Skip to main content

funder_partner: Bangladesh's Ministry of Agriculture

Intercropping

The Intercropping project aims to identify options for smallholder farmers to sustainably intensify wide-row crop production through the addition of short-duration, high-value intercrop species and to help farmers increase their productivity, profitability and nutrition security while mitigating against climate change.

The focus is on intensification of wide-row planted crops: dry (rabi) season maize in Bangladesh, eastern India (Bihar and West Bengal states) and Bhutan, and sugarcane in central north India (Uttar Pradesh state). The primary focus is to sustainably improve cropping system productivity, however, the effects of wide-row, additive intercropping at the smallholder farm level will be considered, including potential food and nutrition benefits for the household.

There are many potential benefits of wide-row, additive intercropping, beyond increased cropping system productivity and profitability: water-, labor- and energy-use efficiencies; improved nutrition and food security for rural households; empowerment for women; and (over the longer term) increased soil health.

Little research has been conducted to date into wide-row, additive intercropping (as distinct from traditional replacement intercropping) in South Asian agroecologies. To successfully and sustainably integrate wide-row, additive intercropping into farmers’ cropping systems a range of challenges must be resolved, including optimal agronomic management and crop geometry, household- and farm-scale implications, and potential off-farm bottlenecks.

This project aims to identify practical methods to overcome these challenges for farming households in Bangladesh, Bhutan and India. Focusing on existing wide-row field crop production systems, the project aims to enable farmers to increase their cropping system productivity sustainably and in a manner that requires relatively few additional inputs.

Project activities and expected outcomes:

  • Evaluating farming households’ initial perspectives on wide-row, additive intercropping.
  • Conducting on station replicated field trials into wide-row, additive intercropping, focusing on those aspects of agronomic research difficult or unethical to undertake on farms.
  • Conducting on farm replicated field trials into wide-row, additive intercropping.
  • Determining how wide-row, additive intercropping could empower women. Quantify the long-term benefits, risks and trade-offs of wide-row, additive intercropping.
  • Describing key value/supply chains for wide-row, additive intercropping. Determine pathways to scale research to maximize impact.
  • Quantifying changes in household dry season nutrition for households representative of key typologies in each agroecological zone.

Bridging research and policy: how CIMMYT’s science shapes practice in South Asia

Science without policy is just academia; policy without science is just guesswork. Through a blend of robust field research and policy advocacy, CIMMYT aims to bridge the gap between policy and practice in promoting sustainable agricultural practices through crop diversification in South Asia.

Taking Bangladesh as an example, CIMMYT’s work in the country highlights the critical need to link research with policy to achieve sustainable agricultural practices, enhance food security, and improve farmer livelihoods.

The power of research-informed policy

Bangladesh’s agriculture is highly rice-centric; although rational, this is risky and arguably unsustainable. This means there needs to be a focus on crop diversification, which is one of the approaches toward sustainable agriculture that can address socioeconomic and environmental challenges.

Recognizing these challenges, CIMMYT has been at the forefront of developing solutions by conducting extensive multi-location on-site and on-farm trials that consider the socioeconomic and pedoclimatic dimensions of farm households.

Additionally, CIMMYT analyzes historical policies and initiatives that have been implemented by the Bangladeshi government and international partners to promote crop diversification. Several opportunities for improvement were identified in past policies and project implementation; addressing these challenges requires bridging the gap between policies and research to scale up crop diversification efforts.

Through the RUPANTAR and CGIAR Transforming Agrifood Systems in South Asia (TAFSSA) projects, CIMMYT-Bangladesh has developed an analytical tool to understand the political economy of crop diversification policies and practices. When applied to agriculture policy research, this tool can be tailored to any country and policy context in South Asia.

Problem-solving for sustainable farming

Our policy-specific research, such as “Decoding the reality: Crop diversification and policy in Bangladesh”, has identified areas where policy and practical changes can drive significant improvements.

For example, while the government recognizes crop diversification in its agriculture policies starting with the Fifth Five-Year Plan, substantial funding for crop diversification efforts was only recently allocated. Integration of crop diversification into the government’s annual funding systems is essential to mainstream crop diversification in agriculture.

Many crop diversification policies and projects primarily focus on production, neglecting market systems development for new crops. Similarly, research suggests insufficient attention is paid to cold storage and other infrastructure needed to support diversification.

Most initiatives appear to have been project-driven, resulting in short-lived action without long-lasting impact. Insufficient coordination and support from government agencies appears to have affected projects led by both governments and development partners.

Stakeholder engagement spreads awareness

Without translating research into policy, we leave innovation on the shelf. CIMMYT-Bangladesh disseminates research findings to policymakers through the country Priority Investment Plan for the crop sector at the Bangladesh Agricultural Research Council (BARC), and South Asian Association for Regional Cooperation (SAARC) member countries through regional consultation workshops on accelerating the transformation process for sustainable and nutrition-sensitive food systems.

Looking ahead, CIMMYT’s efforts in South Asia remain dedicated to bridging the gap between research and policy. Ongoing projects aim to generate robust evidence, advocate for informed policy decisions, and foster partnerships across sectors. By continuing to lead in this space, CIMMYT strives to contribute to a more resilient agrifood system for South Asia.

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

A journey through Bangladesh’s ground-breaking agricultural practices

Bangladesh’s agricultural landscape is evolving rapidly, with initiatives focused on modernization, sustainability, and innovation. Projects supported by the United States Agency for International Development (USAID) are working to advance the country’s agriculture through stakeholder collaboration, enhancing productivity, improving mechanization, and embedding sustainable practices.

To explore the impact of this work, USAID officials and senior staff from CIMMYT embarked on a comprehensive tour across multiple project sites on 14 – 19 April 2024. The USAID delegation featured Zachary P. Stewart, production systems specialist from the Bureau for Resilience, Environment, and Food Security, and John Laborde and Muhammad Nuruzzaman from the USAID Bangladesh Mission. From CIMMYT, the team included Sieglinde Snapp, program director from the Sustainable Agrifood Systems Program, Timothy J. Krupnik, country representative for Bangladesh, and Owen Calvert, project leader for the Cereal Systems Initiative for South Asia-Mechanization Extension Activity (CSISA-MEA).

