While COVID-19 is exacerbating an existing hunger crisis, authors highlight three of the most impactful research and development successes from the past few years that help smallholder farmers cope with climate change and bolster food security.
The first is CIMMYT’s program to develop drought-tolerant maize varieties with support from the Bill & Melinda Gates Foundation, successfully developing hundreds of new varieties that boost farmersâ yields and incomes, directly improving millions of lives.
By 2050, global demand for wheat is predicted to increase by 50 percent from todayâs levels and demand for maize is expected to double. Meanwhile, these profoundly important and loved crops bear incredible risks from emerging pests and diseases, diminishing water resources, limited available land and unstable weather conditions â with climate change as a constant pressure exacerbating all these stresses.
Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) is a new 5-year project led by the International Maize and Wheat Improvement Center (CIMMYT) that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat.
Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods to sustainably and inclusively improve breeding efficiency and precision to produce seed varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmersâ specific needs.
AGG seeks to respond to the intersection of the climate emergency and gender through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.
AGG will take into account the needs and preferences of female farmers when developing the product profiles for improved varieties of wheat and maize. This will be informed by gender-disaggregated data collection on current varieties and preferred characteristics and traits, systematic on-farm testing in target regions, and training of scientists and technicians.
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
To encourage female farmers to take up climate-resilient improved seeds, AGG will seek to understand the pathways by which women receive information and improved seed and the external dynamics that affect this access and will use this information to create gender-intentional solutions for increasing varietal adoption and turnover.
âUntil recently, investments in seed improvement work have not actively looked in this area,â said Olaf Erenstein, Director of CIMMYTâs Socioeconomics Program at a virtual inception meeting for the project in late August 2020. Now, âit has been built in as a primary objective of AGG to focus on [âŠ] strengthening gender-intentional seed delivery systems so that we ensure a faster varietal turnover and higher adoption levels in the respective target areas.â
In the first year of the initiative, the researchers will take a deep dive into the national- and state-level frameworks and policies that might enable or influence the delivery of these new varieties to both female and male farmers. They will analyze this delivery system by mapping the seed delivery paths and studying the diverse factors that impact seed demand. By understanding their respective roles, practices, and of course, the strengths and weaknesses of the system, the researchers can diagnose issues in the delivery chain and respond accordingly.
Once this important scoping step is complete, the team will design a research plan for the following years to understand and influence the seed information networks and seed acquisition. It will be critical in this step to identify some of the challenges and opportunities on a broad scale, while also accounting for the related intra-household decision-making dynamics that could affect access to and uptake of these improved seed varieties.
âIt is a primary objective of AGG to ensure gender intentionality,â said Kevin Pixley, Director of CIMMYTâs Genetic Resources Program and AGG project leader. âOften women do not have access to not only inputs but also information, and in the AGG project we are seeking to help close those gaps.â
Cover photo: Farmers evaluate traits of wheat varieties, Ethiopia. (Photo: Jeske van de Gevel/Bioversity International)
Nine CGIAR centers, supported by the Big Data Platform, will launch the Excellence in Agronomy 2030 initiative on September 7, 2020, during this yearâs African Green Revolution Forum (AGRF) online summit.
The Excellence in Agronomy 2030 (EiA 2030) initiative will assist millions of smallholder farmers to intensify their production systems while preserving key ecosystem services under the threat of climate change. This initiative, co-created with various scaling partners, represents the collective resolve of CGIARâs agronomy programs to transform the worldâs food systems through demand- and data-driven agronomy research for development.
EiA 2030 will combine big data analytics, new sensing technologies, geospatial decision tools and farming systems research to improve spatially explicit agronomic recommendations in response to demand from scaling partners. Our science will integrate the principles of Sustainable Intensification and be informed by climate change considerations, behavioral economics, and scaling pathways at the national and regional levels.
A two-year Incubation Phase of EiA 2030 is funded by the Bill & Melinda Gates Foundation. The project will demonstrate the added value of demand-driven R&D, supported by novel data and analytics and increased cooperation among centers, in support of a One CGIAR agronomy initiative aiming at the sustainable intensification of farming systems.
