Skip to main content

funder_partner: Association of International Research and Development Centers for Agriculture (AIRCA)

Plant health data is critical for effective policy change

Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)

With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.

The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.

Data-driven approaches

The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.

Cambria Finegold, Global Director, Digital Development, CABI said, “If you are not measuring crop loss well, then you don’t know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.”

Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.

Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.

Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)

Establishing global networks

The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.

Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYT’s Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.

With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.

Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.

To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partners’ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.

Removing the barriers for data sharing

The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.

These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.

Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.

“The OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,” said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.”

About the Global Burden of Crop Loss:

The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data. 

The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.

About the Centre for Agriculture and Bioscience International (CABI):

CABI is an international, inter-governmental, not-for-profit organization that improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.

Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.

Nepal Government endorses new site-specific fertilizer recommendations for rice

Farmer applying urea with a spreader in a rice field. Photo Uttam Kunwar/ CIMMYT

After four decades, new site-specific fertilizer recommendations for rice have been introduced in Nepal that will help farmers increase the crop’s productivity by 10-30%, compared to their current practices.

The Ministry of Agriculture and Livestock Development (MoALD) endorsed the new fertilizer recommendations for rice crop at a consultative workshop in July 2022 held in Kathmandu. Developed by the International Maize and Wheat Improvement Center (CIMMYT), in close collaboration with the Nepal Agriculture Research Council’s (NARC) National Soil Science Research Center (NSSRC) and International Fertilizer Development Center (IFDC), the new regime replaces the existing blanket approach of recommendations to help increase crop yields and fertilizer use efficiency.

The blanket approach assumed the whole country as one domain despite the heterogeneity in soils, other biophysical conditions and agronomic management practices, including crop varieties. As a result, fertilizers were under-utilized in low fertile soils or overused in farms with high soil fertility status, thereby farmers were not able to obtain the achievable yield.

Unlike the generic recommendations, the site-specific fertilizer management will help farmers to determine the crop’s fertilizer requirements based on soil fertility status of a particular farm, attainable yield target of the selected crop variety, crop’s yield response to fertilizers and agronomic management practices, such as irrigation, cropping systems etc. In other words, this new regime allows farmers to produce more with less fertilizers through a balanced application of fertilizers based on available soil properties.

Old is not always gold

Generally, soil fertility status changes every 3-5 years when there is continuous nutrient removal from soils due to an intensive cropping system with the adoption of high nutrient demanding improved and hybrid varieties. Thus, soil fertility management recommendations should be updated periodically but the existing recommendations were not updated since 1976.

Realizing the limitations, CIMMYT through the Nepal Seed and Fertilizer (NSAF) project, supported by USAID, worked with NSSRC and IFDC to formulate fertilizer recommendations for major cereal crops and vegetables for specific domains of the country.

Under NSSRC’s leadership, a ‘Fertilizer Recommendation Committee’ comprising of a dedicated team of soil scientists within NSSRC and NSAF experts was formed to develop site-specific fertilizer recommendations using the Soil-SMART framework for delivering balanced fertilizers to farmers. Based on soil fertility status, agro-climate, irrigation regimes and geography, the country was divided into six soil fertility domains — four in the Terai region (Eastern, Central, Western and Far-western), one in inner Terai and one in the hills. Under each domain, recommendations were based on the attainable yield, crop variety, and irrigation regime.

This approach was first tested for rice crop.

Formulating new recommendations for rice

Three fundamental steps were used to develop site-specific fertilizer recommendations, which included: i) selection of yield goal, ii) estimation of crop nutrient requirement, and iii) estimation of indigenous nutrient supplies. To collect this information, NSAF and the committee designed field trials on nutrient omission and nutrient rates to determine the yield limiting nutrients and their optimum rate, respectively. Data from fertilizer trials conducted by different research institutes and universities, including trials from the project sites were collected and analyzed by the team to see the crop’s yield response to fertilizers. A modeling approach called Quantitative Evaluation of fertility of the tropical soils (QUEFTS) was also used to estimate the indigenous nutrient supply and attainable yield target of rice for different soil fertility domains. This model was applied as an alternate to extrapolate recommendations in areas where field data were not available, considering large financial and human resources required otherwise to conduct numerous field trials across different soil types and agro ecological zones. The model was validated with field trial data before making extrapolation of the recommendations. The QUEFTS model used soil properties from Nepal’s first digital soil map to identify nutrient status and deficiency.

In addition to agronomic optimum rate, an economic analysis was also conducted to see economic variability of the recommendations.

The newly developed recommendations provide guidance for balanced fertilization as it includes micronutrients zinc and boron, and organic inputs in addition to three major nutrients —Nitrogen, Potassium and Phosphorous (NPK). Results from field trials suggested that the new recommendation could increase rice productivity by 10-30% compared to existing farmers’ practice.

Infographic on developing domain specific fertilizer recommendations.

Advocating for endorsement

A three-day workshop was organized by CIMMYT and NSSRC to primarily share and approve the recommended fertilizer dose for rice crop as well as its relevance to achieve potential yield at farm level. Rajendra Mishra, joint secretary of MoALD inaugurated the event that was chaired by the Director of NARC’s Crop and Horticulture Research. Workshop attendees included MoALD, NARC, Department of Agriculture, USAID Nepal, secretaries from the Province Ministry of Land Management, soil scientists, university professors, agronomists and other high-level government officials.