Visitors at Bangladesh Wheat and Maize Research Institute (BWMRI) lab, Dinajpur, Bangladesh. (Photo: Masud Rana/CIMMYT Bangladesh)

Pioneering agricultural technology

The team visited Dinajpur, Bangladesh to observe the progress of the Transforming Agrifood Systems in South Asia (TAFSSA) CGIAR Initiative, including creative efforts to raise agricultural output, support sustainable practices, and boost the area’s nutrition levels. The integrated strategy of TAFSSA, which combines inclusive community participation with socio-agronomic research, has enabled local farmers to increase revenue, diversify their crop production, and enhance yields. From the premium quality rice (PQR) value chain at the Bengal Auto Rice Mill to the sustainable intensification of mixed farming systems, the visit demonstrated TAFSSA’s dedication to building agricultural resilience and improving lives throughout Bangladesh.

In Faridpur, the team observed CSISA-MEA, a five-year project dedicated to supporting smart mechanization in Bangladesh. This included displays of innovative agricultural machinery, such as onion storage blowers, jute fiber separators, axial flow pumps, and combine harvester spare parts. Stakeholders from various sectors shared insights on how to improve machine service providers’ capacity to manage their businesses effectively.

Sholakundu, a village in Kanaipur Union, Faridpur Sadar, has embraced modern agricultural practices and diversified crop cultivation. This site showcased the impact of mechanized rice transplantation and integrated pest management (IPM) techniques, with the opportunity to observe a live demonstration of mat-type seedling raising for mechanized rice transplantation. Discussions revolved around the benefits of mechanization, IPM activities, and the village’s commitment to enhancing agricultural sustainability and productivity.

Climate-specific farming

The southern coastal region of Bangladesh has long suffered from problems including salinity, drought, waterlogging, and unpredictable weather.  Addressing these issues is the USAID-funded Sustainable Intensification Innovation Lab–Asian Mega Delta (SIIL-AMD) project, which encourages climate-resilient farming and better water management.

The initiative engages approximately 400 farmers in trials of improved agronomic techniques through the use of 14 Learning Hubs and the Cluster Farmer Field School (CFFS), aiming to increase output and assist local people in adjusting to the special conditions of the coastal polder zone.

“Bangladesh’s women farmers, especially those in this area and the coastal regions, are incredibly hardworking,” stated Zachary P. Stewart. “Even in the face of adverse weather conditions, their dedication has led to excellent crop yields. If provided with further training and allocated more time, these industrious women could take the lead in driving Bangladesh’s agricultural progress forward.”

Visitors at local machine manufacturing workshop in Jashore, Bangladesh. (Photo: Masud Rana/CIMMYT Bangladesh)

Systemic self-sufficiency

For reasons of development and sustainability, Bangladesh’s agriculture industry is focused on using locally made machinery and spare parts. As USAID personnel visited the SMR Agro Engineering Workshop and Foundry, situated in Jashore Sadar, they witnessed how support by CSISA-MEA has improved the agricultural mechanization market system. SMR Agro Engineering produces high-quality agricultural machinery and spare parts, increasing farmers’ productivity and decreasing labor intensity.

CSISA-MEA’s support has been significant in preparing new industrial layouts, raising labor skill levels, providing technical guidance, and facilitating financing. Moreover, through the development of business partnerships with lead companies, agriculture-based light engineering enterprises (ABLEs), and dealers, CSISA-MEA ensures a strong network that supports the widespread use of mechanized services. This collaborative effort marks a significant step towards enhancing rural livelihoods and achieving sustainable agricultural practices in Bangladesh.

Global research partnerships

In addition to visiting farmers’ fields, the team also attended the Bangladesh Agricultural Research Institute (BARI), the nation’s largest agricultural research center which focuses on improving crop yields, food security, and employment. The visitors explored the work in mechanization, IPM, and farm machinery, with a tour of BARI’s IPM and toxicology laboratories highlighting the organizations’ sustainable approach to pest management.

The final visit was to Ispahani Agro Limited (IAL), a leading bio-pesticide producer in Gazipur. IAL is at the forefront of bio-rational pest management, creating environmentally friendly, non-toxic inputs. CIMMYT’s assistance has been crucial for the company’s growth, with the tour covering production units, laboratories, and discussions on IAL’s business development.

Overall, the experience offered a comprehensive overview of collaborative activities between USAID, CIMMYT, and Bangladeshi stakeholders. From research and mechanization to bio-rational pest management, the combined efforts boost output and encourage sustainability and responsible environmental behavior.

As Bangladesh continues to embrace modern farming practices, partnerships and projects will play a pivotal role in defining how the country’s agricultural industry evolves into one that is economically viable and sustainable.

Building global capacity to combat wheat blast

Researchers and experts from 15 countries convened in Zambia, between 4-15 March 2024, for an international training on wheat blast disease screening, surveillance, and management.

Wheat blast, caused by pathogen Magnaporthe oryzae pathotype triticum, is threatening global wheat production especially in warmer and humid regions. The disease was ïŹrst observed in Parana state of Brazil in 1985 and subsequently spread to Bolivia, Paraguay, and Argentina. Outside of South America, wheat blast incidences were recorded for the first time in Bangladesh in 2016 and in Zambian wheat fields in 2018.

To mitigate the impact of this potential plant pandemic, the Zambia Agriculture Research Institute (ZARI), in collaboration with CIMMYT and other partners, organized a comprehensive training for building research capacity and raising awareness within the local and international community, especially in at-risk countries.

“This collaborative effort, supported by various international partners and funders, underscores the importance of global cooperation in addressing agricultural challenges such as wheat blast. The objective of the training was to empower researchers with knowledge and tools for enhanced wheat production resilience in regions vulnerable to this destructive disease,” said Pawan Kumar Singh, principal scientist and project leader at CIMMYT. Singh collaborated with Batiseba Tembo, wheat breeder at ZARI-Zambia, to coordinate and lead the training program.

Thirty-eight wheat scientists, researchers, professors, policymakers, and extension agents from countries including Bangladesh, Brazil, Ethiopia, India, Kenya, Mexico, Nepal, South Africa, Sweden, Tanzania, United Kingdom, Uruguay, Zambia, and Zimbabwe convened at the Mt. Makulu Central Research Station in Chilanga, Zambia.

“Wheat blast is a devastating disease that requires concerted efforts to effectively manage it and halt further spread. The disease is new to Africa, so developing capacity amongst country partners before the disease spreads more widely is critical,” said Tembo.