Speaking on the upcoming launch, the IITA R4D Director for Natural Resource Management, Bernard Vanlauwe, who facilitates the implementation of the Incubation Phase, said that âEiA 2030 is premised on demand-driven agronomic solutions to develop recommendations that match the needs and objectives of the end users.â
Christian Witt, Senior Program Officer from the Bill & Melinda Gates Foundation, lauded the initiative as a cornerstone for One CGIAR. âIt is ingenious to have a platform like EiA 2030 that looks at solutions that have worked in different settings on other crops and whether they can be applied in a different setting and on different crops,â Witt said.
Martin Kropff, Director General of the International Maize and Wheat Improvement Center (CIMMYT), spoke about the initiativeâs goals of becoming the leading platform for next-generation agronomy in the Global South, not only responding to the demand of the public and private sectors, but also increasing efficiencies in the development and delivery of solutions through increased collaboration, cooperation and cross-learning between CGIAR centers and within the broader agronomy R&D ecosystem, including agroecological approaches.
At the EiA 2030 launch, representatives from partner organizations and CGIAR centers will give presentations on different aspects of the project.
CGIAR centers that are involved in EiA include AfricaRice, the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Center for Agricultural Research in the Dry Areas (ICARDA), World Agroforestry Center (ICRAF), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the International Institute of Tropical Agriculture (IITA), and the International Rice Research Institute (IRRI).
For smallholder farmers in sub-Saharan Africa, new agricultural technologies such as improved maize varieties offer numerous benefits â increased incomes, lower workloads and better food security, among others. However, when new technologies are introduced, they can denaturalize and expose gender norms and power relations because their adoption inevitably requires women and men to renegotiate the rules of the game. The adoption of new varieties will often be accompanied by a number of related decisions on the allocation of farm labor, the purchase and use of inorganic fertilizers, switching crops between women- and men-managed plots, and the types of benefit household members expect to secure may change.
In an article published this month in Gender, Technology and Development, researchers from the International Maize and Wheat Improvement Center (CIMMYT) explore how women in Nigeria negotiate these new power dynamics to access and secure the benefits of improved maize varieties and, more broadly, to expand their decision-making space.
Using focus group and interview data collected as part of the GENNOVATE project, the authors draw on case studies from four villages â two in the northern states of Kaduna and Plateau; two in the southwestern state of Oyo â to develop an understanding of the relationship between gender norms, womenâs ability and willingness to express their agency, and the uptake of agricultural technologies. âThis is an important step toward improving the capacity of agricultural research for development to design and scale innovations,â say the authors. âAchieving this ambition is highly relevant to maize.â
The results were similar across all four sites. The authors found that women in each area were constrained by powerful gender norms which privilege male agency and largely frown upon womenâs empowerment, thus limiting their ability to maximize the benefits from improved varieties or realize their agency in other domains.
All women respondents remarked that improved maize varieties were easy to adopt, have higher yields and mature quickly, which meant that income flows started earlier and helped them meet household expenditures on time. They prioritized the contribution of improved maize to securing household food security, which helped them meet their ascribed gender roles as food providers.
âAt the same time though, women felt they could not maximize their benefits from improved maize varieties due to menâs dominance in decision-making,â the authors explain. âThis was particularly the case for married women.â
âMen are meant to travel far â not womenâ
Woman selling white maize at Bodija market in Ibadan, Nigeria. (Photo: Adebayo O./IITA)
Embedded gender norms â particularly those relating to mobility â infuse the wider environment and mean that womenâs access to opportunities is considerably more restricted than it is for men.
The findings demonstrate that both women and men farmers secure benefits from improved maize varieties. However, men accrue more benefits and benefit directly, as they have unfettered mobility and opportunity. They can access markets that are further away, and the maize they sell is unprocessed and requires no transformation. Additionally, men do not question their right to devote profits from maize primarily to their own concerns, nor their right to secure a high level of control over the money women make.
On the other hand, women respondents â regardless of age and income cohort â repeatedly stated that while it is hard to earn significant money from local sales of the processed maize products they make, it is also very difficult for them to enter large markets selling unprocessed, improved maize.
The difficulties women face in trying to grow maize businesses may be partly related to a lack of business acumen and experience, but a primary reason is limited personal mobility in all four communities. For example, in Sabon Birni village, Kaduna, women lamented that though the local market is not large enough to accommodate their maize processing and other agri-business ventures, they are not permitted travel to markets further afield where âthere are always people ready to buyâ.