During the workshop, NSAF explained the application of QUEFTS model with reference to the case of rice based on the field trial data for domain specific fertilizer recommendations. Shree Prasad Vista, soil scientist at NSSRC, summarized the results for rice as the approach and facilitated its approval from MoALD. The participants also discussed on strategies to link with the extension system to reach a large number of farmers through the three-tier governments. Fourteen research papers on nutrient management for major cereal crops were also reviewed at the event.

“I congratulate NARC for this historical work on updating the fertilizer recommendations after 46 years. Now, we are moving towards sustainable soil fertility management by adopting site-specific fertilizer recommendations,” said MoALD Secretary Govinda Prasad Sharma.

Although the recommendation for rice was a significant output of the workshop, fertilizer recommendations for other major crops will be carried out following a similar process.

NARC’s Executive Director Deepak Bhandari commented, “It is our pleasure to move from a blanket approach to site-specific approach. This is a milestone for agricultural research in the country and I would like to thank all the scientists, NSAF project and USAID’s support for this notable achievement.”

Similarly, speaking at the event, Jason Seuc, Director of Economic Growth Office at USAID Nepal, emphasized the importance of soil fertility management for achieving food security targets set by the Government of Nepal. Seuc remarked that a sustainable soil fertility management is critical not only for food security but also for reducing the environmental pollution.

Soil scientists and stakeholders reflect on progress and impacts of CIMMYT-Rwanda partnership for soil health

Participants at the mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project. Photo CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) and the Rwanda Agriculture and Animal Resources Development Board (RAB) recently held a mid-term review and planning meeting on the Guiding Acid Soil Management Investments in Africa (GAIA) project.

The meeting aimed to track the progress made in the first year of the project’s implementation, identify challenges, document lessons learned, and develop an action plan for the following year, based on identified gaps and priorities.

In his welcoming remarks, RAB Director General Patrick Karangwa highlighted the close partnership between the two institutions.

“The workshop is not only about reviewing the progress but also about creating a strong partnership and interaction with each other to form a lasting togetherness that can later be useful for supporting each other in running the program’s activities of GAIA in the region,” he said.

Karangwa also noted the dynamism and enthusiasm of the GAIA team and partners, who made “remarkable successes” during a challenging period due to the COVID-19 pandemic.

Along with plant nutrition and improved land management, healthier soils contribute to more productive and profitable smallholder enterprises. The GAIA project uses scalable innovations to provide reliable, timely and actionable data and insights on soil health and crop performance, at farm and regional levels.

The workshop brought together about 49 participant including regional program implementing partners, key stakeholders, and scientists from Ethiopia, Kenya, Rwanda, Tanzania, and Zimbabwe to  participate in more than 20 face-to-face and virtual presentations,  breakout sessions, and team-building exercises.

“The key to project success is a strong partnership and collaboration with national and regional partners, particularly with private and public sectors ‘’ said  Sieglinde Snapp, the director of the Sustainable Agrifood Systems (SAS) program at CIMMYT.

The participants addressed the work undertaken around eight work packages: spatial ex-ante analysis, adoption research on lime value chains, agronomy research for lime recommendations, support to the lime sector, policy support, coordination and advocacy, data use and management, and communication.

“We are encouraged by the progress made so far and expect to have a measurable impact in the next years. Let us feel comfortable to identify new area of research, based on the work conducted so far and national priorities” said Frédéric Baudron, GAIA project lead at CIMMYT.

GAIA is funded by the Bill and Melinda Gates Foundation and implemented by CIMMYT in partnership with the Centre for Agriculture and Bioscience International; Dalberg; national agricultural research systems in Ethiopia, Kenya, Rwanda, and Tanzania; the Southern Agricultural Growth Corridor of Tanzania; Wageningen University; and the University of California – Davis. The project aims to provide data-driven and spatially explicit recommendations to increase returns on investment for farmers, the private sector, and governments in Africa.

CGIAR Plant Health Initiative formally launched on the International Day of Plant Health

National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)

CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiative’s inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.

The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.

Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.

“The CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. “This calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.”

Demand-driven multistakeholder approach

CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.

The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenya’s Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIAR’s contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.

“As government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],” said Magenya.

Implications of Plant Health in Africa and globally

Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.

Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.

CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrow’s problems today, through collective and decisive action at all levels.

Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)

The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing women’s major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. “We welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,” she added.

Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.

Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.

Reflecting on gender, social inclusion, and plant health

Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.

Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).

B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)

Charting the course for the Initiative

The Plant Health Initiative Work Package Leads presented the Initiative’s five specific work packages and reiterated their priorities for the next three years.

“We are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,” said Prasanna.

The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.

For more information, visit the CGIAR Plant Health Initiative page or download a brief. 

Panel Discussion Presentations

“Plant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forward” moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).

 “Scaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovations” moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)

Work Package Title and Leads

Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization

Lead: Monica Carvajal, Alliance of Bioversity-CIAT

Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response

Lead: Lava Kumar, IITA

Work Package 3: Integrated pest and disease management

Lead: Prasanna Boddupalli, CIMMYT

Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination

Lead: Alejandro Ortega-Beltran, IITA

Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)

A climate-smart remodeling of South Asia’s rice-wheat cropping is urgent

A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches — a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.

Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.

Getting down in the dirt

A recent scientific review examines the potential of a suite of improved practices — reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control — to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.

Another study on soil quality in India’s extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.

Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms — major contributors to soil health — in soils under farmers’ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.