Participants at the International Training on Wheat Blast Screening and Surveillance. (Photo: CIMMYT)

Highlights from the training: discussions, lab exercises, and field visits

During the training, participants engaged in lectures, laboratory exercises, and field visits. There were insightful discussions on key topics including the fundamentals of wheat blast epidemiology, disease identification, molecular detection of the wheat blast pathogen, isolation and preservation techniques for the pathogen, disease scoring methods, disease management strategies, and field surveillance and monitoring.

The course also provided practical experience in disease evaluation at the Precision Phenotyping Platform (PPP) screening nursery located in Chilanga research station. This involved characterization of a diverse range of wheat germplasm with the aim of releasing resistant varieties in countries vulnerable to wheat blast. Additionally, participants undertook field visits to farmers’ fields, conducting surveillance of wheat blast-infected areas. They collected samples and recorded survey data using electronic open data kit (ODK) capture tools.

Participants listen to a lecture by B.N. Verma, director of Zambia Seed Co., on the history of wheat production in Zambia. (Photo: CIMMYT)

“The killer disease needs to be understood and managed utilizing multi-faceted approaches to limit the expansion and damages it can cause to global wheat production. The Bangladesh Wheat and Maize Research Institute (BWMRI) is willing to share all the strategies it deployed to mitigate the effect of wheat blast,” said Golam Faruq, BWMRI’s director general.

Participants visited seed farms to gain practical insights into seed production processes and quality assurance measures. These visits provided first-hand knowledge of seed selection, breeding techniques, and management practices crucial for developing resistant wheat varieties. Participants also visited research sites and laboratories to observe advanced research methodologies and technologies related to wheat blast management. These visits exposed them to cutting-edge techniques in disease diagnosis, molecular analysis, and germplasm screening, enhancing their understanding of effective disease surveillance and control strategies.

Field visit. (Photo: CIMMYT)

“The training and knowledge sharing event was a significant first step in developing understanding and capacity to deal with wheat blast for partners from several African countries. It was wonderful to see the efforts made to ensure gender diversity among participants,” said Professor Diane Saunders from the John Innes Centre, UK.

Wheat pathogen surveillance system set to expand through new investment

One of the world’s largest crop pathogen surveillance systems is set to expand its analytic and knowledge systems capacity to protect wheat productivity in food vulnerable areas of East Africa and South Asia.

Researchers announced the Wheat Disease Early Warning Advisory System (Wheat DEWAS), funded through a $7.3 million grant from the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth & Development Office, to enhance crop resilience to wheat diseases.

The project is led by David Hodson, principal scientist at CIMMYT, and Maricelis Acevedo, research professor of global development and plant pathology at Cornell University’s College of Agriculture and Life Sciences. This initiative brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.

Wheat DEWAS aims to be an open and scalable system capable of tracking important pathogen strains. The system builds on existing capabilities developed by the research team to provide near-real-time model-based risk forecasts and resulting in accurate, timely and actionable advice to farmers. As plant pathogens continue to evolve and threaten global food production, the system strengthens the capacity of countries to respond in a proactive manner to transboundary wheat diseases.

The system focuses on the two major fungal pathogens of wheat known as rust and blast diseases. Rust diseases, named for a rust-like appearance on infected plants, are hyper-variable and can significantly reduce crop yields when they attack. The fungus releases trillions of spores that can ride wind currents across national borders and continents and spread devastating epidemics quickly over vast areas.

Wheat blast, caused by the fungus Magnaporte oryzae Tritici, is an increasing threat to wheat production, following detection in both Bangladesh and Zambia. The fungus spreads over short distances and through the planting of infected seeds. Grains of infected plants shrivel within a week of first symptoms, providing little time for farmers to take preventative actions. Most wheat grown in the world has limited resistance to wheat blast.

“New wheat pathogen variants are constantly evolving and are spreading rapidly on a global scale,” said Hodson, principal investigator for Wheat DEWAS. “Complete crop losses in some of the most food vulnerable areas of the world are possible under favorable epidemiological conditions. Vigilance coupled with pathogen-informed breeding strategies are essential to prevent wheat disease epidemics. Improved monitoring, early warning and advisory approaches are an important component for safeguarding food supplies.”

Previous long-term investments in rust pathogen surveillance, modelling, and diagnostics built one of the largest operational global surveillance and monitoring system for any crop disease. The research permitted the development of functioning prototypes of advanced early warning advisory systems (EWAS) in East Africa and South Asia. Wheat DEWAS seeks to improve on that foundation to build a scalable, integrated, and sustainable solution that can provide improved advanced timely warning of vulnerability to emerging and migrating wheat diseases.

“The impact of these diseases is greatest on small-scale producers, negatively affecting livelihoods, income, and food security,” Acevedo said. “Ultimately, with this project we aim to maximize opportunities for smallholder farmers to benefit from hyper-local analytic and knowledge systems to protect wheat productivity.”

The system has already proven successful, contributing to prevention of a potential rust outbreak in Ethiopia in 2021. At that time, the early warning and global monitoring detected a new yellow rust strain with high epidemic potential. Risk mapping and real-time early forecasting identified the risk and allowed a timely and effective response by farmers and officials. That growing season ended up being a production record-breaker for Ethiopian wheat farmers.

While wheat is the major focus of the system, pathogens with similar biology and dispersal modes exist for all major crops. Discoveries made in the wheat system could provide essential infrastructure, methods for data collection and analysis to aid interventions that will be relevant to other crops.

Bangladesh to improve risk characterization at a granular level with Atlas

Bangladesh is one of the most climate-vulnerable countries in the world. The climate risks are negatively impacting the country’s agricultural sector, which constitutes nearly 12% of the country’s GDP. Additionally, 40% of the country’s workforce rely on agriculture for a major portion of their income (BBS, 2021-22).

Despite these challenges, Bangladesh has demonstrated remarkable economic growth by strategically investing in climate resilience and disaster preparedness over the years. The country has gained global recognition as a leader in these areas, driving its overall development. However, escalating climate risks continue to pose threats to Bangladesh’s progress, particularly impacting the most vulnerable segments of society and jeopardizing the nation’s growth trajectory.