âWomenâs benefits relate to the fact that improved maize varieties increase the absolute size of the âmaize cakeâ,â say the authors. âThey expect to get a larger slice as a consequence. However, the absolute potential of improved varieties for boosting womenâs incomes and other options of importance to women is hampered by gender norms that significantly restrict their agency.â
The implications for maize research and development are that an improved understanding of the complex relational nature of empowerment is essential when introducing new agricultural technologies.
Scientists part of the Seed Production Technology for Africa (SPTA) and the Maize Lethal Necrosis Gene Editing projects are leveraging innovative technologies to transform seed production systems and speed up the delivery of disease resistance in elite new hybrids. This research is helping smallholder farmers in sub-Saharan Africa to access high-quality seed of new hybrids that were bred to perform under stressful low-input, drought-prone conditions, including farming regions impacted by maize lethal necrosis (MLN).
Fast delivery of MLN-tolerant varieties
The fight against maize lethal necrosis (MLN) has persisted for almost ten years now.
Collaborative efforts in diagnostics, management and systematic surveillance have limited its spread and confined the disease to the eastern Africa region. However, ongoing work is required to efficiently develop MLN-tolerant varieties for smallholders in endemic areas and prepare for the potential further movement of the disease.
âMaize lethal necrosis still exists. It has not been eradicated. Even though it has reduced in its prevalence and impact, it is still present and is a latent threat in Ethiopia, Kenya, Rwanda, Tanzania and Uganda, with potential to spread further,â said B.M. Prasanna, director of CIMMYTâs Global Maize Program and the CGIAR Research Program on Maize.
âThat is why the work of the gene editing project is critical to rapidly change the genetic component of those susceptible parent lines of popular hybrids into MLN-tolerant versions,â said Prasanna. Scientists will edit the four parent lines of two popular hybrids, currently grown by farmers in Kenya and Uganda, which are susceptible to MLN. The edited MLN-tolerant lines will be used to make MLN-tolerant versions of these drought-tolerant hybrids.
Through gene editing technology, the time it takes to develop hybrids using traditional breeding methods will be cut in half. By 2025, the edited MLN-tolerant hybrids will be available for planting on approximately 40,000 hectares by about 20,000 Kenyan farmers.
A non-pollen-producing maize plant (on the left) on farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)
Business as unusual
The unique seed production technology developed by Corteva Agriscience seeks to transform the seed production process in sub-Saharan Africa. This technology utilizes a dominant non-pollen producing maize gene to create female plants that are unable to produce pollen.
Seed companies that use seed production technology eliminate the need to detassel the female parent: a manual process through which tassels are removed from plants to prevent self-pollination and ensure that the intended male parent is the only source of pollen in the hybrid seed production field. Targeted small and medium-size seed companies could make significant savings to the cost of production if they were to eliminate manual detasseling. The method also helps to ensure the purity of the hybrid seed by removing the risk of unintentional self-pollination.
Hybrids produced using the seed production technology, characterized as 50 percent non-pollen producing (FNP), are unique since only half of the plants will produce pollen in the field. FNP hybrids re-allocate energy from the tassel and pollen production to grain formation, thus delivering an additional 200 kilograms per hectare yield advantage to the farmer. This represents a 10 percent productivity boost for farmers who will harvest approximately 2 tons per hectare, the average maize yield across sub-Saharan Africa. Farmers engaged in participatory research have demonstrated preference for FNP hybrids and associate the trait with higher yield and larger ear size.
As the first phase of Seed Production Technology for Africa (SPTA) wraps up, the collaborators are preparing for the next phase that will focus on commercializing, scaling up and increasing smallholders’ access to FNP. âThis is among the unique partnerships funded by the foundation and I am hopeful that this incredible work will continue through the next phase,â said Gary Atlin, program officer at the Bill & Melinda Gates Foundation.
Resistant hybrid (on the right) grows beside a susceptible commercial check at the Kenya Plant Health Inspectorate Services’ (KEPHIS) National Performance Trial. (Photo: CIMMYT)
A win-win collaboration
Research and development work under the SPTA and the MLN Gene Editing projects has immensely benefited from the support of public and private partners. Seed companies and national institutions have contributed to improving access to and knowledge of these technologies as well as creating a crucial link with farmers. Ongoing engagement with regulatory agencies through the different stages of the projects ensures transparency and fosters understanding.
