Skip to main content

funder_partner: International Fertilizer Development Center (IFDC)

Intercropping

The Intercropping project aims to identify options for smallholder farmers to sustainably intensify wide-row crop production through the addition of short-duration, high-value intercrop species and to help farmers increase their productivity, profitability and nutrition security while mitigating against climate change.

The focus is on intensification of wide-row planted crops: dry (rabi) season maize in Bangladesh, eastern India (Bihar and West Bengal states) and Bhutan, and sugarcane in central north India (Uttar Pradesh state). The primary focus is to sustainably improve cropping system productivity, however, the effects of wide-row, additive intercropping at the smallholder farm level will be considered, including potential food and nutrition benefits for the household.

There are many potential benefits of wide-row, additive intercropping, beyond increased cropping system productivity and profitability: water-, labor- and energy-use efficiencies; improved nutrition and food security for rural households; empowerment for women; and (over the longer term) increased soil health.

Little research has been conducted to date into wide-row, additive intercropping (as distinct from traditional replacement intercropping) in South Asian agroecologies. To successfully and sustainably integrate wide-row, additive intercropping into farmers’ cropping systems a range of challenges must be resolved, including optimal agronomic management and crop geometry, household- and farm-scale implications, and potential off-farm bottlenecks.

This project aims to identify practical methods to overcome these challenges for farming households in Bangladesh, Bhutan and India. Focusing on existing wide-row field crop production systems, the project aims to enable farmers to increase their cropping system productivity sustainably and in a manner that requires relatively few additional inputs.

Project activities and expected outcomes:

  • Evaluating farming households’ initial perspectives on wide-row, additive intercropping.
  • Conducting on station replicated field trials into wide-row, additive intercropping, focusing on those aspects of agronomic research difficult or unethical to undertake on farms.
  • Conducting on farm replicated field trials into wide-row, additive intercropping.
  • Determining how wide-row, additive intercropping could empower women. Quantify the long-term benefits, risks and trade-offs of wide-row, additive intercropping.
  • Describing key value/supply chains for wide-row, additive intercropping. Determine pathways to scale research to maximize impact.
  • Quantifying changes in household dry season nutrition for households representative of key typologies in each agroecological zone.

Experts discuss strategies to address soil health challenges and the fertilizer crisis in Africa

Group photo of the panelists at the AFSH Summit in Nairobi (Photo: Marion Aluoch)

Improving soil health is critical to sustainable agriculture, and for addressing climate change, tackling environmental challenges, and enhancing food security. Through projects by CIMMYT and partners, potential scalable solutions are under development, but additional work is still required.

“To effectively scale up soil health initiatives, we need to prioritize investments and establish a framework that maximizes returns,” said Bram Govaerts, CIMMYT director general, during the 2024 Africa Fertilizer and Soil Health (AFSH) Summit in Nairobi, Kenya. “It is crucial to use simple, quantifiable indicators for systematic assessments and decision-making, and to broaden these indicators to foster investment from public, private, and civil actors.”

As a keynote speaker in the “Strategies to Foster Africa’s Resilience to the Global Fertilizer Crisis” parallel session, Govaerts highlighted the intertwined challenges of soil health and fertilizer accessibility. “95% of our food comes from the soil, yet in 14 countries the cost of fertilizer has more than doubled. Fertilizers contribute to 2% of global greenhouse gas emissions and are often mismanaged—overused in some regions and underutilized in others.”

The transition to a more sustainable and climate-resilient approach to soil health and fertilizer use requires a comprehensive structure that considers broader aspects of agricultural sustainability. “To enhance soil health effectively, a clear framework is necessary that includes investment prioritization, integrated soil management, extension and advisory services, and the utilization of data and technology,” Govaerts added.

This recommended framework included identifying and prioritizing investment opportunities, balancing organic and inorganic inputs, strengthening extension systems, and leveraging technology to provide farmers real-time advice.

One practical example of effective soil health management in practice is CIMMYT’s Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub. The project helps farmers cope with high fuel and fertilizer prices by providing them with innovative tools and information to manage cost and supply disruptions. This addresses systemic weaknesses in agriculture by accelerating market-based delivery of improved seed, fertilizer, and critical information to farmers.