Photo: (Harikhali in Paigachha/CCAFS)

In response to these challenges, Bangladesh has made concerted efforts to develop climate adaptation strategies. A significant milestone was the launch of the GCA Global Hub on locally led adaptation by the Honorable Prime Minister Sheikh Hasina in 2022. This groundbreaking initiative aims to support one million climate-vulnerable migrants in Bangladesh. The government has also formulated policies, plans and programs to combat the impacts of climate change. The Bangladesh Climate Change Strategy and Action Plan (BCCSAP), formulated in 2009 and updated in 2022, focuses on six thematic areas, with five and six emphasizing adaptation and mitigation, respectively. Another important initiative is the Bangladesh Delta Plan 2100, prepared in 2017, which categorizes the entire country into six hotspots. To safeguard the agricultural sector from climate change, Bangladesh has also developed vulnerability Atlases such as the ‘Bangladesh Climate and Disaster Risk Atlas: Volume 1 & 2’ and the ‘Climate Adaptation Services Bangladesh (Haor region).’

While significant progress has been made in risk mapping, there is room for improvement. For instance, the current Atlases operate at the district level, and there is immense potential to downscale them to the upazila (sub-district) level to achieve enhanced granularity. Additionally, transforming the Atlases from report format to a more interactive and user-friendly online one would be beneficial.

The Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project aligns with the goals of BCCSAP, focusing on location-specific climate change adaptation and mitigation strategies in agricultural production. The Atlas will play a crucial role in quantifying localized climatic risks, assessing their impacts on agriculture today and in the future, and identifying key adaptation options to mitigate these risks. This knowledge will strengthen Bangladesh’s food security and reduce its vulnerability to climatic risks.

The Bangladesh Agricultural Research Council (BARC) will actively utilize the Atlas, leveraging agro-geospatial data to expedite decision-making processes. BARC will further leverage its expertise in geospatial tools, crop zoning information systems, GIS-based mobile apps, climate information databases and drought monitoring systems, further combined with the knowledge base of Atlas to ensure informed and evidence-based actions. Moreover, collaborating with ACASA to develop an advanced and interactive online Atlas expands the country’s scope and fosters stakeholder participation, enabling informed decision-making and refined risk characterization at a granular level.

Piece by Shaikh Mohammad Bokhtiar, Executive Chairman, Bangladesh Agricultural Research Council (BARC), Bangladesh

Atlas of Climate Adaptation in South Asian Agriculture (ACASA)

About ACASA

Increasing climatic risks make it imperative to identify spatial and temporal risks that are likely to impact agriculture. Adaptation options are thus needed to mitigate the negative impacts. Considering this, with support from the Bill & Melinda Gates Foundation (BMGF), the Borlaug Institute for South Asia (BISA) is working with national agriculture research systems in South Asia to develop the Atlas of Climate Adaptation in South Asian Agriculture (ACASA).

This comprehensive Atlas aims to provide granular-scale information for South Asian countries at the village scale by integrating various spatially explicit data sets together. It covers climate hazards, and the exposure of smallholder populations, farms, and crop and livestock enterprises to hazards. It will also look into the vulnerability of these populations to climatic risks, impacts on critical commodities in the region, and evidence of the effectiveness of different climate adaptation interventions.

The ACASA offers a unique set of tools that can facilitate improved investment targeting and priority setting, and support stakeholders’ decision-making and investments in agricultural technologies, climate information services, and policies. The intended beneficiaries of this Atlas include governments, insurance and agri-food industries, international and national donors, and adaptation-focused entities.

Driven by science and data, explore ACASA’s approach to safeguard South Asian Agriculture

P. Malathy, Director General of Agriculture, Department of Agriculture, Sri Lanka, delivering keynote address during ACASA Project Inception Meeting.

ACASA Objectives

  1. Increase the quality, availability, and utility of data and evidence.
  2. Improve climate adaptive capacity of agricultural systems and guide stakeholders on location-specific adaptation options, including gender-informed technologies, practices, and climate information services to address risks.
  3. Increase the resilience of small-scale producers to climate variability and change.

ACASA Workstreams

Climate Risk Assessment

Gridded risk analysis using historical crop yield data and satellite signatures; indicators of current and future hazards, exposure, and vulnerabilities.

 Assessment of Climate Impact on Commodities

Climate impact on commodities under current and future climate

 Portfolio of Adaptation Options

Decision trees, crop/livestock models, statistical and econometric models, and expert consultations

 UI/UX Development

An open-source, web-enabled, interactive, and dynamic Atlas development

 Capacity Strengthening of Stakeholders

Training materials, tools, tutorials, and country/regional level workshops

ACASA Advisory Panel

The advisory panel established under ACASA will identify potential users, use cases in different countries, and guide and review Atlas’ progress. The constituted panel will have the scientific advisory committee (SAC) and South Asia’s country team leaders, who will be instrumental in hosting and adapting the Atlas. Explore the dynamic team of ACASA’s advisory panel.

Reports

ACASA Project Inception Report

To discuss ACASA and its development, a 3-day inception meeting was held in Delhi, India, from 25th to 27th April 2023, marked by 70 distinguished guests from Nepal, Sri Lanka, Bangladesh, and India discussing the various aspects of Atlas. The inception meeting provided some valuable recommendations/highlights that will be instrumental in building the Atlas.

ACASA Use Case Report

The ACASA project places significant importance on the practical applications of the Atlas. Various stakeholders could utilise Atlas to enhance investment in agricultural adaptation technologies and climate information services. Drawing from the diverse perspectives of the panellists during the inception meeting, a consolidated report was prepared on how ACASA team and its partners will be prioritising and developing use cases based on geographical and thematic considerations.

 

 

 

 

 

 

Evaluation and Planning Workshop on Transforming Agrifood Systems in South Asia (TAFSSA)

The Transforming Agrifood Systems in South Asia (TAFSSA) Initiative held its Evaluation and Planning Workshop in Dinajpur, Bangladesh, from June 6 to 8, 2023. The purpose of this interactive workshop was to bring together people from diverse sectors to assess the progress and challenges and adjust future implementation of the Initiative’s activities, which aim to improve South Asian agrifood systems to promote sustainable and nutritious foods for all. All three government partners participated in the three-day event: the Bangladesh Institute of Research and Training on Applied Nutrition (BIRTAN), Bangladesh Agricultural Research Institute – On-Farm Research Division (BARI-OFRD), and the Bangladesh Wheat and Maize Research Institute (BWMRI).

