security, and climate resilient, sustainable, and inclusive agricultural development.

Successful surveillance results in early first detection of Ug99 in South Asia

Successful global wheat disease surveillance and monitoring has resulted in early detection of wheat stem rust Ug99 in Nepal. A combination of vigilant field surveys and sampling by Nepal’s National Plant Pathology Research Centre (NPPRC) and National Wheat Research Program (NWRP), supported by rigorous and accurate disease diagnostics at the Global Rust Reference Center (GRRC), Denmark, resulted in confirmed detection of the Ug99 strain named TTKTT. The long running and sustained surveillance efforts undertaken by NPPRC and NWRP, including off-season surveys, proved vital in the detection of Ug99 in Nepal. Confirmed results were obtained from two field samples collected in early November 2023 from off-season summer wheat crops in Dolakha district, Nepal. Repeated experiments and high quality pathotyping and genotyping at GRRC confirmed the results.

ā€œThe combination of molecular genotyping of incoming samples, without prior recovery in our laboratory and independent diagnostic assays of recovered stem rust isolates, confirmed the presence of Ug99 and a highly virulent race variant termed TTKTT,ā€ says professor Mogens HovmĆøller, leader of the GRRC at Aarhus University in Denmark.

Suraj Baidya (NPPRC) and Roshan Basnet (National Wheat Research Program) undertake field surveys at Dandunghe, Dolakha, Nepal. (Photo: CIMMYT)

Ug99 was first detected in East Africa in 1998/99, and its unique virulence sparked fears that a large proportion of wheat cultivars globally would be at risk from this potentially devastating disease. The international wheat community came together through the Borlaug Global Rust Initiative (BGRI) to address the threats posed by Ug99. The BGRI partners have successfully monitored the evolution and spread of Ug99 and bred hundreds of resistant wheat varieties that are now being grown at scale in priority wheat growing regions. Migration of Ug99 from Africa to other regions, including South Asia, was always seen as likely due to the transboundary nature of the disease and long-distance dispersal of rust spores by wind.

Detection of a Ug99 race in Nepal is not therefore a surprise, but it highlights the effectiveness of the wheat rust surveillance and monitoring systems that have been developed. The disease was present at extremely low levels in the fields in Nepal, and early detection is one of the main factors in preventing disease spread. Other factors also contribute to reduced risk. The wheat on which the Ug99 race TTKTT was detected were fodder crops and cut soon after the surveys were completed, which prevented further buildup of disease. In addition, no wheat is grown in the main season in these areas, with farmers shifting to cultivation of potato (a non-host crop for stem rust).

According to Suraj Baidya, senior scientist and chief of NPPRC, ā€œExtensive follow up surveys in the Dolakha detection area by NPPRC in the 2023/24 main season resulted in no wheat being observed and no detection of stem rust.ā€ Similarly, extensive surveys by NPPRC throughout other wheat growing areas of Nepal in the 2023/24 main season have resulted in no reports of stem rust in the country. To date, extensive surveys in other countries in South Asia (Pakistan, Bangladesh, Bhutan) have not detected stem rust in 2023/24.

Although the current risk of stem rust outbreaks is considered to be low, detection of the Ug99 race TTKTT in Nepal is a clear reminder of the threat posed to wheat production in South Asia by the incursion of virulent stem rust races or other plant diseases of concern. ā€œThe spread and risk from transboundary diseases like stem rust is increasing,ā€ says Dave Hodson, leader of the Wheat Disease Early Warning Advisory Systems (DEWAS) project at CIMMYT. ā€œSustained and increased surveillance efforts are needed across the region and expanded to include other important emerging diseases.ā€ Successful deployment of Ug99 resistant cultivars through the BGRI partners, including CIMMYT, ICARDA and NARS, has decreased vulnerability, but it is important to note that the race TTKTT is a recently evolved variant of Ug99 with additional virulence compared to the original strains. As a result, not all cultivars in South Asia may have effective resistance today. Screening of germplasm and major cultivars from South Asia against TTKTT at the Kenya Agriculture and Livestock Research Organization (KALRO)/CIMMYT international stem rust screening nursery in Kenya is extremely important to get an accurate picture of current vulnerability.

The details of the diagnostic confirmation of Ug99 in Nepal are available at the GRRC website (see GRRC lab report)

Work on wheat disease surveillance and monitoring, plus breeding of resistant varieties is being supported by the DEWAS and AGG projects funded by BMGF and FCDO, UK.

Key partners –

National Plant Pathology Research Centre (NPPRC), Nepal. Contact: Suraj Baidya (suraj_baidya222@yahoo.co.in)

National Wheat Research Program (NWRP), Nepal. Contact: Roshan Basnet

Global Rust Reference Center (GRRC), Aarhus University, Denmark. Contact: Mogens HovmĆøller (mogens.hovmoller@agro.au.dk)

Cornell University. Contact: Maricelis Acevedo (ma934@cornell.edu)

CIMMYT. Contact: David Hodson (d.hodson@cgiar.org)

Revolutionizing food security: Africa’s millet renaissance

In a landmark initiative to bolster sustainable agriculture and food security, the consultative workshop ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ marked a pivotal step towards revitalizing millet cultivation across the continent. Spearheaded by the Bill & Melinda Gates Foundation, in collaboration with CIMMYT and the Senegalese Institute of Agricultural Research (ISRA), a meeting held in Senegal united global experts to unlock the untapped potential of millets as a cornerstone of sustainable agriculture and food security in Africa.