“Under AID-I, rapid soil testing has been prioritized. Collaborating with the International Fertilizer Development Center (IFDC) and mobile soil labs like those in Zambia exemplify innovative data point collection strategies,” said Govaerts.

During the panel discussion, Anne Muriuki, principal research officer at the Kenya Agricultural and Livestock Research Organization (KALRO) highlighted the key challenges that African countries face in accessing fertilizers during global crises and the impact on agricultural productivity. “Farmers face scarcity and high costs, leading to reduced yields and increased reliance on unsustainable fertilizers. These issues not only reduce agricultural productivity, but they also aggravate food insecurity and economic instability.”

David Nielsen, a former World Bank official, stressed the importance of having site-specific soil information and investing in human capital and educational institutions to increase soil science expertise and improve the availability of site-specific information. “These two issues should be high priorities. They are crucial, especially when fertilizer access is limited, but they remain vital even with adequate fertilizer supply.”

Douglas Kerr, vice president of business development at the IFDC discussed how governments, international non-governmental organizations (NGOs), and the private sector can collaborate to ensure continuous access to fertilizer during a global crisis. The Sustain African Program was an example of IFDC’s role in gathering market information and developing a concept that has since been integrated into ongoing operations. “In a nutshell, multi-stakeholder collaboration needs to be open, transparent, supportive, and unified.”

Charlotte Hebebrand, director of communications and public affairs at the International Food Policy Research Institute (IFPRI), emphasized the need to increase fertilizer production within Africa, improve access to markets, and address response constraints to reduce shocks. “A major focus is on repurposing subsidies. It is sensitive but critical to determine the most efficient way to support farmers and promote soil health.”

Mehti Filali, senior vice president of OCP in West Africa, highlighted successful case studies from Ethiopia and Nigeria, where domestic initiatives and regional cooperation have resulted in significant agricultural growth. “Ethiopia has doubled crop production and created tailored fertilizer formulas, while Nigeria’s initiative has consolidated fertilizer procurement, created jobs, and saved US $250 million in foreign exchange. OCP’s contribution, though modest, has been critical, marked by significant milestones such as soil testing and the development of blending units.”

As Africa continues to face these challenges, the response must be dynamic, drawing on both local knowledge and scientific data. Robust data governance is essential for integrating soil health into market-driven decision-making, promoting crop diversification, and integrating organic and inorganic inputs for sustainable agriculture. “Let us remember the importance of integrating soil fertility management in a step-by-step manner, prioritizing action tailored to specific locations and conditions. Sophisticated extension systems, backed up by robust data, are crucial,” Govaerts concluded.

Advancing appropriate-scale mechanization in the Global South

Smallholder farmers in Chimanimani, Zimbabwe use a multi-crop thresher for the faster processing of wheat. (Photo: CIMMYT)

To foster collaboration and knowledge sharing, CIMMYT hosted a 2-day workshop in September 2023 in Lusaka, Zambia, on appropriate mechanization for smallholder farmers in the Global South. This event was part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub funded by the United States Agency for International Development (USAID).

Recognizing that equitable access to finance and credit are key enablers for mechanization, this platform strived to understand smallholder farmer needs and the identification of key financing models to facilitate widespread adoption.

With over 40 participants ranging from government representatives, development partners, and stakeholders from organizations such as USAID, the Food and Agriculture Organization (FAO), the International Institute of Tropical Agriculture (IITA), the International Fertilizer Development Center (IFDC), and Hello Tractor, this regional event provided an opportunity for robust discussions and to align the course of action.

Unpacking mechanization in the Global South

Appropriate-scale mechanization is essential and a top policy priority to transform African agriculture. Evidence shows that nearly 70% of operations in sub-Saharan Africa are done manually. However, human labor is limited and is increasingly scarce and costly given the unfolding transformation of rural spaces in most places, necessitating agricultural mechanization. The cornerstone of this shift lies in integrating small, affordable machines tailored to the operations and needs of smallholder farmers, which must be accessible through market-based financial and business models.