In order to assess the progress of these two initiatives, representatives from regulatory agencies, seed trade associations, seed companies, national agricultural institutions and funders came together for a virtual meeting that was hosted on July 29, 2020.
âKALRO embraces partnerships such as those that are delivering these two projects. That synergy helps us to resolve challenges faced by farmers and other actors in various agricultural value chains,â observed Felister Makini, deputy director general of Crops at KALRO.
As the primary technology provider, Corteva Agriscience provides the seed production technology system on a royalty-free basis and grants access to key gene editing technologies, which are the foundation for the two projects. Corteva Agriscience is also actively involved in project execution through collaborative scientific support.
âWe have appreciated the opportunity to work with CIMMYT, KARLO, Agricultural Research Council (ARC) of South Africa and the Bill & Melinda Gates Foundation to bring some of the technologies and tools from Corteva to address significant challenges facing smallholder farmers in Africa. We could not have done this alone, it requires the partnerships that exist here to bring forth these solutions,â said Kevin Diehl, director of the Global Seed Regulatory Platform at Corteva Agriscience.
Seed systems are complex and dynamic, involving diverse, interdisciplinary actors. Women play an important role in the seed value chain, although underlying social and cultural norms can impact their equal participation. Gender-sensitive seed systems will create more opportunities for women and increase food security.
The International Maize and Wheat Improvement Center (CIMMYT) convened a multi-stakeholder technical workshop titled, âGender dynamics in seed systems in sub-Saharan Africa and worldwide lessonsâ on December 2, 2019, in Nairobi, Kenya. Researchers and development practitioners operating in the nexus of gender and seed systems shared lessons learned and research findings to identify knowledge gaps and exchange ideas on promising â and implementable â interventions and approaches that expand opportunities for women in the seed sector.
A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).
The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.
It was the site where International Maize and Wheat Improvement Center (CIMMYT) scientist Norman Borlaug famously received news of his 1970 Nobel Peace Prize win. Now, Toluca station will become CIMMYTâs new testing site for rapid generation advancement and speed breeding in wheat â a method that accelerates generation advancement of crops and shortens the breeding cycle using tools like continuous lighting and temperature control.
Recent progress of the 2-hectare rapid generation advancement screenhouse under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
The Toluca wheat experimental station is one of CIMMYTâs five experimental stations in Mexico, located in a picturesque town on the outskirts of Mexicoâs fifth largest city, Toluca, about 60 kilometers southwest of Mexico City. The station was strategically chosen for its cool, humid conditions in summer. These conditions have made it an ideal location for studying wheat resistance to deadly diseases including yellow rust and Septoria tritici blotch.
Since its formal establishment in 1970, Toluca has played a key role in CIMMYTâs wheat breeding program. The site is also of significant historical importance due to its origins as a testing ground for Borlaugâs shuttle breeding concept in the 1940s, along with Ciudad ObregĂłn in the Sonora state of northern Mexico. The breeding method allowed breeders to plant at two locations to advance generations and half the breeding cycle of crops.
Applying this unorthodox breeding method, Borlaug was able to advance wheat generations twice as fast as standard breeding programs. Planting in contrasting environments and day lengths â from the cool temperatures and high rainfall of Toluca to the desert heat of Ciudad ObregĂłn â also allowed Borlaug and his colleagues to develop varieties that were more broadly adaptable to a variety of conditions. His shuttle breeding program was so successful that it provided the foundations of the Green Revolution.
Toluca was also the site where the first sexual propagation of the destructive plant pathogen Phytophtora infestans was reported. The deadly pathogen is best known for causing the potato late blight disease that triggered the Irish potato famine.
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
New life for the historic station
More than 50 years since its establishment, the station will once again host cutting-edge innovation in wheat research, as the testing ground for a new speed breeding program led by wheat scientists and breeders from Accelerating Genetic Gains in Maize and Wheat (AGG).
Funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties.
While most breeding programs typically take between 7-8 years before plants are ready for yield testing, shuttle breeding has allowed CIMMYT to cut the length of its breeding programs in half, to just 4 years to yield testing. Now, AGG wheat breeders are looking to shorten the breeding cycle further, through rapid generation advancement and speed breeding.