The discussions included identifying the symptoms of the problem, underlying issues causing these symptoms, and the interventions needed to be implemented to address these issues. This collaborative efforts among national and international organizations including government bodies, research institutes, and NGOs, demonstrated the goal of revitalizing millet cultivation through partnerships.

A group photo of the participants in the ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ workshop in Senegal. (Photo: Marion Aluoch/CIMMYT)

The United Nations General Assembly declared 2023 the International Year of Millets to raise awareness of and direct policy attention to millets’ nutritional and health benefits and their suitability for cultivation under adverse and changing climatic conditions.

Long overlooked but brimming with potential, millets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.

Lessons learned from India

India, a key player in millet production, provided valuable insights into millet cultivation and consumption, providing a potential model for Africa to emulate in its millet-related strategies.

To understand the growth of millets in India, the Indian Ambassador to Senegal, Naba Kumar Pal, highlighted the strategies used by the Indian government to raise awareness about millets as a nutritious cereal that contributes to food security and provides a nutritious dietary option aimed at eliminating hunger and improving nutrition in his opening remarks.

ā€œThe first step the government did was to rebrand millets from ā€˜coarse grains’ to ā€˜nutri-cereals’, a move that has significantly increased domestic consumption and market interest of millets in India,ā€ said the ambassador.

Indian Ambassador to Senegal, Naba Kumar Pal, highlights the Indian government’s efforts to promote millets as a nutritional powerhouse. (Photo: Marion Aluoch/CIMMYT)

In Africa, millets are under appreciated and not utilized as crops. They are often labeled as a ‘poor man’s crop,’ ‘neglected crop,’ or ‘orphan crop’. Ā The negative connotations have, among other areas, influenced consumers’ perceptions. By changing the vocabulary from demeaning to empowering, millets’ image can be transformed from an overlooked option to a crop of choice in Africa.

The workshop also delved into policy advocacy and commercialization efforts in India, and how these strategies could be replicated in African contexts. Tara Satyavati and Dayakar Rao, representing Indian institutions, shared insights on millet production, nutritional evaluation, and the development of value-added products. The importance of policy intervention, such as increasing the Minimum Support Price (MSP) for millets and including them in public meal programs in India, was discussed. These measures not only provided financial incentives to farmers but also increased accessibility and consumption among the general population.

The two asserted that ā€œmillets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.ā€

Millets are adaptable to diverse climates, have low water requirements, and provide nutritional benefits. African countries, which face similar issues in terms of climate change and food security, can use millets as a crop to promote environmental sustainability and economic viability.

National and international collaborations

A panel discussion shed light on national and international initiatives that highlighted collaborative efforts in crop improvement and millet innovations. On the national level, Hamidou Diallo from the Ministry of Agriculture, Rural Equipment, and Food Sovereignty of Senegal (MAERSA) outlined a multi-pronged approach for Senegal. These approaches included increasing millet production, providing high-quality seeds, equipping local producers with essential tools and equipment, providing fertilizers to farmers, and expanding the overall cultivated areas of millet. These efforts represent a focused approach to leveraging agricultural innovation in millets to improve livelihoods and income for small-scale farmers.

ā€œAligning with the needs of the local community ensures the initiatives are impactful and resonate with the agricultural landscape and community needs,ā€ he emphasized.

Insights into the international initiatives included discussions on innovative initiatives in the Dryland Crop Program (DCP), presented by Dryland Crops Program Director and Wheat Program Director Kevin Pixley, included the establishment of the African Dryland Crops Improvement Network, gene editing, a legumes mining project and the Vision for Adapted Crops and Soils (VACS) project, that will include millets as a prioritized crop.

ā€œWe need to find innovative ways to reach more farmers with options to improve their livelihood and popularize millets across different market segments,ā€ said Pixley.

From left to right: Damaris Odeny (ICRISAT India), Geoff Morris (Colorado State University), Douglas Gayeton (co-founder of The Lexicon), Hamidou Diallo (MAERSA, Senegal), Kevin Pixley (director of the Dryland Crops Program), and Makiko Taguchi (FAO), engage in a panel discussion on the importance of national and international initiatives in promoting crop improvement and millet innovations, highlighting the collaborative spirit driving agricultural progress.

Other topics covered included insights from the United States Agency for International Development (USAID) innovation lab on sorghum and millets, emphasizing the importance of African-led projects and addressing the knowledge gap between African and U.S. researchers.

The pioneering role of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), particularly in agri-business incubation, was noted, along with the Feed the Future Innovation Lab for Crop Improvement, managed by USAID and Cornell University efforts in fostering regional collaborations.