A top policy priority in Zambia

The Permanent Secretary, Technical Services of the Zambian Ministry of Agriculture, Green Mbozi, officially opened the meeting. He lauded the meeting as timely and commendable as agriculture mechanization is a top policy priority for Zambia.

Green Mbozi, permanent secretary, opens the meeting. (Photo: CIMMYT)

“The government has embarked on a process to formulate a national mechanization strategy, which will serve as a blueprint on how to sustainably promote agricultural machinery and equipment across the value chains. The insights from this workshop would be helpful in feeding into the formulation of the strategy and help in identifying entry points to support sustainable agriculture mechanization,” said Mbozi.

Accelerating change through inclusive dialogues

The dialogue played a crucial role in bolstering support for sustainable agriculture mechanization while tackling challenges hindering active adoption. Mbozi highlighted the imminent launch of an agricultural mechanization strategy developed with technical support from FAO and CIMMYT through the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project.

The mechanization strategy champions sustainable and efficient mechanization practices, strengthens the private sector’s role in mechanization, and provides training and financial support to small-scale farmers, women, and youth. Proposed initiatives include regional centers of excellence, a national mechanization association, and the use of information and communication technologies to promote mechanization.

Sieg Snapp, director of Sustainable Agrifood Systems, delivers a presentation on mechanization financing. (Photo: CIMMYT)

“It is important to develop the right bundle of mechanization services that meet the needs of farmers and are profitable for mechanization service providers,” said Director of Sustainable Agrifood Systems (SAS) at CIMMYT, Sieg Snapp. “Finding the right financing is needed to support multiple bundles of mechanization services, which provide profits throughout the year.”

Additionally, the SIFAZ project promotes local manufacturing, supporting quality assurance, conducting demand studies, and establishing an agricultural mechanization data bank to catalyze transformative progress.

Key insights from USAID and FAO

David Howlett, the Feed the Future coordinator at the USAID Mission in Zambia, shared with participants that, “USAID is working to address the effects of climate change through mechanization and other adaptation strategies.” Aligning with the central focus of the meeting, he further reiterated that mechanization will be key to building resilience by improving agricultural systems.

David Howlett, Feed the Future coordinator for the Zambia USAID mission, expresses commitment to investing in climate adaptation and mitigation strategies. (Photo: CIMMYT)

Offering insights drawn from country-level experiences on scale mechanization for smallholder farmers, Joseph Mpagalile from FAO said, “FAO has been helping countries develop national agricultural mechanization strategies, with 12 countries in Africa already revising or preparing new strategies for sustainable agricultural mechanization.”

Private sector engagement: lessons from Hello Tractor

Operating across 13 African countries, Hello Tractor has been leveraging digitalization to scale mechanization in Africa since its inception. Hello Tractor facilitates services to over 500,000 smallholder farmers through 3,000+ tractors and combine harvesters, while providing remote tracking of assets and preventing fraud and machine misuse for machinery owners. At the heart of the company are booking agents who connect farmers to solutions to increase productivity and income.

Call to action

As the discussions ended, key outcomes distilled highlighted a pressing need to sensitize farmers on the merits of mechanization and facilitating access through tailored financial resources. Special attention was also directed towards empowering women and youth through implementation of de-risking mechanisms and strategic marketing linkages.

Recognizing the critical absence of data, a compelling call for a funding pool to collect essential information in the ESA region became clear. In addition, it was emphasized that appropriate-scale mechanization should be driven by sustainable business and financing models. The journey towards mechanization is a collective effort, blending policy initiatives, private sector engagement, and research-driven strategies.

Wheat blast spread globally under climate change modeled for the first time

Climate change poses a threat to yields and food security worldwide, with plant diseases as one of the main risks. An international team of researchers, surrounding professor Senthold Asseng from the Technical University of Munich (TUM), has now shown that further spread of the fungal disease wheat blast could reduce global wheat production by 13% until 2050. The result is dramatic for global food security.