Participants visited the research platform trial hosted by BWMRI in Dinajpur, Bangladesh (Photo: Nur-A-Mahajabin Khan/CIMMYT)

The primary goal of the first day was to visit the locations of TAFSSA’s experiments and to interact with the farmers hosting the trials while they were taking place. Participants were divided into groups and visited several on-farm sites, viewing the trials and engaging in meaningful discussions with the farmers. These visits provided useful firsthand insights on the problems farmers confront while attempting to diversify their crops and improve their livelihoods. For example, visiting the research platform trial hosted by the BWMRI at its research station in Dinajpur allowed the participants to compare results from a broader set of diversified cropping patterns.

“More crops mean more money,” said Mohammad Ali, one of the farmers. “I am delighted to produce a variety of crops and witness the increase in my earnings. By cultivating four crops in a single year, I have experienced firsthand the positive impact on my income. Crop diversification has opened doors to new opportunities and has brought greater satisfaction to my farming endeavors.”

During the second day of the workshop, presentations were held to provide an overview of results from the activities TAFSSA implemented during the first seasons of the Initiative, including research platform trials, training sessions on nutrition, and on-farm activities carried out across the divisions of Rangpur and Rajshahi. These presentations emphasized TAFSSA’s progress, obstacles, and preliminary results and were followed by a question-and-answer session to discuss the outcomes and efforts. This interactive workshop promoted information exchange and sparked more debate. Participants underlined the significance of market links between farmers and consumers, emphasizing the need to develop sustainable and lucrative value chains.

Panelists engaged in a discussion about TAFSSA’s progress, challenges, and path forward (Photo: Nur-A-Mahajabin Khan/CIMMYT)

Future adjustments and improvements were discussed, which encouraged collaboration and problem-solving as a group. The method was inclusive and participative, ensuring that all opinions were heard and considered. The day ended with a dinner, during which participants were free to network and discuss ideas further with one another.

The third and final day began with a discussion on TAFSSA’s beneficiaries, particularly those involved in altering agrifood systems in South Asia to promote sustainable and healthy diets for all in the region. Participants looked at the gender aspect of the Initiative and whether it was effectively reaching all of its target beneficiaries, including men, women, and other marginalized groups.

The workshop provided a forum for participants to share their experiences, address issues and collaborate together to reform South Asian agrifood systems. The evaluation and planning exercises aimed to create equal access to nutritious diets, boost livelihoods and resilience among farmers, and safeguard land, air and groundwater resources.

Participants evaluated field production results during the field visit (Photo: Nur-A-Mahajabin Khan/CIMMYT)

“It’s crucial to acknowledge the lack of technical knowledge among farmers,” said Dr. Mazharul Anwar, from the BARI. “Providing targeted training programs for specific crops like tomato, carrot, sorghum, and others can help bridge this knowledge gap and enhance farmers’ capabilities in achieving better yields and sustainable practices.”

Through its work in South Asia, TAFSSA can contribute to change in the region and continue its objective to develop more sustainable and equitable agrifood systems by obtaining useful information from field trials, interactive visits with farmers, presentations, and conversations. To that end, the workshop has set the stage for the Initiative to achieve its goals thanks to the collaborative efforts and collective passion of all the participants.

CIMMYT and BWMRI host international training program on surveillance and management strategies for wheat blast

The devastating disease wheat blast is a threat to crop production in many South Asian countries. In Bangladesh, it was first identified in seven southern and southwestern districts in 2016, and later spread to 27 others causing significant damage. The International Maize and Wheat Improvement Center (CIMMYT) is working with the Bangladesh Wheat and Maize Research Institute (BWMRI) and other national partners to conduct research and extension activities to mitigate the ongoing threat.

From March 1-10, 2023, a group of 46 wheat researchers, government extension agents, and policy makers from ten countries — Bangladesh, Brazil, China, Ethiopia, India, Japan, Mexico, Nepal, Sweden, and Zambia — gathered in Jashore, Bangladesh to learn about and exchange experiences regarding various wheat diseases, particularly wheat blast. Following the COVID-19 pandemic, this was the first in-person international wheat blast training held in Bangladesh. It focused on the practical application of key and tricky elements of disease surveillance and management strategies, such as resistance breeding and integrated disease management.

Training participants get hands-on practice using a field microscope, Bangladesh. (Photo: Ridoy/CIMMYT)

“This is an excellent training program,” said Shaikh Mohammad Bokhtiar, executive chairman of the Bangladesh Agriculture Research Council (BARC), during the opening session.  “Participants will learn how to reduce the severity of the blast disease, develop and expand blast resistant varieties to farmers, increase production, and reduce imports.”

This sentiment was echoed by Golam Faruq, director general of BWMRI. “This program helps in the identification of blast-resistant lines from across the globe,” he said. “From this training, participants will learn to manage the devastating blast disease in their own countries and include these learnings into their national programs.”

Hands-on training

The training was divided into three sections: lectures by national and international scientists; laboratory and field experiment visits; and trips to farmers’ fields. Through the lecture series, participants learned about a variety of topics including disease identification, molecular detection, host-pathogen interaction, epidemiology and integrated disease management.

Hands-on activities were linked to working on the Precision Phenotyping Platform (PPP), which involves the characterization of more than 4,000 wheat germplasm and releasing several resistant varieties in countries vulnerable to wheat blast. Participants practiced taking heading notes, identifying field disease symptoms, tagging, and scoring disease. They conducted disease surveillance in farmers’ fields in Meherpur and Faridpur districts — both of which are extremely prone to wheat blast — observing the disease, collecting samples and GPS coordinates, and completing surveillance forms.

Muhammad Rezaul Kabir, senior wheat breeder at BWMRI, explains the Precision Phenotyping Platform, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

Participants learned how to use cutting-edge technology to recognize blast lesions in leaves using field microscopes. They went to a pre-installed spore trapping system in a farmer’s field to learn about the equipment and steps for collecting spore samples, observing them under a compound microscope, and counting spores. They also visited the certified seed production fields of Shawdesh Seed, a local company which has played an important role in promoting wheat blast resistant varieties BARI Gom 33 and BWMRI Gom 3 regionally, and Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) in Gazipur to see current wheat blast research in action.