Makiko Taguchi of the Food and Agriculture Organization of the United Nations (FAO) emphasized the importance of global engagement in promoting millets as a sustainable and nutritious food source for global food security and agricultural development and highlighted the various initiatives and projects born of the International Year of Millets. Douglas Gayeton, co-founder of The Lexicon emphasized the role of effective messaging in changing people’s perceptions of millets. He underscored the importance of shifting away from terms like ā€˜neglected’ and ā€˜orphaned’ crops to more positive empowering language that resonates with consumers and policy makers.

CIMMYT’s role in dryland crop innovation

Recognizing the ever-evolving needs of society at large, CIMMYT began an initiative to advance research and broaden its impact by implementing the Dryland Crops Program. This approach is based on CIMMYT’s 2030 strategy, which will shape agriculture’s future as a driver of climate resilience, sustainable, and inclusive agricultural development, and food and nutrition security, all while meeting the United Nations Sustainable Development Goals and Africa 2063 by promoting food security, improving nutrition, and mitigating the effects of climate change.

The meeting underscored the immense potential of millets in Africa to contribute to a resilient and nutritious future, reinforcing the need for continued collaboration, innovation, and investment in this vital crop. With the right mix of policy support, technological innovation and market development, millets could be the key to Africa’s resilient and sustainable agricultural future. The workshop concluded with a call to action for stakeholders to collaborate and implement innovative practices to enhance the growth of the millet sector in Africa.

Bargaining for Better: How gender roles in household decision-making can impact crop disease resilience

ā€˜A better understanding of the links between gender roles in household decision-making and the adoption of technologies can enhance the uptake of innovations in smallholder farming systems,’ concludes a recently published paper by CIMMYT. The paper connects women’s bargaining power in households with the adoption of rust resistant wheat varieties, based on the work of Accelerating Genetic Gains in Maize and Wheat (AGG) in Ethiopia.

ā€œWhile an emerging body of literature finds positive correlations between women’s influence in household decision-making and socioeconomic, health, and nutritional outcomes, few studies have analyzed the links between intra-household decision-making and the adoption of agricultural technologies,ā€ said Michael Euler, agriculture research economist at CIMMYT.

A case study in Ethiopia

For this study, researchers used a dataset from Ethiopian wheat-producing households.

Ethiopia is the second-largest wheat producer in Africa, with an aggregate grain production of 5.5 million metric tons and 4-5 million farmers engaged in cultivation. The Ethiopian Highlands are a hot spot for wheat rust. With recurrent epidemics in the last decade, the emergence of new strains of wheat rust increased production risks. On the positive side, farmers seem to be responsive to the management of rust diseases. Rust-resistant bread wheat varieties, released since 2010, have been widely adopted by smallholder farmers across Ethiopia.

The CIMMYT study surveyed 1,088 wheat-producing households in Ethiopia to analyze the links between women’s role in household decision-making concerning crop production and the adoption and turnover rates of rust-resistant wheat varieties. Female and male members from the same households responded separately, which facilitated capturing individual perceptions and the intra-household dynamics in decision-making.

Farmer Shumuna Bedeso weeds her wheat field. (Photo: Peter Lowe/CIMMYT)

Intra-household decision-making arrangements and wheat varietal choice

Overall, the study reveals a positive association between women’s role in decision-making regarding the selection of wheat seed and the adoption of rust-resistant wheat varieties and wheat varietal turnover. Findings may be related to differences in risk aversion between women and men farmers. While women farmers may tend to advocate for the adoption of rust resistant varieties to avoid potential financial difficulties that arise from purchase of fungicide in the growing season, men farmers may be more inclined to adopt high yielding varieties and use fungicides to combat rust within the season.

Spouses may agree or have different opinions regarding their decision-making roles. Spousal agreement on the woman having a role in making crop variety decisions is associated with higher adoption rates compared to spousal agreement that the woman has no role. Joint decision-making with mutually uncontested spousal roles may yield better outcomes due to larger combined exposure to information, as well as spousal discussion and reflection on potential implications of the varietal choice decision.

Conclusion: It is about negotiation, contestation and consensus

Household decisions, including the decision to adopt agricultural technologies often result from negotiation, contestation, and consensus between wife and husband. This process is shaped by diverging interests, motivations and objectives, while its results are determined by different levels of individual bargaining power. ā€œOur findings indicate that women’s ownership of agricultural land and household assets is strongly associated with their active role in household decisions on wheat varietal choice, and with spousal agreement,ā€ said Moti Jaleta, senior agricultural economist at CIMMYT. The dynamics in intra-household decision-making are likely to influence households’ adoption of agricultural technologies.

Disregarding the dynamics in decision-making implies that households are unilateral decision-makers, a scenario which probably does not hold true considering the level of spousal disagreement regarding their roles and influence in choosing crop varieties. A deeper understanding of the connections between gender dynamics in household decision-making and adoption choices can enhance the efficiency of public extension systems, increase the adoption rates of modern innovations, improve agricultural productivity, and enhance livelihoods in smallholder agriculture.

Read the complete paper here.

A marine engineer embarks on making life easier for farmers in his native village, by establishing a one-stop shop agri-business center

On the northern banks of the Ganges lies the city of Begusarai, in India’s Bihar State. Amid the expected structures of a city—temples and transit hubs—is a five-acre business hub dedicated to agriculture. This center, called the Bhusari Cold Storage Center, includes a 7,000-ton cold storage facility for vegetables, a dry grain storage area, outlets for farmer inputs and outputs, a farmer training center, a soil testing laboratory, and a farm implement bank. The brainchild of Navneet Ranjan, this facility works in collaboration with state partners, CIMMYT, and the Cereal System Initiative for South Asia (CSISA) project.