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)
âThe AGG team will use a low-cost operation, in-field screenhouse, spanning 2 hectares, to grow up to 4 generations of wheat per year and develop new germplasm ready for yield testing within just 2 years,â said Ravi Singh, CIMMYT distinguished scientist and head of wheat improvement. âThis should not only save on cost but also help accelerate the genetic gain due to a significant reduction in time required to recycle best parents.â
Construction of the new rapid generation advancement and speed breeding facilities is made possible by support from the Bill and Melinda Gates Foundation and DFID through Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year. It is expected to be complete by September.
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Wheat fields at Toluca station. (Photo: Fernando Delgado/CIMMYT)
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
Wheat fields at Toluca station. Nevado de Toluca features in the background. (Photo: Fernando Delgado/CIMMYT)
Early landscape of wheat fields at Toluca station (Photo: Fernando Delgado/CIMMYT)
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Recent progress of the rapid generation advancement screenhouse under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)
CIMMYT Global Wheat Program Director Hans Braun highlighted the importance of testing the new breeding scheme. âBefore completely adopting the new breeding scheme, we need to learn, optimize and analyze the performance results to make necessary changes,â he said.
If all goes well, Toluca could once again be on the vanguard of wheat research in the near future.
âWe plan to use the speed breeding facility for rapid integration of traits, such as multiple genes for resistance, to newly-released or soon to be released varieties and elite breeding lines,â said CIMMYT Wheat Breeder Suchismita Mondal, who will lead the work in these facilities. We are excited to initiate using the new facilities.â
A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).
Striga, an invasive parasitic weed with purple-colored flowers, looks striking and harmless. But, beyond that mark of beauty, is a nutrient-sucking monster that stunts crops such as maize and sorghum, leaving affected farmers counting losses.
Witchweed thrives in poor soils with low rainfall conditions. It is prevalent in farming systems with poor crop management practices and in communities where farmers use minimal or no fertilizer. Once maize begins germinating in Striga-prevalent soil, it stimulates Striga seeds to germinate. Striga then attaches to the roots of the host plant, sapping nutrients from the plant, leading to stunting. The potential yield loss can reach up to 100%. Some farmers attempt to uproot it once they notice it germinating alongside their maize plantation, but this is often too late because damage is done as soon as the parasite attaches to the maize roots. When mature, the weed deposits tens of thousands of tiny seeds into the soil. This makes it very difficult for farmers to get rid of it.
To tackle this challenge, farmers need to apply inorganic fertilizer, which is not always affordable, or animal manure to enrich the soil before planting. They are also advised by researchers and extensionists to practice crop rotation or intercropping with legumes such as beans, soybean or groundnuts that restrict Strigaâs germination. Â In the Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya, for example, researchers recommend that Striga control measures include a combination of herbicide-resistant or maize varieties with native genetic resistance intercropped with legumes.
Nevertheless, while a few control measures have been moderately successful, the problem still persists, especially in western Kenya, eastern Uganda and lake zone of Tanzania, where farmers have frequently voiced their frustrations at the ubiquity of this invasive weed.
âWhile crop rotation with crops such as soybean or beans may break the cycle of Striga, its seed can stay in the soil and remain viable for up to 10 years,â says Dan Makumbi, a maize breeder with the International Maize and Wheat Improvement Center (CIMMYT), who is leading research efforts against the witchweed.
A sorghum field infested with Striga in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi on a Striga-infested farm in Siaya County. (Photo: Joshua Masinde/CIMMYT)
Norah Kayugi holds a bunch of Striga weeds she has uprooted on a farm she works as a casual laborer in Siaya. (Photo: Joshua Masinde/CIMMYT)
A blow to optimal yield potential
Maize is a staple crop that is predominantly cultivated by smallholder farmers in western Kenya and the lake region. It is an important source of food security and livelihoods of millions of people in the region, but constraints such as Striga prevent farmers from obtaining the cropâs ideal potential.