With a global cultivation area of 222 million hectares and a harvest volume of 779 million tons, wheat is an essential food crop. Like all plant species, it is also struggling with diseases that are spreading more rapidly compared to a few years ago because of climate change. One of these is wheat blast. In warm and humid regions, the fungus magnaporthe oryzae has become a serious threat to wheat production since it was first observed in 1985. It initially spread from Brazil to neighboring countries. The first cases outside of South America occurred in Bangladesh in 2016 and in Zambia in 2018. Researchers from Germany, Mexico, Bangladesh, the United States, and Brazil have now modeled for the first time how wheat blast will spread in the future.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Regionally up to 75% of total wheat acreage affected

According to the researchers, South America, southern Africa, and Asia will be the regions most affected by the future spread of the disease. Up to 75% of the area under wheat cultivation in Africa and South America could be at risk in the future. According to the predictions, wheat blast will also continue to spread in countries that were previously only slightly impacted, including Argentina, Zambia, and Bangladesh. The fungus is also penetrating countries that were previously untouched. These include Uruguay, Central America, the southeastern US, East Africa, India, and eastern Australia. According to the model, the risk is low in Europe and East Asia—with the exception of Italy, southern France, Spain, and the warm and humid regions of southeast China. Conversely, where climate change leads to drier conditions with more frequent periods of heat above 35 °C, the risk of wheat blast may also decrease. However, in these cases, heat stress decreases the yield potential.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Dramatic yield losses call for adapted management

The affected regions are among the areas most severely impacted by the direct consequences of climate change. Food insecurity is already a significant challenge in these areas and the demand for wheat continues to rise, especially in urban areas. In many regions, farmers will have to switch to more robust crops to avoid crop failures and financial losses. In the midwest of Brazil, for example, wheat is increasingly being replaced by maize. Another important strategy against future yield losses is breeding resistant wheat varieties. CIMMYT in collaboration with NARs partners have released several wheat blast-resistant varieties which have been helpful in mitigating the effect of wheat blast. With the right sowing date, wheat blast-promoting conditions can be avoided during the ear emergence phase. Combined with other measures, this has proven to be successful. In more specific terms, this means avoiding early sowing in central Brazil and late sowing in Bangladesh.

First study on yield losses due to wheat blast

Previous studies on yield changes due to climate change mainly considered the direct effects of climate change such as rising temperatures, changing precipitation patterns, and increased CO2 emissions in the atmosphere. Studies on fungal diseases have so far ignored wheat blast. For their study, the researchers focused on the influence of wheat blast on production by combining a simulation model for wheat growth and yield with a newly developed wheat blast model. Environmental conditions such as the weather are thus included in the calculations, as is data on plant growth. In this way, the scientists are modeling the disease pressure in the particularly sensitive phase when the ear matures. The study focused on the influence of wheat blast on production. Other consequences of climate change could further reduce yields.

Read the full article.

Further information:

The study was conducted by researchers from:

  • CIMMYT (Mexico and Bangladesh)
  • Technical University of Munich (Germany)
  • University of Florida (United States)
  • Brazilian Agricultural Research Corporation (Brazil)
  • International Fertilizer Development Center (United States)
  • International Food Policy Research Institute (United States)

Accelerating delivery of stress-tolerant, nutritious seed in Eastern and Southern Africa

AID-I staff inspect germination in Malawi (Photo: CIMMYT)

Accelerated delivery with a difference is underway in Malawi, Tanzania, and Zambia to ensure access to stress-tolerant seeds for underserved farmers in remote areas. Supported by USAID, the Accelerated Innovation Delivery Initiative (AID-I) project brings public-private and civil society together to address the impacts of climate change, pests and diseases, and food shocks on maize and legume systems.

One simple and cost-effective solution to tackle these threats is last mile delivery of stress-tolerant and nutritious seeds. Ensuring that farmers have access to a diverse range of seeds means they can choose the best varieties to suit their needs and their local environment.

Through AID-I, scientists at the International Maize and Wheat Improvement Center (CIMMYT) are working with over 20 global, regional, national, and local partners to strengthen maize and legume seed systems in Malawi, Tanzania, and Zambia.

So far, in 2023, the team has set up over a hundred mega-demonstrations across Malawi and Zambia, to raise awareness and increase seed production by exposing communities to improved, climate-adapted and nutritious crop varieties. As learning centers, the mega-demonstrations give farmers a chance to see for themselves the advantages of improved maize and legume varieties and better farming practices including conservation agriculture and doubled up legumes systems.