In the decade since its formation, the center has served nearly 100 villages in and around Begusarai, helping thousands of smallholder farmers access equipment, knowledge, and seeds they otherwise do not have access to.

ā€œSince coming to the center I have not only benefited in using mechanized services at a small price but also learned about new schemes and incentives provided to smallholder farmers by the government,ā€ said Ram Kumar Singh, a farmer from the village of Bikrampur. A similar story was related by Krishadev Rai from the village of Sakarpura, who said the laser land leveler machine at the center dramatically lowered costs associated with irrigation and other inputs, including information about different fertilizers and varietal seeds available at the market.

Farmers from the region have benefited immensely from the services of the center. According to Anurag Kumar, a CIMMYT senior research associate with CSISA, ā€œThe existence of the state-of-the-art center in the last decade has helped over 25,000 smallholder farmers avail themselves of services and information on farming and agriculture.ā€ He said the center has also helped promote conservation agriculture technologies, implement climate-resilient farming practices, and build the capacity of smallholder farmers.

Ranjan, a native of the region, is a marine engineer by education but has diversified experiences from different sectors. A decade ago, Ranjan returned home after pursuing higher education and working in distant cities in India and abroad.

Ranjan met recently with CSISA representatives to share his motivation, hopes, and aspirations about the reach and impact of the Bhusari Center for farmers of Begusarai and beyond.

How did the Bhusari Agri-business center, popularly known as Bhusari Cold Storage, come into being?

In 2012, driven by a deep-rooted desire to bridge the significant societal gap between my professional advancements in the corporate world and the enduring struggles within my rural hometown in Bihar, I founded the Bhusari Agri-business Center. The name “Bhusari” was thoughtfully chosen, as it represents approximately 50 villages in the area, traditionally, and collectively known by this moniker, underscoring our commitment to the region’s agricultural heritage and community.

From the start, we knew we wanted our center, born from a combination of my family’s initial investment and funding secured through a State Bank of India loan alongside a significant subsidy from the Government of Bihar, to serve as a comprehensive agri-business solution. We designed this project not only as a business venture but as a social enterprise aimed at improving the livelihoods of local farmers by ensuring better returns for their produce, disrupting the traditional agricultural value chain that often left them exploited.

The establishment of Bhusari Cold Storage stands as a testament to the potential of marrying native understanding with professional management to foster socio-economic development in rural areas.

During an interactive session with progressive farmers, Ranjan listens to a farmer express his expectation from the Bhusari center. (Photo: CIMMYT)

What has been your biggest achievement with the establishment of Bhusari Cold Storage?

If I were to pinpoint our most significant achievement, it would be the creation of the farm implement bank. This initiative has helped revolutionize the agricultural landscape for the small-scale farmers in our area by providing them with access to modern farming equipment.

Before the inception of this bank, many farmers in our region faced challenges because of outdated farming techniques and the lack of access to modern machinery, which often resulted in inefficient farming practices and high operational costs. Introducing zero tillage, planters, harvesters, and especially the laser land leveler, has been a game-changer. This farm implement bank has also popularized the use of advanced agricultural technologies among the farming community. The positive effects of these modern farm implements have been many, including reduced labor costs, improved crop yields, and more sustainable farming practices.

How has a project like CSISA and other partners supported farmers and the efforts of agri-entrepreneurs like you in the region?

The support from CSISA and its partners has helped enhance the capabilities of farmers and bolster the efforts of agri-entrepreneurs in the region. CSISA’s contribution, particularly through its project scientists and field technicians, has been pivotal in training farmers. This collaboration has led to a significant increase in awareness and adoption of advanced agricultural implements and practices, including zero tillage and land levelers, among the farming community.

The center has conducted extensive training programs for many farmers, thanks to the resources, knowledge, and technology facilitated by CSISA, the State Department of Agriculture, and Krishi Vigyan Kendra (KVK). This partnership has enabled us to disseminate knowledge and tools to the farmers and drive the adoption of innovative farming techniques that lead to higher efficiency and reduced costs. The collaboration with CSISA and state partners has been a cornerstone in our mission to modernize agriculture in the region, making significant strides towards sustainable farming practices, and enhancing the livelihoods of the local farming community. Through these collective efforts, we have been able to empower farmers with the skills and technologies necessary to thrive in a competitive and evolving agricultural landscape.

Navneet Ranjan with Sarah Fernandes, CIMMYT global communications manager (2nd from left), during her visit to the Bhusari Cold Storage center with CSISA colleagues. (Photo: CIMMYT)

What do you hope for next for Bhusari or other endeavors in agri-business to support smallholder farmers?

Looking ahead, our vision for Bhusari and future agri-business endeavors deeply focuses on empowering smallholder farmers by enhancing their access to financial resources and tailored agricultural solutions. By addressing the financial barriers that often hinder farmers’ ability to invest in their operations, we aim to unlock new opportunities for growth and innovation in the agricultural sector. A key priority is to streamline the process so that these farmers can obtain credit lines and working capital more efficiently.