âThe yield loss would have been adequate to cover my familyâs food requirements for a year,â Naliaka said. âFrom two farming seasons, I could harvest a sufficient quantity of maize and sell some surplus to pay my childrenâs school fees. With the Striga menace, all that is but a dream.â
Just like Naliaka, Norah Kayugi, a 40-year-old widowed mother of six children from Siaya County in Kenya, has seen her maize production fall to less than 8 bags of 90kgs per acre. In normal circumstances, they would obtain at least 16 bags of maize per acre. The significant yield loss sets back many affected households in a big way, as they experience food shortage only a few months after harvest. Some divert their reduced incomes for food purchases, possibly leaving other priorities such as health and education of their children unattended.
Kayugi, who has been a farmer since 1997, now takes on casual jobs to supplement her farming in order to support her family, being the sole breadwinner following her husbandâs demise years ago. âI plant vegetables, beans and maize to sustain my family. My one-acre farm yields about 10 bags of 90ks each. But I know for sure that were it not for this weed, the yield potential could reach 30 bags of 90kgs each per acre.â
A young, yet-to-flower Striga weed at the CIMMYT-KALRO Kibos Research Station in Kisumu. (Photo: Joshua Masinde/CIMMYT)
Standing up to multiple farming stresses
These smallholders, like their counterparts elsewhere in sub-Saharan Africa, already face other farming challenges, including climate change-induced droughts, pests such as the fall armyworm, diseases like maize lethal necrosis (MLN), and declining soil fertility, among others. While CIMMYT has registered breakthroughs in developing maize varieties that tolerate such stresses, on-going efforts against Striga are also taking shape, challenges notwithstanding.
The development and deployment of the imazapyr-resistant (IR) maize has been one such instance of effective Striga control. With this method, herbicide-resistant maize seeds are coated with herbicide. The seed germinates and absorbs some of the herbicide used to coat it. The germinating maize stimulates Striga to germinate and as it attaches to the maize root, it is killed before it can cause any damage. Despite its effectiveness, sustaining this technology presented a major challenge to seed companies.
âIt was costly for seed companies, as they needed to establish and sustain the operation of separate seed treatment units dedicated to production of the herbicide-coated maize seed. Once you establish a line to dress the seed with the chemical, you cannot use it to treat any other seeds as the chemical will destroy them,â said Makumbi.
Seed companies â like NASECO in Uganda, Kenya Seed Company in Kenya, Western Seed Company and FreshCo in Kenya, and Meru Agro in Tanzania â obtained financial and technical support from a partnership initiative coordinated by African Agricultural Technology Foundation (AATF) and backed by CIMMYT to scale commercialisation of StrigAwayTM maize in East Africa. The initiative was funded by USAIDâs Feed the Future Partnering for Innovation program through Fintrac and it supported the seed companies to establish seed treatment facilities to handle herbicide resistant maize. This allowed each of the companies to have a fully dedicated facility for herbicide resistant maize seed processing. âRight now, herbicide resistant maize hybrid seed is available on the market in Kenya, Tanzania and Uganda,â Makumbi said.
CIMMYT field technician Carolyne Adhiambo at a maize field experiment showing promise of Striga tolerance or resistance the Kibos Research station in Kisumu. (Photo: Joshua Masinde/CIMMYT)
Native hope
In the past few years, Makumbi and his team, in collaboration with the International Institute for Tropical Agriculture (IITA) and the Kenya Agricultural and Livestock Research Organization (KALRO), have redirected their efforts towards breeding for native genetic resistance to Striga. This means developing seeds which are naturally resistant to Striga, reducing the need for herbicides. The early indication is that there are several parental lines showing potential to tolerate or resist Striga, and these are being used to develop hybrids. The hybrids, which offer multiple benefits for farmers, are under wide scale testing in Kenya.
âIn our tests, we are not only looking at Striga resistance alone but also other important traits such as good yield under optimal conditions, drought stress and low soil fertility, resistance to major foliar diseases including gray leaf spot, Turcicum leaf blight, maize streak virus and ear rots,â Makumbi noted.
As these breeding efforts continue, there is light at the end of the tunnel. The hope of farmers taking back full control of their maize farms from Strigaâs âbewitching waysâ in the near future remains alive.
Sudha Nair is inspired every day by her passion for biology and genetics. The senior scientist at the International Maize and Wheat Improvement Center (CIMMYT) based in Hyderabad, India, works to define and practice the best strategies for applying genomics in agriculture.