The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)

Rebooting marginal farms by design

Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.

More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the region’s puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.

Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmers’ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.

Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.

Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.

Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)

Q&A: Regenerative agriculture for soil health

South Asia was the epicenter of the Green Revolution, a historic era of agricultural innovation that fed billions of people on the brink of famine.

Yet despite the indisputably positive nutritional and developmental impacts of the Green Revolution of the 1960s, the era of innovation also led to the widespread use of farming practices—like intensive tilling, monoculture, removal and burning of crop residues, and over-use of synthetic fertilizer—that have a deleterious effect on the soil and cause off-site ecological harm. Excess pumping of irrigation water over decades has dried out the region’s chief aquifer.

South Asia’s woes illustrate the environmental costs of intensive food production to feed our densely-populated planet. Currently, one billion hectares of land worldwide suffers from degraded soils.

The International Maize and Wheat Improvement Center (CIMMYT) works with two of the world’s most widely cultivated and consumed cereal crops. To grow enough of these staple foods to feed the world, a second Green Revolution is needed: one that avoids the mistakes of the past, regenerates degraded land and reboots biodiversity in farm areas.

M.L. Jat, a CIMMYT Principal Scientist, has spent 20 years studying and promoting sustainable agricultural practices for maize- and wheat-based farming systems. In the following Q&A, Jat tells us about regenerative agriculture: integrated farming and grazing practices intended to rebuild soil organic matter and restore degraded soil biodiversity.

Q: What major components or practices are part of regenerative agriculture?

A: Regenerative agriculture is a comprehensive system of farming that harnesses the power of soil biology to rebuild soil organic matter, diversify crop systems, and improve water retention and nutrient uptake. The depletion of biodiversity, degradation of soil health, warming, and drier weather in farm areas have necessitated a reversal in agriculture from “degeneration to regeneration.”

The practices address food and nutritional security challenges while protecting natural resources and lowering agriculture’s environmental footprint, in line with the United Nations Sustainable Development Goals. CIMMYT has worked for years to research and promote conservation agriculture, which contributes to the aims of regenerative agriculture, and is already practiced on more than 200 million hectares globally — 15% of all cropland — and is expanding at a rate of 10.5 million hectares per year.

Q: What are the potential roles of major food crops — maize, rice, and wheat — in regenerative agriculture systems?

A: Regenerative agriculture is “crop neutral;” that is, it is applicable to almost all crops and farming systems. The world’s rice, wheat, and maize crops have an enormous physical and ecological footprint on land and natural resources, but play a critical role in food and nutrition security. Considering that anthropogenic climate change has reduced the global agricultural total factor productivity by about 21% in the past six decades, applying regenerative agriculture approaches to these systems represents a momentous contribution toward sustainable farming under increasing climatic risks.

Download "Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.
Download “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations”.

Q: What elements or approaches of regenerative agriculture are applicable in India and how can they be applied?

A: Regenerative practices for maize and wheat systems in India include no-tillage, crop residue recycling, legume inter-cropping and cover crops, crop diversification, integrated nutrient management, and precision water management.

The potential area of adoption for regenerative agriculture in India covers at least 50 million hectares across a diversity of cropping systems and agroecologies — including irrigated, rainfed, and arid farmlands — and can be approached through appropriate targeting, investments, knowledge and capacity enhancement, and enabling policies.

In the breadbasket region of the Indo-Gangetic Plains, regenerative agriculture can help address the aforementioned second-generation problems of the Green Revolution, as well as contributing to the Indian government’s Soil Health Mission and its COP26 commitments.

Q: In order to get regenerative agriculture off the ground in South Asia, who will be involved?

A: Adapting and applying regenerative agriculture’s portfolio of practices will require the participation of all stakeholders associated with farming. Application of these principles is location- and situation-specific, so researchers, extension functionaries, value chain actors, philanthropists, environmentalists, NGOs, farmers, and policy planners all have a role to play in the impact pathway.

CIMMYT, the Borlaug Institute for South Asia (BISA), public and private programs and agencies, and farmers themselves have been developing, refining, and scaling out conservation agriculture-based regenerative agriculture practices for some three decades in South Asia. CIMMYT and BISA will continue to play a key role in mainstreaming regenerative agriculture in local, national, and regional development plans through science-based policy and capacity development.

Q: Farmers constitute a strong economic and political force in India. How can they be brought on board to practice regenerative agriculture, which could be more costly and knowledge-intensive than their current practices?

A: We need to pursue business “unusual” and harness the potential opportunities of regenerative agriculture to sequester soil carbon and reduce greenhouse gas emissions. Regenerative agriculture practices can offer farmers additional income and certainly create a “pull factor” for their adoption, something that has already started and will constitute a strong business case. For example, innovative business models give farmers an opportunity to trade ecosystem services and carbon credits through repurposing subsidies and developing carbon markets for private sectors. CIMMYT, along with the Indian Council of Agricultural Research and private partners such as Grow Indigo, are already helping to put in place a framework to acquire carbon credits through regenerative agriculture in India.

For more information about the application of regenerative agriculture on India’s farmlands, see “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.

Cover photo: Brown and green fields. (Photo: Elizabeth Lies/Unsplash)

MAIZE partners announce a new manual for effectively managing maize lethal necrosis (MLN) disease

For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.