Additionally, recognizing farmers’ diverse needs and challenges in different regions, we are committed to making customized farm implements more readily available. These tailored tools are essential for increasing agricultural efficiency and productivity, as farming practices and conditions vary greatly across regions. To complement these efforts, we plan to expand our training programs and provide more customized knowledge to farmers.

Ultimately, the aim is to scale up this model and create several other replicable projects across Bihar and beyond. By demonstrating the success of these initiatives, we hope to inspire and facilitate similar transformations in other regions, fostering a more sustainable, efficient, and prosperous agricultural landscape for smallholder farmers.

Cover photo: Founder Navneet Ranjan (5th from right) and CIMMYT colleagues with beneficiary farmers at the Bhusari center in Begusarai, Bihar. (Photo: Nima Chodon/CIMMYT)Ā 

Network develops optimized breeding pipelines for accelerated genetic gains in dryland crops

Participants from the breeding pipelines optimization meeting at the Safari Park Hotel, Nairobi, Kenya. (Photo: CIMMYT)

Partners from the Africa Dryland Crop Improvement Network (ADCIN) from 16 institutes in Africa came together for a four-day workshop in Nairobi, Kenya, during 19-22 September 2023, to critically review and optimize breeding pipelines for newly formed breeding programs. The meeting provided an opportunity for multidisciplinary scientists to better understand each other’s significant roles and contributions in achieving optimized breeding pipelines.

Nine female and 28 male scientists working across 14 countries made up the group of experts at the workshop, which included crop breeders, quantitative geneticists, crop protection scientists, genomics experts, and data analysts. Together, they collaboratively developed, assessed, and refined the various stages and processes of breeding pipelines. Most participants were crop breeding leads from the national agricultural research and extension systems (NARES) and CGIAR Research Centers, as well as members of the Breeding Informatics Working Group A, the first of its kind as a strategic leadership group of crop breeding experts.

The workshop sponsored by CIMMYT focused on improving genetic gains across six crops: chickpea, pigeon pea, finger millet, pearl millet, groundnut, and sorghum. The workshop was organized by CIMMYT experts, Abhishek Rathore, breeding data and informatics expert, Keith Gardner, quantitative geneticist, and Roma Rani Das, biometrician, and quantitative geneticist experts from the CGIAR Accelerated Breeding Initiative, Dorcus Gemenet and Christian Werner.

Multidisciplinary expertise in action

Under the guidance of the Associate Program Director and the Breeding Lead for Dryland Crops, Harish Gandhi, participants engaged in an array of advanced genetic approaches, statistical techniques, and quantitative concepts presented by the participating experts from CIMMYT and CGIAR Accelerated Breeding.

Each breeding program schema was reviewed from detailed quantitative genetic aspects and agreed project criteria, including choosing parents, the optimum number of parents, crossing designs, the number of generations, methodologies, testing strategies, and analytical frameworks. The group deliberated on the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines to enhance the programs’ efficiency.

Agreements were reached on the number of founder parents, the number of crosses and progenies in various generations, line development method, evaluation and testing strategy, time until parental selection (cycle time), marker assisted selection (MAS), genomic selection (GS) strategy, making routine use of molecular markers for QA/QC. The team also finalized the breeding strategies tailored for respective market segments and target product profiles to further improvise and optimize breeding pipelines aimed at higher genetic gains.

In coordination with crop breeders from CIMMYT, the NARES dryland crop breeding leads presented the current schematics of breeding pipelines for both line and hybrid breeding, highlighting the market segment, Target Product Profile (TPP) and Target Product Environment (TPE).

The breeding informatics team also showcased the upcoming Dryland Crops Trial Information System dashboard, a one stop shops to capture, host, and provide information on the trials organized by the network’s NARES breeders across Africa.

Collaboration for genetic gains

Crop breeding experts discuss strategies for breeding pipeline optimization. (Photo: CIMMYT)

The value of partnership working was frequently highlighted by the speakers. Michael Quinn, lead of the CGIAR Accelerated Breeding Initiative, gave an overview of the initiative’s objectives and high-level goals in 2023, emphasizing the need to foster dialogue and alignment across breeding teams. He also underlined the importance of such hand-in-hand meetings for fostering cross-regional and cross-institute learning.

ā€œPlant breeding has always been at the center stage of crop improvement, but it has become more and more important lately, and there is a need to bring more collaborative efforts across disciplines to realize higher genetic gains in our breeding programs,ā€ said Kevin Pixley, Dryland Crops program director and Wheat program director during his virtual presentation.

ā€œInteraction with the breeding leads from CIMMYT and the NARES in East and Southern Africa (ESA) and West and Central Africa (WCA) and other experts helped in cross learning from the advanced breeding programs,ā€ said Maryam Dawud, plant breeder at the Lake Chad Research Institute in Nigeria. Such workshops are needed for developing optimized breeding pipelines, and we will need more such in-person workshops on advanced data analysis.ā€

Next steps for dryland crops

During the workshop, network partners came up with an optimized breeding pipeline incorporating advanced quantitative genetic and statistical principles aligned with the latest scientific advancements and market demands. The group further developed a six-month actionable plan split by region to address common bottlenecks across the crops, such as capacity building in data analysis, modernizing digital infrastructure, training and enhancing human capacity in the use of equipment, and managing staff turnover.