âI always knew that science is what I would love to pursue,â said Sudha, an alumnus of both the Indian Agricultural Research Institute (IARI) in New Delhi and the National Institute of Agrobiological Sciences in Japan.
Originally from Kerala, India, Sudha did not expect a career in agriculture. âI studied for engineering after my high school as I was selected for that course before I was selected for the biology stream. It didnât take me even a single moment to decide to leave the course six months later when I was selected for the undergraduate program in agriculture,â Sudha said. âI canât say that it is love for agriculture that forced me to choose the field I am in, but it is the fascination for biological science. I love genetics and I love research; as long as I get to do this as part of my job, I am happy.â
Sudhaâs first experience working with CIMMYT involved her PhD dissertation at IARI, which was a part of research conducted for the Asian Maize Biotechnology Network (AMBIONET), led by CIMMYT. âI had always looked at CIMMYT as an organization doing high quality applied science,â she said.
Starting in 2010 as a consultant for the Drought Tolerant Maize for Africa (DTMA) project, Sudha then interviewed for the position of maize fine-mapping specialist in 2011 and was selected as a scientist. Her career at CIMMYT has now spanned close to a decade.
Her role involves implementation of molecular breeding in the maize breeding program in Asia. This includes discovery, validation and application of molecular markers for prioritized traits, genomic selection, and marker-based quality assurance and quality control in maize breeding â through current and past projects like Heat Tolerant Maize for Asia (HTMA), Climate Resilient Maize for Asia (CRMA) and the CGIAR Research Program on Maize (MAIZE). Apart from this, she is currently involved in the Accelerating Genetic Gains in Maize and Wheat (AGG) project for incorporating elite and stress tolerance genetics from Asia in the elite African maize germplasm.
Sudha has been a part of a number of global maize projects including the Stress Tolerant Maize for Africa (STMA) project, which developed improved maize varieties tolerant to stresses such as drought and diseases, and HarvestPlus in maize, developing nutritionally enriched maize cultivars. She has also played a key role in developing CIMMYTâs second-generation tropicalized haploid inducers using marker-assisted breeding.
Sudha Nair speaking at a Heat Tolerant Maize for Asia (HTMA) annual review and planning meeting. (Photo: Sudha Nair/CIMMYT)
Bringing genetics and breeding together
Sudha is grateful for the role of CIMMYT in increasing acceptance and use of genomics in breeding programs. âWhen I started off as a graduate student, any work related to molecular genetics was called biotechnology, and we were considered as a different âbreedâ, who worked in silos to spend resources on âupstream researchâ, and whose results never saw any breeding applications. Breeding and molecular genetics were like parallel lines that would never meet,â she explained.
âIn course of time, the research communities in applied breeding institutes like CIMMYT have brought about changes in strategies, goals, and more importantly, attitudes, and now all of us work towards one major goal of developing impactful products (varieties) for benefiting resource-constrained farming communities worldwide. All in all, I and my colleagues in the upstream research team in CIMMYT Global Maize Program have an important responsibility of providing core support to the breeding and seed systems teams in developing and delivering impactful products.â
When asked what the most enjoyable part of her work is, Sudha cited the practicality and applicability of her work. âBasically, my job responsibility is to design and implement the best strategies for applying genomics in maize breeding to achieve higher genetic gains,â she explained. âBeing in an organization like CIMMYT, what is most satisfying about the role I am in is the translation of upstream research into tools for improving breeding efficiency and in turn into impactful maize varieties that the farming communities around the world cultivate.â
Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
More than 100 scientists, crop breeders, researchers, and representatives from funding and national government agencies gathered virtually to initiate the wheat component of a groundbreaking and ambitious collaborative new crop breeding project led by the International Maize and Wheat Improvement Center (CIMMYT).
The new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods, or AGG, brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat â two of the world’s most important staple crops.
Funded by the Bill & Melinda Gates Foundation, the U.K. Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR), the project specifically focuses on supporting smallholder farmers in low- and middle-income countries. The international team uses innovative methods â such as rapid cycling and molecular breeding approaches â that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest and disease resistant and highly nutritious, targeted to farmersâ specific needs.
The wheat component of AGG builds on breeding and variety adoption work that has its roots with Norman Borlaugâs Nobel Prize winning work developing high yielding and disease resistance dwarf wheat more than 50 years ago. Most recently, AGG builds on Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year.