When the disease was first reported in Kenya 2011 it spread panic among stakeholders. Scientists soon realized that almost all commercial maize varieties in Africa were susceptible. What followed was a superlative effort coordinated by the CGIAR Research Program on Maize (MAIZE) to mobilize “stakeholders, resources and knowledge” that was recently highlighted in an external review of program.

The publication of Maize Lethal Necrosis (MLN): A Technical Manual for Disease Management builds on the partnerships and expertise accrued over the course of this effort to provide a comprehensive “guide on best practices and protocols for sustainable management of the MLN.”

The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to “‘high-risk’ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,” writes B.M. Prasanna, director of CIMMYT’s Global Maize Program and MAIZE, in the foreword.

“While intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,” says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.

Nepal launches digital soil map

A new digital soil map for Nepal provides access to location-specific information on soil properties for any province, district, municipality or a particular area of interest. The interactive map provides information that will be useful to make new crop- and site-specific fertilizer recommendations for the country.

Produced by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Nepal Agricultural Research Council’s (NARC) National Soil Science Research Center (NSSRC), this is the first publicly available soil map in South Asia that covers the entire country.

The Prime Minister of Nepal, K.P. Sharma Oli, officially launched the digital soil map at an event on February 24, 2021. Oli highlighted the benefits the map would bring to support soil fertility management in the digital era in Nepal. He emphasized its sustainability and intended use, mainly by farmers.

CIMMYT and NSSRC made a live demonstration of the digital soil map. They also developed and distributed an informative booklet that gives an overview of the map’s major features, operation guidelines, benefits, management and long-term plans.

The launch event was led by the Ministry of Agriculture and Livestock Development and organized in coordination with NARC, as part of the Nepal Seed and Fertilizer (NSAF) project, implemented by CIMMYT. More than 200 people participated in the event, including government officials, policymakers, scientists, professors, development partner representatives, private sector partners and journalists. The event was also livestreamed.

Better decisions

Immediately after the launch of the digital soil map, its CPU usage grew up to 94%. Two days after the launch, 64 new accounts had been created, who downloaded different soil properties data in raster format for use in maps and models.

The new online resource was prepared using soil information from 23,273 soil samples collected from the National Land Use Project, Central Agricultural Laboratory and Nepal Agricultural Research Council. The samples were collected from 56 districts covering seven provinces. These soil properties were combined with environmental covariates (soil forming factors) derived from satellite data and spatial predictions of soil properties were generated using advanced machine learning tools and methods.

The platform is hosted and managed by NARC, who will update the database periodically to ensure its effective management, accuracy and use by local government and relevant stakeholders. The first version of the map was finalized and validated through a workshop organized by NSSRC among different stakeholders, including retired soil scientists and university professors.

Ivan Ortiz-Monasterio, principal scientist at CIMMYT, shared his remarks in a video message. (Photo: Shashish Maharjan/CIMMYT)
Ivan Ortiz-Monasterio, principal scientist at CIMMYT, shared his remarks in a video message. (Photo: Shashish Maharjan/CIMMYT)

“The ministry can use the map to make more efficient management decisions on import, distribution and recommendation of appropriate fertilizer types, including blended fertilizers. The same information will also support provincial governments to select suitable crops and design extension programs for improving soil health,” said Padma Kumari Aryal, Minister of Agriculture and Livestock Development, who chaired the event. “The private sector can utilize the acquired soil information to build interactive and user-friendly mobile apps that can provide soil properties and fertilizer-related information to farmers as part of commercial agri-advisory extension services,” she said.

“These soil maps will not only help to increase crop yields, but also the nutritional value of these crops, which in return will help solve problems of public health such as zinc deficiency in Nepal’s population,” explained Ivan Ortiz-Monasterio, principal scientist at CIMMYT, in a video message.

Yogendra Kumar Karki, secretary of the Ministry of Agriculture and Livestock Development, presented the program objectives and Deepak Bhandari, executive director of NARC, talked about the implementation of the map and its sustainability. Special remarks were also delivered by USAID Nepal’s mission director, the secretary of Livestock, scientists and professors from Tribhuwan University, the International Fertilizer Development Center (IFDC) and the International Centre for Integrated Mountain Development (ICIMOD).

K.P. Sharma Oli (left), Prime Minister of Nepal, and Padma Kumari Aryal, Minister of Agriculture and Livestock Development, launch the digital soil map. (Photo: Shashish Maharjan/CIMMYT)
K.P. Sharma Oli (left), Prime Minister of Nepal, and Padma Kumari Aryal, Minister of Agriculture and Livestock Development, launch the digital soil map. (Photo: Shashish Maharjan/CIMMYT)

Benefits of digital soil mapping

Soil properties affect crop yield and production. In Nepal, access to soil testing facilities is rather scarce, making it difficult for farmers to know the fertilizer requirement of their land. The absence of a well-developed soil information system and soil fertility maps has been lacking for decades, leading to inadequate strategies for soil fertility and fertilizer management to improve crop productivity. Similarly, existing blanket-type fertilizer recommendations lead to imbalanced application of plant nutrients and fertilizers by farmers, which also negatively affects crop productivity and soil health.

This is where digital soil mapping comes in handy. It allows users to identify a domain with similar soil properties and soil fertility status. The digital platform provides access to domain-specific information on soil properties including soil texture, soil pH, organic matter, nitrogen, available phosphorus and potassium, and micronutrients such as zinc and boron across Nepal’s arable land.