All these deliberations provided the network partners with better insights and hands-on-experience to design their breeding pipeline, outlining specific steps, responsibilities, and timelines for implementing the identified optimizations. This preparatory work will ensure there is a targeted and coordinated effort toward pipeline enhancement and accelerated genetic gain for dryland crops in the region.

Happy Daudi, head, Groundnut Research Program at Tanzania Agricultural Research Institute (TARI), who participated in the workshop, stated, ā€œBringing in multidisciplinary experts provided a great opportunity to integrate various concepts of population improvement, product development, and deploying advanced statistical approaches for optimizing our breeding pipeline for achieving higher genetic gains, and accelerated variety turn over.ā€

Thank you to the Bill and Melinda Gates Foundation, the United States Agency for International Development (USAID), and CGIAR, for their generous funding which made this workshop possible.

Advancing wheat breeding through rapid marker-selectable trait introgression

The experimental research station in Toluca, Mexico. (Photo: S. Herrera/CIMMYT)

In the ever-evolving field of agriculture, AGG-WHEAT is leading a transformative approach through rapid marker-selectable trait introgression in wheat breeding programs. This method aims to streamline the process of integrating desirable traits into various genetic backgrounds.

At the core of AGG-WHEAT’s strategy is the establishment of a centralized marker-selectable trait introgression pipeline. This initiative seeks to facilitate the transfer of specific genes from a centralized source into various genetic backgrounds within plant breeding programs. Molecular markers play a crucial role in efficiently identifying and selecting target traits.

The merits of a centralized trait introgression pipeline extend beyond convenience. This approach ensures a more uniform and controlled transfer of genetic material, enhancing the precision of trait introgressions across diverse breeding lines. Molecular markers streamline the selection process, improving the accuracy of desired trait incorporation into wheat varieties.

Speed breeding facilities in Toluca, Mexico

AGG-WHEAT’s marker-selectable trait introgression pipelines are implemented at the speed breeding facilities located at the CIMMYT research station in Toluca, Mexico. These facilities serve as the incubators for innovation, where new selection candidates are evaluated based on various criteria. The decision-making process involves an expert panel comprising geneticists, trait specialists, and breeders. This panel annually determines the selection candidates, considering factors such as trait demand, genetic diversity, evidence of Quantitative Trait Loci (QTL) effects, selection efficiency, and available funding.

The decision-making process involves a multifaceted evaluation of potential selection candidates. Documented trait pipelines and product profiles guide decision-making to ensure alignment with the overarching goals of wheat breeding programs. Considerations include the need for phenotypic variation and the existence of limited genetic diversity for the trait under consideration.

The decision-making process also explores existing in-house or external evidence of QTL effects and the underlying gene mechanisms. Selection efficiency, contingent on the availability of accurate molecular markers and a known purified donor parent, further refines the pool of potential candidates. Established phenotypic protocols for product testing and the crucial element of available funding complete the decision-making criteria.

Achievements

In a significant step towards innovation, the products of the first marker-selectable trait introgression pipelines entered yield trials in 2023. This marks a transition from conceptualization to tangible impact, reflecting the efficacy of AGG-WHEAT’s approach. A total of 97 F5-lines, cultivated through the marker-assisted backcross (MABC) scheme, now grace the fields.

These lines carry novel genes associated with fusarium head blight and rust resistance, derived from wheat genetic resources and wild relatives. The choice of these traits underscores AGG-WHEAT’s commitment to addressing challenges faced by wheat crops, ensuring improved resilience and sustainability in the face of evolving environmental conditions.

The success of these initial trait introgression pipelines represents more than a scientific achievement; it marks a pivotal moment in the trajectory of wheat breeding. The 97 F5-lines, standing as testaments to enhanced resistance traits, are poised to make a transition into mainstream breeding pipelines. This marks the commencement of a broader dissemination strategy, where these lines will be distributed for testing at National Agricultural Research and Extension Services (NARES).

The journey from the experimental fields to mainstream adoption involves a meticulous process. These lines, having undergone rigorous evaluation and selection, now hold the potential to catalyze changes in commercial wheat varieties. The lessons learned from their cultivation will shape future breeding strategies and contribute to the resilience of wheat crops in diverse agricultural landscapes.

Rapid marker table. (Photo: CIMMYT)

AGG-WHEAT’s lasting impact

AGG-WHEAT’s marker-selectable trait introgression stands as an innovative approach in wheat breeding. The centralized approach, the strategic use of molecular markers, and the meticulous decision-making process exemplify the commitment to excellence and precision. The journey from concept to reality—marked by the entry of 97 F5-lines into yield trials—signals a new era in wheat breeding.

As these lines traverse from experimental fields to mainstream adoption, they carry the promise of transforming the landscape of commercial wheat varieties. AGG-WHEAT’s lasting impact goes beyond the scientific realm; it extends to the fields where farmers strive for sustainable and resilient wheat crops. In the tapestry of agricultural progress, AGG-WHEAT has woven a thread of innovation that holds the potential to redefine the future of wheat cultivation.