âAGG challenges us to build on this foundation and make it better, faster, equitable and sustainable,â said CIMMYT Interim Deputy Director for Research Kevin Pixley.
At the virtual gathering on July 17, donors and partner representatives from target countries in South Asia joined CIMMYT scientists to describe both the technical objectives of the project and its overall significance.
âThis program is probably the worldâs single most impactful plant breeding program. Its products are used throughout the world on many millions of hectares,â said Gary Atlin from the Bill & Melinda Gates Foundation. âThe AGG project moves this work even farther, with an emphasis on constant technological improvement and an explicit focus on improved capacity and poverty alleviation.â
Alan Tollervey from DFID spoke about the significance of the project in demonstrating the relevance and impact of wheat research.
âThe AGG project helps build a case for funding wheat research based on wheatâs future,â he said.
Nora Lapitan from the USAID Bureau for Resilience and Food Security listed the high expectations AGG brings: increased genetic gains, variety replacement, optimal breeding approaches, and strong collaboration with national agricultural research systems in partner countries.
Indiaâs farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
Reconnecting with trusted partners
The virtual meeting allowed agricultural scientists and wheat breeding experts from AGG target countries in South Asia, many of whom have been working collaboratively with CIMMYT for years, to reconnect and learn how the AGG project both challenges them to a new level of collaboration and supports their national wheat production ambitions.
âWith wheat blast and wheat rust problems evolving in Bangladesh, we welcome the partnership with international partners, especially CIMMYT and the funders to help us overcome these challenges,â said Director General of the Bangladesh Wheat and Maize Research Institute Md. Israil Hossain.
Director of the Indian Institute for Wheat and Barley Research Gyanendra P. Singh praised CIMMYTâs role in developing better wheat varieties for farmers in India.
âMost of the recent varieties which have been developed and released by India are recommended for cultivation on over 20 million hectares. They are not only stress tolerant and high yielding but also fortified with nutritional qualities. I appreciate CIMMYTâs support on this,â he said.
Executive Director of the National Agricultural Research Council of Nepal Deepak K. Bhandari said he was impressed with the variety of activities of the project, which would be integral to the development of Nepalâs wheat program.
âNepal envisions increased wheat productivity from 2.84 to 3.5 tons per hectare within five years. I hope this project will help us to achieve this goal. Fast tracking the replacement of seed to more recent varieties will certainly improve productivity and resilience of the wheat sector,â he said.
The National Wheat Coordinator at the National Agricultural Research Center of Pakistan, Atiq Ur-Rehman, told attendees that his government had recently launched a âmega projectâ to reduce poverty and hunger and to respond to climate change through sustainable intensification. He noted that the support of AGG would help the country increase its capacity in âvertical productionâ of wheat through speed breeding. âAGG will help us save 3 to 4 yearsâ in breeding time,â he said.
For CIMMYT Global Wheat Program Director Hans Braun, the gathering was personal as well as professional.
âI have met many of you over the last decades,â he told attendees, mentioning his first CIMMYT trip to see wheat programs in India in 1985. âTogether we have achieved a lot â wheat self-sufficiency for South Asia has been secured now for 50 years. This would not be possible without your close collaboration, your trust and your willingness to share germplasm and information, and I hope this will stay. â
Braun pointed out that in this project, many national partners will gain the tools and capacity to implement their own state of the art breeding strategies such as genomic selection.
âWe are at the beginning of a new era in breeding,â Braun noted. âWe are also initiating a new era of collaboration.â
The wheat component of AGG serves more than 30 million wheat farming households in Bangladesh, Ethiopia, India, Kenya, Nepal and Pakistan. A separate inception meeting for stakeholders in sub-Saharan Africa is planned for next month.
A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.
A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).
The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.
Ambitious targets
At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.
âWe are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,â said CIMMYT Interim Deputy Director for Research Kevin Pixley.
AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
A matter of âlife or deathâ
âWhen farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,â remarked David Chikoye, the director of Southern Africa Hub at IITA.
A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.
âAGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,â said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. âOur vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.â
AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmersâ fields.
Old vs new
Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.
âWe are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?â posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. âWe need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.â
To enhance AGGâs ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.
Guest of honor, Ethiopiaâs Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYTâs support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.
âWe consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,â he said.