Farmers and extension agents will be able to estimate the total amount of fertilizer required for a particular domain or season. As a decision-support tool, policy makers and provincial government can design and implement programs for improving soil fertility and increasing crop productivity. The map also allows users to identify areas with deficient plant nutrients and provide site-specific fertilizer formulations; for example, determining the right type of blended fertilizers required for balanced fertilization programs. Academics can also obtain periodic updates from these soil maps and use it as a resource while teaching their students.

As digital soil mapping advances, NSSRC will work towards institutionalizing the platform, building awareness at the province and local levels, validating the map, and establishing a national soil information system for the country.

Nepal’s digital soil map is readily accessible on the NSSRC web portal:
https://soil.narc.gov.np/soil/soilmap/

Breaking Ground: Dyutiman Choudhary builds strong agribusinesses for sustainable economic growth

Agricultural market systems play a pivotal role in food security, livelihood development and economic growth. However, the agricultural sector in Nepal is constrained by a lack of spatially-explicit technologies and practices related to improved seed and fertilizer. Embracing these challenges, Dyutiman Choudhary, a scientist in market development with the International Maize and Wheat Improvement Center (CIMMYT), works to strengthen the seed and fertilizer market systems and value chains, with the ultimate goal to ensure demand-driven, inclusive and market-oriented cereal production.

Nepal’s agricultural sector is dominated by smallholder farmers. As farming is mostly semi-commercial and subsistence in nature, many smallholder farmers are isolated from markets and lack knowledge about the latest farming technologies and inputs. They are unable to upgrade their farms to increase productivity for generating marketable surplus to make profitable income. Agribusiness entities in Nepal — such as seed companies, agrodealers and importers — face market development challenges and lack the commercial and business orientation to develop and deliver new technologies to farmers. Output market linkages are weak and loosely integrated, leading to poor coordination, weak information flow and lower return to actors.

This is where Choudhary’s expertise in agribusiness management fits in to make a difference.

Born and raised in Shillong, a hill station in northeastern India with a distinctive charm, he was enrolled as an engineering student. However, his interest took a sudden turn when he got drawn towards biological sciences and ultimately decided to leave the engineering course by stepping into agribusiness management. “I realized I was walking in the right direction as I was fascinated to learn about the livelihood benefits of agroforestry and the scope of agribusiness in fostering overall economic growth.”

He joined CIMMYT in 2017 as an expert in market development, but his roles and responsibilities transitioned to working as a Lead for the Nepal Seed and Fertilizer (NSAF) project within four months of his appointment. His role involves leading an interdisciplinary team of scientists, partners and experts to develop a synergistic market system. The NSAF team fosters public private partnerships, improves access to support services and strengthens inclusive value chains in a supportive policy environment.

Choudhary’s research focuses on assessing crops, seed and fertilizer value chains; developing commercial and inclusive upgrading strategies with businesses and stakeholders; assessing competitiveness of seed companies; lobbying for policies to foster the growth of seed and fertilizer business; and building pathways for public and private sector services to market actors and smallholder farmers.

Dyutiman Choudhary (seventh from left) with seed producers during a field visit. (Photo: Dipak Kafle)
Dyutiman Choudhary (seventh from left) with seed producers during a field visit. (Photo: Dipak Kafle)

A roadmap to innovative market systems

Choudhary introduced the vision of a market system approach and put together a strategic roadmap in collaboration with a team from CIMMYT researchers from the Global Maize program, the Sustainable Intensification program and the Socioeconomics program. The roadmap addressed the concerns of low crop productivity, poor private sector growth and a less supportive policy environment inhibiting agricultural innovations in Nepal.

“Seed and fertilizer market systems in Nepal are uncompetitive and lack influx of new knowledge and innovations that restricts agriculture growth,” Choudhary explained.

Having prior experience as a regional lead for high-value products and value chains for South Asia and an inclusive market-oriented development expert in Eastern and Southern Africa, Choudhary carries unique capabilities for putting together a winning team and working with diverse partners to bring about a change in farming practices and build a strong agribusiness sector in Nepal.

Under his leadership, Nepalese seed companies are implementing innovative and competitive marketing approaches to develop newly acquired hybrid varieties under their brands. The companies are upgrading to build business models that cater to the growth of seed business, meet market demands and offer innovative services to smallholder farmers to build a sustainable national market. Facilitating financing opportunities has enabled these enterprises to produce strategic business plans to leverage $2 million to finance seed business. Improved value chain coordination mechanisms are increasing demand of seed company’s products and enhancing smallholder farmers’ access to output markets.

There is a renewed interest and confidence beaming from the private sector to invest in fertilizer business due to improved knowledge, communication and collaborative methods. The government committed to support balanced soil fertility management and allocated $2.4 million in 2019 to initiate fertilizer blending in Nepal.

The landscape is changing, and policy makers are considering new ideas to strengthen the delivery of targets under the Government of Nepal’s National Seed Vision 2013-2025 and the Agriculture Development Strategy 2015-2035.