Blast-resistance in Bangladesh

“I am so happy to see the excellent infrastructure and work ethics of staff that has made possible good science and impactful research come out of the PPP,” said Aakash Chawade, associate professor in Plant Breeding at the Swedish University of Agricultural Sciences. “Rapid development of blast-resistant varieties and their dissemination will help Bangladesh mitigate the effects of wheat blast, not only inside the country but by supporting neighboring ones as well.”

Training participants scout and score disease in a blast-infected wheat field, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

“Besides the biotic and abiotic challenges faced in wheat production, climate change and the Russia-Ukraine crisis are further creating limitations to wheat production and marketing,” said Pawan Kumar Singh, head of Wheat Pathology at CIMMYT and lead organizer of the training. “Due to the development of blast-resistant wheat varieties and its commercial production under integrated disease management practices, the domestic production of wheat in Bangladesh has increased and there is increased interest from farmers in wheat.”

Dave Hodson, a principal scientist at CIMMYT and one of the training’s resource speakers, added: “This is a remarkable success that researchers developed two blast resistant varieties in Bangladesh urgently. It was only achievable because of the correct measures taken by the researchers and support of Government policies.”

However, there are still some barriers to widespread adoption of these varieties. As such, in parallel to other activities, a team from Bangladesh Agricultural University (BAU) joined the field trip to meet local farmers and conduct research into the socio-economic factors influencing the adoption and scaling of relevant wheat varieties.

On-farm-Maize Select

The On-farm-Maize Select project will pilot a new genomics-driven selection method based on on-farm performance of Stage 1 maize breeding materials that is expected to deliver increased rates of genetic gain to the farmers through:

  • More accurate selection for the conditions of small-scale producers in Sub-Saharan Africa (SSA), especially women and the poorest farmers, who often apply fewer inputs.
  • Improved sampling of the diversity of on-farm conditions across the entire target population of environments (TPE).
  • Improved understanding of the diversity of socio-economic factors, agronomic management (especially by women), and environmental on-farm conditions across the TPE.
  • Genomic-assisted rapid recycling of parents (population improvement) to reduce breeding cycle time.
  • Improved social inclusion in breeding processes, leading to greater gender responsiveness and wider appeal of breeding outputs.

The hypothesis is that generating genomic estimated breeding values (GEBVs) based on on-farm phenotyping will lead both to increased selection accuracy for performance under farmer management, including challenging conditions that women and the poorest farmers face, and enable rapid cycling of parents by reducing the number of years of testing before new crosses are made. This hypothesis will be initially tested by estimating expected genetic gain on-station and on-farm based on the genetic correlation between on-station and gender-disaggregated on-farm performance of the same set of genotypes, as well as the repeatability of selection on-station versus on-farm. The value of on-farm versus on-station testing for estimating GEBVs for parent selection and early-stage advancement will be confirmed in two selected CIMMYT maize breeding pipelines (one each in eastern and southern Africa – EA-PP1 and SA-PP1) by comparing the performance on-farm of a sample of Stage 1 breeding lines from the second cycle of on-farm vs on-station selection. The efficacy and costs of undertaking on-farm genomic selection versus on-station selection at Stage 1 of the two selected breeding pipelines will also be evaluated.

Key Outputs

  • The genetic correlation between, and accuracy of estimation of, on-farm and on-station breeding values will be measured in terms of ability to predict performance under farmer management. This will enable comparison of the relative efficiency of direct selection on-farm versus indirect selection on-station. We expect that increased on-farm genetic gains will be achieved if the genetic correlation between on-farm and on-station performance is 0.8 or less.
  • Elite breeding populations improved for on-farm performance will be generated, and products extracted from them will be compared on-farm with those selected the same founder populations using conventional on-station selection (comparison of the products of the pipelines will not be possible until the second project phase, if approved).
  • Separate GEBVs generated for lines under the management of male and female farmers, with genetic correlations estimated to ensure that performance on female-managed farms is adequately weighted in selection indices.
  • Genomic-assisted on-farm sparse testing network, experimental design and capacity developed.
  • Improved representativeness of results due to enhanced gender and social inclusion approaches in the on-farm trial design.

Expected Outcomes

  • Greater rates of genetic gain delivered on-farm through more extensive sampling of TPEs
  • Improved accuracy of selection based on performance in farmers’ fields in the TPE.
  • Incorporation of farmer-preferred traits in selection decisions supports faster replacement of older hybrids with newer products.

The Australian High Commission, ACIAR and BARC delegates recognizes the BWMRI-CIMMYT collaborative wheat blast research platform in Bangladesh

Delegates with other officials in front of the seminar room. (Photo: Biswajit/BWMRI)

Representatives from Australian Centre for International Agricultural Research (ACIAR) and Bangladesh Agricultural Research Council (BARC) paid a visit to Bangladesh to see the valuable work of the Precision Phenotyping Platform (PPP).

PPP was established in response to the devastating wheat blast disease, which was first reported in the country in 2016.

Technical and financial support from the International Maize and Wheat Improvement Center (CIMMYT), the Australian Commission for International Agricultural Research and the Australian Centre for International Agricultural Research, along with other funders, has contributed to the effort to combat the disease.

This is achieved by generating precise data for wheat blast resistance in germplasm in Bangladesh, as well as other wheat growing countries. This PPP has been used to screen elite lines and genetic resources from various countries.

On February 16 and 17, 2023, two groups of national and international delegations visited the BWMRI-CIMMYT collaborative research platform PPP at the BWMRI regional station in Jashore, Bangladesh.

The first group was made up of representatives from both the Australian Commission for International Agricultural Research and the Australian Centre for International Agricultural Research. This included seven commissioners under the direction of Fiona Simson, along with ACIAR senior officials from Australia and India.

The other group was from BARC, which was led by Executive Chairman Shaikh Mohammad Bokhtiar, along with Golam Faruq, Director General of BWMRI, and Andrew Sharpe, Bangabandhu Research Chair, Global Institute of Food Security (GIFS), University of Saskatchewan in Canada.

Both delegations were welcomed by Muhammad Rezaul Kabir, the Senior Wheat Breeder at BWMRI. Kabir gave a brief presentation about the platform and other wheat blast collaborative research programs in the seminar room.