Farmers plant mega-demonstration plots in Malawi (Photo: CIMMYT)

Spotlighted were drought-tolerant and nutritious varieties, expected to play a crucial role in the recovery of regional maize production. The Zambian and Malawian governments have also just released maize hybrids tolerant to fall armyworms, which will be scaled through the AID-I. The fall armyworm is an invasive pest that attacks more than 80 different crops but has a particular preference for maize. Without proper control measures, the pest can decimate crops, threatening food security, incomes, and livelihoods.

Alongside maize, the AID-I team is making seed of improved legume varieties, including beans, soybean, pigeon peas, cowpea, and groundnuts available at the last mile. Legumes are nutritious and good for the soil, providing valuable nutrients like nitrogen (N) so farmers can use less fertilizer, save money, and protect soil health.

AID-I supports strengthening of strategically located seed stockists of improved legume varieties and linking seed growers and buyers. These stockists, called agricultural development agents will also receive training in community seed production. Through connection with hundreds of agricultural development agents in the first farming season with seed suppliers, hundreds of thousands of farmers will be able to access a wide variety of improved seed.

Members of the CIMMYT leadership team with representatives from the U.S. Department of State and the U.S. Agency of International Development (USAID) visit AfriSeed in Zambia (Photo: CIMMYT)

Building strong relationships between public and private sector organizations is an integral part of the project. On January 16, 2023, long-term CIMMYT collaborator and AID-I key partner, AfriSeed hosted senior government officials from the United States Department of State (DOS) and U.S. Agency for International Development (USAID). The visitors gained valuable insight into how private seed companies involved in the marketing and distribution of maize and legume seeds operate in Zambia and showed their crucial role in the country’s seed sector.

Public-private collaboration to improve fertilizer supply

Basanta Shrestha, Vice-Chair of FAN, shares the objectives of the public-private dialogue with Govinda Prasad Sharma, Secretary of MoALD (seated left) ,Mrigendra Kumar Singh Yadav, Honorable Minister of MoALD (seated center), Chandrakanta Dallakoti, Chairperson of FAN (seated right), and other participants. (Photo: Aayush Niroula/CIMMYT)

Fertilizer supply shortages are a chronic problem in Nepal, where thousands of farmers are often unable to access the required quantities on time. This is particularly common during the cultivation of rice — the major staple food crop for the country.

Some of the critical challenges to meeting fertilizer demand include limitations to import mechanisms and budget allocation for fertilizer subsidies by the Government of Nepal. Additionally, the successive COVID-19-induced lockdowns and Russia-Ukraine war have further deepened the crisis in the past two years by significantly delaying imports and increasing fertilizer prices. This continuous gap in supply has compelled farmers to buy fertilizers from the country’s unofficial or “gray” markets.

To address these shortcomings, researchers on the Nepal Seed and Fertilizer (NSAF) project, implemented by the International Maize and Wheat Improvement Center (CIMMYT), have been supporting the Fertilizer Association of Nepal (FAN) and the Ministry of Agriculture and Livestock Development (MOALD) to resolve policy issues that will enhance fertilizer distribution efficiency.

Fertilizer sector stakeholders participate in a panel discussion at the public-private dialogue. (Photo: Aayush Niroula/CIMMYT)

On 23 September 2022, the NSAF project team joined representatives from the International Fertilizer Development Center (IFDC) and FAN to organize a policy dialogue around improving the country’s fertilizer supply system. Held in Kathmandu, the event brought together concerned public and private sector stakeholders to discuss existing challenges and propose different policy alternatives that ensure the timely availability of fertilizers in the required quantities.

Representatives from FAN presented the key issues and challenges in the sector while NSAF project coordinator Dyutiman Choudhary presented the findings of different fertilizer policy studies conducted jointly with local partners. The results showed that involving the private sector in distribution improved farmers’ access to fertilizers compared to distribution carried out solely by cooperatives. The study also indicated a potential to reduce fertilizer subsidies and increase import volume to help meet demand.