East African wheat breeding pipeline and E&SSA network

Healthy wheat and wheat affected by Ug99 stem rust in farmer’s field, Kenya. (Photo: CIMMYT)

The East African wheat breeding pipeline aims to improve wheat varieties and contribute to regional food security by ensuring a stable and resilient wheat supply. In 2022, CIMMYT, in partnership with the Kenya Agriculture and Livestock Research Organization (KALRO) established a Joint Breeding Program in Njoro, a town southwest of the Rift Valley in Kenya. This was one of the first integrated breeding pipelines between CGIAR and National Agricultural Research and Extension Systems (NARES) partners.

Over the last three decades, genetic trials of over 77 varieties have been conducted in several regions. In East Africa, an expanded testing network that spans over multiple research institutes in Kenya and Ethiopia has been established for Stage 1 and Stage 2 trials in network countries. This makes the pipeline a powerful driver of positive impacts, rapidly enhancing both farm productivity and production in target regions. In Kenya specifically, a genetic gain trial was conducted at two sites in 2023 with the Stage 1 trials evaluated across eight locations. These are being distributed to NARES partners to establish correlations between the breeding site in Kenya and the Target Population of Environments (TPEs) in the E&SSA regions. This breeding pipeline demarcates the population improvement from product development. Other areas in the trials include the enhancement of genetic diversity to build resilience, adaptability, and quality enhancement to meet market and consumer demands.

The trial will continue in 2024 and 2025 to establish a baseline for genetic gains and to enable the assessment of the breeding pipeline’s progress in the coming years. The first cohort of pipeline materials (250 crosses) has been advanced to F2 generation and will be ready for distribution to E&SSA partners in 2025.

Accelerated breeding

The anticipation is that accelerated breeding techniques will be implemented in Kenya by incorporating a three-year rapid generation bulk advancement (RGBA) scheme aimed at diminishing the time necessary for variety development and release. This collaborative effort encompasses various activities, including joint crossing block, generation advancement, yield testing, and population improvement. The three-year RGBA scheme, coupled with data-driven selection utilizing advanced data analytics (GEBV, SI) and genomic selection approaches, is expected to play a pivotal role in facilitating informed breeding decisions in the East African region.

3-year RGBA scheme. (Photo: Sridhar Bhavani)

Varietal improvement

The project aims to develop and release improved wheat varieties that are well adapted to the East African agroecological conditions. The Kenyan environment closely mirrors wheat-growing conditions in Ethiopia, Tanzania, Uganda, Rwanda, and Burundi, and spillover impacts to sub-Saharan countries such as Zambia and Zimbabwe. This strategic alignment with local conditions and close cooperation with NARES partner organizations has proven to be very effective in addressing critical gaps, including high-yield potential, disease resistance, and climate resilience, and aligns with CIMMYT’s overall wheat strategy for Africa.

Enhanced disease resistance

Kenya stands out as a hotspot for rust diseases, showcasing notable diversity in stem rust variants (ug99) and yellow rust. The virulence spectrums of these diseases differ from those found in Mexico, posing challenges to effective breeding strategies. It is expected that the breeding pipeline will effectively tackle these challenges as well as those associated with fusarium, Septoria, and wheat blast, which are on the rise in African environments.

Climate adaptation

The East African wheat breeding pipeline is committed to breeding wheat varieties that can thrive in changing climatic conditions, including heat and drought tolerance, and expanding testing in marginal rainfed environments experiencing heat and drought stress.

Through the support of our partners and funders from the Bill and Melinda Gates Foundation, Foundation for Food and Agriculture Research (FFAR), and Foreign, Commonwealth and Development Office FCDO, the following achievements can be reported:

Regional collaboration and cooperation

For over four decades, the enduring collaboration with KALRO has yielded significant successes including the operation of the largest phenotyping platform for stem rust and various diseases. The Mexico-Kenya shuttle breeding program, incorporating Ug99 resistance, has successfully countered the threat of stem rust by releasing over 200 varieties in targeted regions and advancing the East African wheat breeding pipeline. The plan is to replicate these accomplishments in other target regions through the E&SSA network. To address limitations in KALRO’s breeding program and to conduct standardized trials, a strategic partnership with a private seed company Agventure Cereal Growers Association has been established. This collaboration will facilitate yield testing at multiple sites in Kenya to identify lines with superior performance for the East African region. So far, lines exhibiting high yield potential of up to 8 tons/ha, even under rain-fed environments, have been identified. The collaborative efforts are already making a noticeable impact, as evidenced by reports indicating increased adoption of zero-tillage practices among farmers. This shift has proven beneficial, especially during years marked by heat and drought challenges, resulting in higher returns for these farmers.