Dyutiman Choudhary (left) welcomes the Feed the Future team leader to the CIMMYT office in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Dyutiman Choudhary (left) welcomes the Feed the Future team leader to the CIMMYT office in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Dyutiman Choudhary shows a demonstration plot during a field visit with USAID and project partners in Nepal. (Photo: Darbin Joshi)
Dyutiman Choudhary shows a demonstration plot during a field visit with USAID and project partners in Nepal. (Photo: Darbin Joshi)
Dyutiman Choudhary (left) receives a token of appreciation at an International Seed Conference organized in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Dyutiman Choudhary (left) receives a token of appreciation at an International Seed Conference organized in Nepal. (Photo: Bandana Pradhan/CIMMYT)

Competitiveness fosters productivity

The results of Choudhary’s work have the potential to transform Nepalese agriculture by unleashing new investments, changes in policies and practices, and innovative business management practices. “Despite a huge change in my TOR and the challenges to deliver impactful outcomes, I was able to successfully steer the project to produce exciting results that made the donor to declare it as their flagship project in Nepal,” he explained. “At the end of the day, reflecting upon the work achieved with my team and the stakeholders in co-creating solutions for complex issues brings me immense satisfaction.”

An amiable individual, he feels close to natural science and loves interacting with farmers. “I’ve always enjoyed traveling to biodiversity-rich locations, to understand local cultures and livelihood practices, so as to gauge the drivers of innovation and adaptation to change among diverse rural populations.”

“Keeping up the momentum, I want to continue to support growth in agribusiness management in less favorable regions, helping stakeholders in the farm-to-fork continuum to leverage the potential of innovations in research, development and delivery.”

Power of data: To enhance food security

Data has become a key driver of growth and change in today’s world.

There is growing recognition that data is indispensable for effective planning and decision-making in every sector. But the state of digital data in developing countries is far from satisfactory. In Asia, monitoring the Sustainable Development Goals (SDGs) remains a challenge due to a lack of accurate data.

Read more: https://thehimalayantimes.com/opinion/power-of-data-to-enhance-food-security/

Creating impact through wider data sharing

Farmer speaks on mobile phone in field.
Farmer speaks on his mobile phone in Bihar, India. (Photo: M. DeFreese/CIMMYT)

The Bihar Convergence Platform for agriculture, a synergistic partnership to innovate and initiate targeted interventions that help farmers to have informed choices with proven scientific recommendations, has been consistently working to accelerate interventions and improve the lives and capacity of small and marginal farmers since its establishment in October 2019.

The Cereal Systems Initiative for South Asia (CSISA), in association with CABI and the Open Data Institute, hosted a six-day virtual interactive training in September for platform members on the theme “creating impact through wider data sharing.” The training aimed at strengthening technical expertise of the participants, creating an enabling environment to unlock the benefits of data sharing and developing space for participants to discuss, brainstorm and co-design initiatives to be implemented together by the platform in coming days.

The training ended with a common understanding about the challenges and constraints in agriculture because data is in silos. Furthermore, participants agreed on the need to look at the existing data with a broader lens to accelerate the pace of development in agriculture in the state. Participants expressed that sharing the data under set norms with standardized licensing could act as a catalyst to increase the benefits for smallholder farmers.

To constructively deal with the challenges in agriculture together, the platform members stressed the need to start analyzing existing data from a wider perspective and data sharing as the key for designing fact-based interventions for larger good and impact.

Platform members interact during virtual training.
Platform members interact during virtual training. (Photo: Sugandha Munshi/CIMMYT)

The platform is chaired by the Vice Chancellor of Bihar Agriculture University, with key members from Bihar Rural Livelihood Promotion Society known as Jeevika, Bihar Agriculture University, Dr Rajendra Prasad Central Agriculture University, Agriculture Technology Application Resource Institute, ICAR-RCER, and the CSISA project, along with private groups like IFFCO, Bayer, and ITC.

Out of the many activities jointly implemented by the platform, the Data Ecosystem is the key arena where the platform works together in strengthening the impact of data and incorporating them in accelerating quality interventions for farmers.

This story was first published on the CSISA website.

Somalia agriculture partners learn about integrated fall armyworm control practices

Fall armyworm continues to cause havoc in Africa. Farmers in Somalia have not been spared since this unwelcome guest showed up in the country over three years ago. As part of the mitigation measures, the Somali Agriculture Technical Group (SATG) in partnership with the International Maize and Wheat Improvement Center (CIMMYT) and the International Committee of the Red Cross (ICRC) recently conducted online trainings on fall armyworm management for sustainable crop protection. The online trainings, targeting national agriculture stakeholders in the country, took place on August 25 and September 30, 2020, with nearly 250 participants attending both webinars.

“This is the first of our efforts to reach out to our partners in Somalia, especially the Somali Agriculture Technical Group and the national agricultural research system, to increase the awareness on the integrated pest management approaches that can help combat this highly destructive pest,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE).

“This training was designed to help participants to gain a better understanding about fall armyworm, how to identify it, how to monitor and scout for it, how to effectively implement a management strategy that is environmentally and ecologically benign, in order to protect the food security and livelihoods of farmers and their families,” Prasanna said.

An integrated pest management strategy for sustainable control of fall armyworm should consider various interventions, including regular scouting and monitoring of the pest in the fields, host plant resistance, biological and biorational control, agroecological management, and use of environmentally safer pesticides and good agronomic practices tailored for the socio-cultural and economic contexts of the farmers. Ultimately, the purpose of a functional integrated pest management approach is to suppress pest population by applying techniques that minimize human and environmental harm, while protecting the crops from economic damage.

“I am happy to see the expertise from high levels of research at CIMMYT, icipe, IITA, universities, SATG and the humanitarian sector coming together to tackle and solve problems linked to food production and consumption. I believe that such important trainings have great value for Somalia, and should be further strengthened and encouraged,” said Abdalla Togola from the ICRC.