The delegations then went to the PPP field, where BWMRI researchers Kabir and Robiul Islam, as well as CIMMYT researcher Md. Harun-Or-Rashid, explained further information about the BWMRI-CIMMYT collaborative research. Both commissioners and delegates appreciated seeing the work being conducted in person by the national and international collaborations of BWMRI and CIMMYT on wheat blast research.

Visitors observing blast disease symptoms in wheat leaves. (Photo: Muhammad Rezaul Kabir/BWMRI)

“It is important, innovative work, that is affecting not only Bangladesh but many countries around the world that are now starting to be concerned about the impacts of wheat blast,” commissioner Simson said. “This study is very important for Australia and we are pleased to be contributing to it.”

Lindsay Falvey, another commissioner, added, “This is a wonderful experiment, using high-level science and technologies to combat wheat blast in Bangladesh. The experiment is well-planned. Overall, it is an excellent platform.”

ACIAR delegate Eric Huttner added to the praise for the project. “The platform is performing extremely well for the purpose of evaluating lines, resistance to the disease and that’s very useful for Bangladesh and rest of the world,” he said. “This is a gift that Bangladesh is giving to the neighboring countries to protect wheat.”

The delegates pledged to share their expert advice with the Minister of Foreign Affairs in Bangladesh in order to increase investments and improve facilities for agricultural research programs in the country.

Golam Faruq, Director General of BWMRI discussing the PPP with Shaikh Mohammad Bokhtiar, Executive Chairman of BARC (Photo: Md. Harun-Or-Rashid/CIMMYT)

“This is an excellent work,” Executive Chairman of BARC, Bokhtiar said. “We can get more information from screening activities by using bioinformatics tools and training people through the BARC-GIFS program.”

Pawan Kumar Singh, Head of Wheat Pathology at CIMMYT-Mexico and Project Leader, coordinated the visits virtually and expressed his thanks to the delegations for their visit to the platform. This PPP, within a short span of few years, has been highly impactful, characterizing more than 15,000 entries and releasing several resistant varieties in countries vulnerable to wheat blast.

Wheat Disease Early Warning Advisory System (DEWAS)

The Wheat Disease Early Warning Advisory System (Wheat DEWAS) project is bringing new analytic and knowledge systems capacity to one of the world’s largest and most advanced crop pathogen surveillance systems. With Wheat DEWAS, researchers are building an open and scalable system capable of preventing disease outbreaks from novel pathogen strains that threaten wheat productivity in food vulnerable areas of East Africa and South Asia.

The system builds from capabilities developed previously by multi-institutional research teams funded through long-term investments in rust pathogen surveillance, modelling, and diagnostics. Once fully operationalized, the project aims to provide near-real-time, model-based risk forecasts for governments. The result: accurate, timely and actionable advice for farmers to respond proactively to migrating wheat diseases.

The Challenge

Farmers growing wheat face pathogen pressures from a range of sources. Two of the most damaging are the fungal diseases known as rust and blast. Rust is a chronic issue for farmers in all parts of the world. A study in 2015 estimated that the three rust diseases — stem, stripe and leaf — destroyed more than 15 million tons of wheat at a cost of nearly $3 billion worldwide. Wheat blast is an increasing threat to wheat production and has been detected in both Bangladesh and Zambia. Each of these diseases can destroy entire harvests without warning, wiping out critical income and food security for resource-poor farmers in vulnerable areas.

The Response

Weather forecasts and early-warning alerts are modern technologies that people rely on for actionable information in the case of severe weather. Now imagine a system that lets farmers know in advance when dangerous conditions will threaten their crop in the field. Wheat DEWAS aims to do just that through a scalable, integrated, and sustainable global surveillance and monitoring system for wheat.

Wheat DEWAS brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.

Together, the researchers are focused on six interlinked work packages: 

Work package Lead Objectives
Data Management Aarhus University; Global Rust Reference Center
  • Maintain, strengthen and expand the functionality of the existing Wheat Rust Toolbox data management system
  • Create new modules within the Toolbox to include wheat blast and relevant wheat host information
  • Consolidate and integrate datasets from all the participating wheat rust diagnostic labs
  • Develop an API for the two-way exchange of data between the Toolbox and the Delphi data stack
  • Develop an API for direct access to quality-controlled surveillance data as inputs for forecast models
  • Ensure fair access to data
Epidemiological Models Cambridge University
  • Maintain operational deployment and extend geographical range
  • Productionalize code for long-term sustainability
  • Multiple input sources (expert, crowd, media)
  • Continue model validation
  • Ensure flexibility for management scenario testing
  • Extend framework for wheat blast
Surveillance (host + pathogen) CIMMYT
  • Undertake near-real-time, standardized surveys and sampling in the target regions
  • Expand the coverage and frequency of field surveillance
  • Implement fully electronic field surveillance that permits near real-time data gathering
  • Target surveillance and diagnostic sampling to validate model predictions
  • Map vulnerability of the host landscape
Diagnostics John Innes Centre
  • Strengthen existing diagnostic network in target regions & track changes & movement
  • Develop & integrate new diagnostic methodology for wheat rusts & blast
  • Align national diagnostic results to provide a regional & global context
  • Enhance national capacity for wheat rust & blast diagnostics
Information Dissemination and Visualization Tools PlantVillage; Penn State
  • Create a suite of information layers and visualization products that are automatically derived from the quality-controlled data management system and delivered to end users in a timely manner
  • Deliver near real time for national partners to develop reliable and actionable advisory and alert information to extension workers, farmers and policy makers
National Partner Capacity Building Cornell University
  • Strengthening National partner capacity on pathogen surveillance, diagnostics, modeling, data management, early warning assessment, and open science publishing

 

Wheat DEWAS partners 

Academic organizations: Aarhus University / Global Rust Reference Center; Bangabandhu Sheikh Mujibur Rahman Agricultural University; Cornell University / School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section; Hazara University; Penn State University / PlantVillage; University of Cambridge; University of Minnesota

 Research organizations: Bangladesh Wheat and Maize Research Institute (BWMRI); CIMMYT; Department of Agricultural Extension (DAE), Bangladesh; Ethiopian Agricultural Transformation Institute (ATI); Ethiopian Institute of Agricultural Research (EIAR); ICARDA; John Innes Centre (JIC); Kenya Agricultural and Livestock Research Organization (KALRO); National Plant Protection Centre (NPPC), Bhutan; Nepal Agricultural Research Council (NARC); Pakistan Agricultural Research Council (PARC); UK Met Office; Tanzania Agricultural Research Institute (TARI); The Sainsbury Laboratory (TSL) / GetGenome; U.S. Department of Agriculture, Agricultural Research Service; Zambia Agricultural Research Institute (ZARI)

Participatory action research identifies solutions for improved seed storage in Bangladesh

Traditional and alternative seed storage methods have been compared in a participatory household trial co-designed by the International Maize and Wheat Improvement Center (CIMMYT) and smallholder farmers in Bangladesh, demonstrating how farmers can be involved in agricultural research.