Increased capacity of national programs

From 1-13 October 2023, the AGGMW project held a training program on “Enhancing Wheat Disease Early Warning Systems, Germplasm Evaluation, Selection, and Tools for Improving Wheat Breeding Pipelines”. The course which brought together 33 participants from over 13 countries was held at the KALRO station in Njoro- Kenya. The comprehensive program covered a wide range of crucial subjects in the field of wheat breeding and research. Topics included breeding methodologies, experimental design, data collection, statistical analysis, and advanced techniques such as genomic selection. Participants also engaged in practical hands-on data analysis, explored rust pathology, and delved into early warning systems. Moreover, they had the opportunity for direct evaluation and selection of breeding materials. The course aimed to equip participants with a diverse skill set and knowledge base to enhance their contributions to the field of wheat breeding and research.

Other initiatives supporting the breeding pipeline include CGIAR programs, Accelerated Breeding and Crops to End Hunger. This multi-faceted approach within the breeding pipeline underpins the importance of fostering regional collaboration, knowledge sharing, and strategic investments in enhancing wheat production and addressing critical challenges in the region.

Enhancing wheat breeding efficiency in South Asia through early germplasm access

Wheat field. (Photo: CGIAR)

In the dynamic landscape of wheat breeding, early access to germplasm emerges as a strategic catalyst for accelerating variety turnover and meeting the evolving challenges faced by farmers in South Asia. Since its inception, the Accelerating Genetic Gains in Maize and Wheat (AGG) project has pioneered new tools to optimize the wheat breeding process. One such tool, the efficient and low-cost 3-year breeding cycle, has been fine-tuned in Mexico, using the Toluca screenhouse and field advancement in Obregón, laying the groundwork for faster variety turnover.

The inaugural set of lines generated through this enhanced breeding cycle is already undergoing Stage 1 trials in the Obregón 2023-24 season. However, the innovation doesn’t stop there; to expedite the variety release process and garner robust data from the Target Population of Environments (TPE), Stage 2 lines are being rigorously tested at over 20 sites in South Asia through collaboration with National Agricultural Research and Extension Services (NARES) partners. In the seasons spanning 2021-2024, a total of 918 Stage 2 lines underwent rigorous trials, aiming to provide early access to improved wheat lines for testing and release by NARES and establish a genetic correlation matrix between Obregón selection environments and diverse sites across South Asia.

These extensive trials serve a dual purpose. Firstly, they facilitate early access to improved wheat lines for testing and release by NARES, bolstering the agricultural landscape with resilient and high-yielding varieties. Secondly, they contribute to the establishment of a genetic correlation matrix between the selection environments in Obregón and the diverse sites across South Asia. This matrix becomes a guiding compass, aiding in selecting the most promising lines for broader TPEs in South Asia and beyond.

Transformative impact on wheat varieties in South Asia

Through the support of our partners and funders from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), the UK Foreign, Commonwealth & Development Office (FCDO), and the US Agency for International Development (USAID), great achievements have been recorded throughout the region. India, a prominent player in wheat cultivation, stands as a testament to the transformative impact of early access to advanced lines. The top three varieties, namely DBW187, DBW303, and DBW 222, covering over 6 million hectares, trace their roots to CIMMYT varieties. Adopting a fast-track approach through early-stage testing of these advanced lines at BISA sites in India, supported by the Delivering Genetic Gain in Wheat (DGGW) project, facilitated the release of these varieties two years ahead of the regular testing process. This expedited varietal release was complemented by the innovative early seed multiplication and dissemination approach introduced by the Indian Council of Agricultural Research (ICAR). Recent additions to this accelerated channel include varieties such as DBW 327, DBW 332, DBW 370, and 371, promising further advancements in wheat cultivation.

Pakistan

In Pakistan, the early access to advanced lines has been a catalyst for releasing high-yielding, climate-resilient, and nutritious wheat varieties. In 2023 alone, 12 new varieties were released, with the renowned ‘Akbar-19,’ introduced in 2019, covering a substantial 42% of cultivated land in Punjab. Data released by the Ayub Agricultural Research Institute (AARI), shows that this variety, known for its high yield potential, disease resistance, and enriched zinc content, has significantly contributed to increased wheat production in the region.

Nepal

Guided by policy interventions in the national varietal testing process, Nepal has experienced the fast-track commercialization of high-yielding and climate-resilient wheat varieties. Allowing multilocation testing of CIMMYT nurseries and advanced elite lines, Nepal released six biofortified zinc wheat varieties in 2020. The expeditious seed multiplication of these released and pre-release varieties has facilitated the rapid spread of new and improved wheat varieties.

The strategic utilization of early access to wheat germplasm in South Asia holds promise in accelerating variety turnover, offering farmers resilient and high-performing wheat varieties. Collaborative efforts between research institutions, government bodies, and international organizations exemplify the power of innovation in transforming agriculture. With an ongoing dedication to refining breeding cycles, expanding testing initiatives, and fostering collaboration, the AGG project contributes to building a sustainable and resilient agricultural future in South Asia. Early access to wheat germplasm emerges as a practical approach in this scientific endeavor, laying the foundation for a climate-resilient and food-secure region. The successes witnessed in India, Pakistan, and Nepal underscore the transformative potential of this approach, offering tangible benefits for agricultural communities in South Asia and beyond. In navigating the complexities of a changing climate and growing food demand, early access to wheat germplasm remains a pragmatic ally, propelling agricultural innovation and resilience to new heights.