B.M. Prasanna presents at training.
B.M. Prasanna, Director of CIMMYT Global Maize Program and the CGIAR Research Program MAIZE, presents at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Hussein Haji presents at training.
Hussein Haji, the Executive Director of Somali Agriculture Technical Group speaks at the fall armyworm online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Professor Dan McGrath presents at training.
Professor Dan McGrath of Oregon State University, USA, delivering a training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
John Karonga presents at training.
John Karonga, an agronomist at the International Committee of the Red Cross (ICRC) speaks at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)

Hussein Haji, the Executive Director of SATG was optimistic that the training would go a long way to empower farmers in Somalia, through their cooperatives, and could lead to better ways of tackling challenges such as fall armyworm, already made worse by other stresses like drought and desert locusts.

“Through our extension workers, we hope this information will trickle down to our cooperatives, who produce mainly maize and sorghum seed in Somalia,” he added.

This comes on the back of a partnership between the ICRC and SATG to implement activities intended to improve food production among rural communities in six regions of Somalia. The partnership would enhance quality seed production with a focus on maize and sorghum, the major staple crops in the country.

Besides Prasanna, the key resource persons included Dan McGrath (Professor Emeritus, Oregon State University, USA), Joseph Huesing (CIMMYT Consultant on integrated pest management) and Georg Goergen (Entomologist, International Institute of Tropical Agriculture), Frederic Baudron (CIMMYT Systems Agronomist), Anani Bruce (CIMMYT Entomologist), Yoseph Beyene (CIMMYT Regional Breeding Coordinator for Africa) and Saliou Niassy (Head of Agricultural Technology Transfer Unit, International Center of Insect Physiology and Ecology).

The fall armyworm, a voracious caterpillar officially reported for the first time in Africa in Nigeria in 2016, remains a serious pest with devastating consequences on millions of farmers’ food and livelihood security. The pest has spread quickly throughout sub-Saharan Africa, primarily attacking maize and sorghum, two main staple crops in the region. The Food and Agriculture Organization of the United Nations (FAO) estimates up to 18 million tons of maize are lost to the pest annually, at an estimated economic loss of $4.6 billion.

To reduce the losses, experts have been recommending a toolbox of integrated pest management (IPM) practices to minimize the damage on smallholder farmers’ fields. Scientists at CIMMYT are also working intensively to develop improved maize varieties with native genetic resistance to this devastating insect pest.

Cover photo: Kowthar Abdirahman Afyare studies agriculture at the Somali National University. (Photo: AMISOM Public Information)

En route to improved agronomic literacy

Masuriya, a rural village in Nepal’s Gauriganga municipality, was one of the villages affected during the country’s civil war which ran from 1996-2006. Since 2012, Bandana Joshi, chairperson of a local cooperative, has been encouraging women in her village to optimize fertilizer application to maximize plant growth and profitability, and improve livelihoods. However, her journey to this day was not an easy one.

In the years of the civil war, women in the villages like Masuriya faced the burden to make ends meet for their children and elderly family members, as most men fled in fear of war or migrated to earn income. It was during this time that Joshi and a group of 24 women who were operating a savings and credit firm realized that more women in their village needed monetary support to carry out their livelihood activities. They decided to expand their services and formed a cooperative to empower rural women and make finance available in the village. Their cooperative, Sana Kisan Sahakari Sanstha Limited, now has 1,186 women members, more than half of whom belong to marginalized communities – 514 Janajatis and 154 Dalits.

Many of the members are small commercial farmers, owning about 1.4 ha of land for farming as their sole source of income. Most have traditionally grown cereals such as rice and wheat alongside a few vegetables and had limited knowledge on cash crop farming and soil fertility management. They would produce and sell their surplus rice and wheat when they needed cash to buy groceries or pay household bills.

Woman prepares cauliflower for marketing.
Cooperative member prepares cauliflower for marketing. (Photo: Uttam Kunwar/CIMMYT)

In October 2016, researchers from the International Maize and Wheat Improvement Center’s (CIMMYT) Nepal Seed and Fertilizer (NSAF) project and the International Fertilizer Development Center (IFDC), launched an integrated soil fertility management (ISFM) program and worked alongside the cooperative to disseminate and encourage the use of ISFM technologies among its members. The purpose was to show farmers the benefits of ISFM – an integration of organic inputs and inorganic fertilizers with improved seeds – for rice, wheat and cauliflower cultivation, that includes balanced fertilizer application to increase yield. The project team conducted research trials and on-farm demonstrations on these crops as part of the initiative and built capacity through farmer field days and trainings on best management practices.

As a strategic entry point, the cooperative in coordination with female community volunteers helped implement the ISFM program. Women received training on the right source and amount of fertilizer that matches crop needs, and the right time and place to apply these fertilizers to maximize nutrient uptake and improve crop yields. NSAF researchers engaged with lead farmers and the cooperative’s leadership to influence their acceptance of the new fertilizer application practices, and they in turn motivated the members to use balanced fertilizer application. In 2020, these activities have been critical in building awareness on balanced fertilizer application for more than 800 farmers on over 700 ha of land, with each household able to raise their crop productivity by at least 50% for vegetables and 25% for cereals.

Better soil, better harvest

So far, the use of balanced fertilizer application has benefited more than a hundred members of the cooperative by gaining an average income of $219 in a season from cultivating cauliflower – a cash crop in Nepal’s Terai region. This additional return has helped farmers to adequately feed an average family of 4.5 people for the entire year.