In the summer monsoon season preceding planting in the winter, farmers typically use low-density polyethylene (LDPE) bags contained within woven polypropylene bags to store their wheat seed. Seed quality typically deteriorates over the monsoon as a result of increased seed moisture and pests that are associated with high humidity and temperature.

After initially being consulted by survey and detailed focus group interactions on the design of the trial, 80 wheat farming households participated in a 30-week action research process by conducting trials to compare seed storage methods. This included comparing hermetic SuperGrainbagsÂź (Premium RZ) against LDPE bags, both with and without the addition of dried neem tree leaves (Azadirachta indica), the latter representing a common method used by farmers in Bangladesh to improved stored seed.

Results of the trials demonstrated that seed germination and seedling coleoptile length were greater, and that seed moisture was maintained at levels close to before storage in SuperGrainbagsÂź compared to LDPE bags. The use of neem however had no effect on these factors.

Furthermore, hermetic bags were more effective in lessening seed damage caused during the storage process, but neem slightly reduced damage rates for seeds stored using traditional methods compared to SuperGrainbagsÂź.

In relation to diseases and pests, SuperGrainbagsÂź suppressed Coleopteran pests and blackspot, while storing neem alongside the seeds in LDPE bags had a slight additional pest suppressive effect.

Scoring by both men and women farmers revealed their preference for SuperGrainbags¼ hermetic storage. The study recommends actions for value chain development to increase farmers’ access to improved hermetic storage options at low cost.

Read the study: Performance of a hermetic device and neem (Azadirachta indica) in storing wheat seed: Evidence from participatory household trials in central Bangladesh

Cover photo: A female farmer in a field of wheat in Bangladesh, where participatory research is helping farmers adapt to better ways of storing seeds. (Photo: Ranak Martin/CIMMYT)

Integrated initiative launches in Nepal, India and Bangladesh

TAFSSA inception workshops in Nepal, India and Bangladesh. (Credit: CIMMYT/CGIAR)

CGIAR, in collaboration with government agencies and other relevant stakeholders, held country launches of the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative in three of its four working locations: Nepal, India and Bangladesh.

TAFSSA, which also operates in Pakistan, aims to deliver a coordinated program of research and engagement, transforming evidence into impact through collaboration with public and private partners across the production-to-consumption continuum. The end result will be productive and environmentally sound South Asian agrifood systems that support equitable access to sustainable healthy diets, as well as contributing to improved farmer livelihoods and resilience, while conserving land, air and groundwater resources.

A vision for South Asian agrifood systems

The three country-level launch events provided a platform for CGIAR’S partners to discuss TAFSSA’s five key areas:

  1. Facilitating agrifood system transformation through inclusive learning platforms, public data systems, and collaborations.
  2. Changing agroecosystems and rural economies to increase revenue and sustain diverse food production within environmental constraints.
  3. Improving access to and affordability of sustainably produced healthful foods through evidence and actions across the post-harvest value chain.
  4. Addressing the behavioral and structural factors of sustainable healthy diets
  5. Building resilience and limiting environmental impact.

The three inception events in Nepal, India and Bangladesh also provided a space for open debate on creating partnerships to achieve common goals, through multidisciplinary conversation on each focal area. Breakout sessions were also held according to emphasis area, explaining the initiative and its components clearly and providing opportunities to brainstorm with participants on how to build more stakeholder-responsive activities.

More than 70 participants attended each inception session, both in-person and online, representing government agencies, CGIAR and its research centers working on TAFSSA, international organizations working in the region, academic institutions, and other key stakeholder groups.

Project endorsements

At the launch event in Nepal on June 9, Temina Lalani Shariff, regional director for South Asia at CGIAR, described TAFSSA as a gateway to the rest of CGIAR’s global research efforts. She explained, “More than 100 partners from around the world will exchange their knowledge, skills and expertise through CGIAR’s new platform to work together for agriculture development.”

Purnima Menon, TAFSSA co-lead and senior research fellow with the International Food Policy Research Institute (IFPRI), presented the project in India on June 15. “The research portfolio and engagement plan we’re proposing is really intending to cut across the food system,” said Menon. “We want to engage people in production systems, people in the middle of the value chain, and consumers, to build the research portfolio. The idea is to do so in a way that is interlinked with the five new CGIAR impact areas and that amplifies CGIAR’s research on the ground.”

Introducing TAFSSA in Bangladesh on July 18, Timothy J. Krupnik, Initiative lead and senior agronomist with the International Maize and Wheat Improvement Center (CIMMYT), stated, “The approach we’ve taken while developing this Initiative was to first look at agrifood crisis issues in South Asia. We evaluated key challenges in this region which has world’s highest concentrations of hunger and poverty.” He highlighted climate change, resource constraints and social structural inequalities, all of which will be addressed by TAFSSA through several focus areas.

Shaikh Mohammad Bokhtiar, Chairman of the Bangladesh Agriculture Research Council (BARC) welcomed these ideas at the TAFSSA Bangladesh launch. “If we want to create an intelligent society or nation, if we want sustainability, we must provide nutrition for all,” said Bokhtiar. “In this region, I believe that combining science, technology and innovation in the TAFSSA initiative will deliver good results.”

Shariff also attended the launch in Bangladesh, where she remarked, “We are here to share a common path to work together to confront the challenges. For that, cooperation is the essential component which is common across Nepal, India and Bangladesh.”

At each of the launch events, TAFSSA was announced as a flagship initiative in South Asia by Martin Kropff, managing director of Resilient Agrifood Systems (RAFS) at CGIAR. He expressed confidence that it would be the first regional program to deliver significant development results and acknowledged that the planned collaboration and partnership with national research institutes would ensure TAFSSA’s success.