Dutrani Chaudhary, a cooperative member, said that she was able to raise cauliflower production by 64% by applying balanced fertilizers that supplied all the essential nutrients – nitrogen, phosphorus, potash and micro-nutrient boron. She earned about $238 from 0.033 ha of land, which is a much larger gain for any farmer from a single season. As well as boosting her pride and confidence, she can now contribute for her children’s school fees and household expenditures.

After witnessing positive results, many other farmers in the village started applying major nutrients using urea, DAP (Di-ammonium Phosphate) and MoP (Muriate of Potash) to increase crop productivity. In 2017, Joshi and her members noticed a sharp rise in fertilizer procurement from the cooperative among farmers resulting in almost double the sales compared to 2015. Prior to the project’s agronomic literacy programs on soil fertility management, she sold merely 15 tons urea and 10 tons of DAP. Thereafter, fertilizer sales increased to 32.6 tons and 27.9 tons, for urea and DAP respectively, in just two years.

“For the first time in 2018 we sold 500 kilograms of MoP since the cooperative established,” explained Joshi. MoP was never considered a priority by the farmers before and they rarely purchased it from the cooperative.

Women in field.
Women participating in farmer field day of cauliflower in Masuriya. (Photo: Uttam Kunwar/CIMMYT)

On the rise

Now more organized and well-equipped, the cooperative has started organizing programs this year on off-seasonal and seasonal vegetable cultivation on crops such as tomato, cauliflower and cucurbits that have aided around 150 member households. “We have prioritized balanced fertilizer application in our vegetable production program,” says Madhuri Chaudhary, manager of the cooperative.

The woman-led rural institution has achieved remarkable success over the years by learning and adopting best agronomic practices including fertilizer application, planting and cultivation methods that helped increase crop productivity and household income. Having seen the benefits, male family members now encourage them to participate in agronomic literacy programs to acquire advanced knowledge and skills.

Joshi and her team of visionary women have been successful in setting up an inclusive new movement in Masuriya village, which has led to their active participation in development activities and decision-making roles not only at the household level but also in societal issues around women’s rights. Passionate to learn new skills and grow financially independent, these rural women are confident in making their own decisions for themselves, their family and for the wider society. Although it started small, the cooperative has now boomed towards improving rural women’s economic empowerment and sparking better livelihood opportunities in the area.

Cover photo: Balanced nutrient management helps farmer Dharma Devi generate better household income from cauliflower cultivation. (Photo: Uttam Kunwar/CIMMYT)

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

The search is on for nontoxic solutions to fall armyworm across Africa

Last year, AgBiTech launched a partnership between the United States Agency for International Development, FAO, International Maize and Wheat Improvement Center, and Centre for Agriculture and Bioscience International in South Sudan to train farmers in using Fawlingen. These farmers have shown a 63% increase in yield compared to untreated plots and the pilot is being scaled to reach thousands of farmers this season.

Read more: https://www.devex.com/news/the-search-is-on-for-nontoxic-solutions-to-fall-armyworm-across-africa-98150

New fall armyworm portal launched to help facilitate greater research collaboration

A fall armyworm eats a maize leaf. (Photo: CABI)

A new Fall Armyworm Research Collaboration Portal has been launched to facilitate global research collaboration to help fight the devastating crop pest fall armyworm.

Developed by CABI in partnership with leading researchers and institutions, the portal is a free-to-access platform that enables the sharing of research data, insights and outputs, and includes a range of key features such as posting research updates, identifying collaborators, and posting questions to the community.

The Research Collaboration Portal is the official platform for the Fall Armyworm R4D International Consortium. B. M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE) and co-chair of the portal steering committee commented, “The fall armyworm research collaboration portal will serve as an effective platform for communicating on research actions of the Fall Armyworm R4D International Consortium, led by CIMMYT and IITA. We encourage all the members of the Fall Armyworm R4D International Consortium to actively contribute to the portal.”

Fall armyworm (Spodoptera frugiperda) is an invasive insect pest that feeds on more than 80 plant species, causing major damage to maize, rice, sorghum, sugarcane but also other vegetable crops and cotton.

The pest is native to tropical and subtropical regions of the Americas. However, in 2016 it was reported for the first time in Africa, where it is causing significant damage to maize crops and has great potential for further spread and economic damage.

Fall armyworm has since spread to the Near East and Asia and, according to the Food and Agriculture Organization of the United Nations (FAO), it will likely soon be present in southern Europe. The FAO says that once fall armyworm is a resident pest in a country, it is there to stay and farmers need significant support to manage it sustainably in their cropping systems through integrated pest management activities.

The Fall Armyworm Research Collaboration Portal, funded by the UK Department for International Development (DFID) and the Directorate-General for International Cooperation (DGIS) of the Netherlands under the Action on Invasives program, will also encourage researchers to post preprints of research articles to the new agriRxiv, which offers researchers and students access to preprints across agriculture and allied sciences.

The portal will help reduce the duplication of research into fall armyworm prevention and management, provide a route for the rapid sharing of results and highlight opportunities for collaboration – encouraging rapid, iterative experimentation and global teamwork to address the spread and impact of fall armyworm.

Visit the Fall Armyworm Research Collaboration Portal.

CABI’s Fall Armyworm Portal contains a selection of news, research, practical extension materials, videos and other resources on fall armyworm.

This story was first published by CABI: 
CABI launches new portal to help facilitate greater collaboration on fall armyworm research