Lynn Schneider, Deputy Director of USAID Economic Growth Office shares her remarks at the policy dialogue. (Photo: Dyutiman Choudhary/CIMMYT)

Improving national supply systems

The event featured a panel discussion, where participants shared their experiences and outlined the issues faced by private sector importers, logistic service providers and retailers, and policymakers from federal and provincial governments while engaging in their respective functions. The panel members also suggested a number of different ways to improve national fertilizer supply systems, such as:

  1. Restructuring fertilizer subsidy programs, i.e. reducing the current subsidy by 20-30% (a recommendation from the NSAF assessment) and using budget savings to increase imports and allocate subsidies based on fertilizer demand.
  2. Making a procurement process timeline to ensure timely fertilizer supply for three major crops — rice, wheat, and maize — and importing about 30% of the total fertilizer through Government-to-Government (G2G) agreement.
  3. Implementing a crisis management strategy by maintaining buffer stocks (20% of the demand).
  4. Ensuring a level playing field for the private sector in the import and distribution of the fertilizers.

The dialogue concluded with mutual agreement by stakeholders from the public and private sectors to improve local fertilizer distribution through private sector engagement. They agreed to revise some clauses specified in the Nepal Fertilizer Distribution Directive 2020 related to profit margins, volumes, classification of fertilizer distributors and selling fertilizers. Govinda Prasad Sharma, secretary of MOALD, informed attendees that the ministry has already started planning fertilizer procurement based on actual demand and gave assurances about G2G agreements with neighboring countries such as India to bring in fertilizers for distribution during times of peak demand. Sharma also agreed to continue supporting the private sector in capacity building to import fertilizers and to revise subsidies to make more fertilizers available.

“It is our great pleasure to see all fertilizer-related stakeholders in a common platform, which is critical to bring out key issues and cooperation between the public and private sector,” said Lynn Schneider, deputy director of the Economic Growth Office at USAID Nepal. Schneider also emphasized the importance of generating efficiency in estimating fertilizer demand and supply and fertilizer types by using Nepal’s digital soil map, working in close coordination with provincial and local governments, and increasing the role of the private sector to ensure fertilizer supply to meet crop requirements in the peak season.

Attendees at the Public Private Dialogue on Improving Fertilizer Supply System in Nepal (Photo: Aayush Niroula/CIMMYT)

The Nepal Seed and Fertilizer project is supported by the United States Agency for International Development (USAID) and is a flagship project in Nepal. It aims to build competitive and synergistic seed and fertilizer systems for inclusive and sustainable growth in agricultural productivity, business development and income generation in Nepal.

CIMMYT leads innovation sprint to deliver results to farmers rapidly

Smallholder farmers, the backbone of food systems around the world, are already facing negative impacts because of climate change. Time to adapt climate mitigation strategies is not a luxury they have. With that in mind, the Agriculture Innovation Mission for Climate (AIM4C) facilitates innovation sprints designed to leverage existing development activities to create a series of innovations in an expedited timeframe.

At the UN COP27 in Egypt, AIM4C announced its newest round of innovation sprints, including one led by the International Center for Maize and Wheat Improvement (CIMMYT) to enable smallholder farmers to achieve efficient and effective nitrogen fertilizer management. From 2022 to 2025, this sprint will steer US $90 million towards empowering small-scale producers in Africa (Kenya, Malawi, Morocco, Tanzania, and Zimbabwe), Asia (China, India, Laos and Pakistan), and Latin America (Guatemala and Mexico).

“When we talk to farmers, they tell us they want validated farming practices tailored to their specific conditions to achieve greater productivity and increase their climate resilience,” said Sieg Snapp, CIMMYT Sustainable Agrifood Systems (SAS) program director who is coordinating the sprint. “This sprint will help deliver those things rapidly by focusing on bolstering organic carbon in soil and lowering nitrous oxide emissions.”

Nitrogen in China

Working with the Chinese Academy of Agricultural Sciences (CAAS), the sprint will facilitate the development of improved versions of green manure crops, which are grown specifically for building and maintaining soil fertility and structures which are incorporated back into the soil, either directly, or after removal and composting. Green manure can significantly reduce the use of nitrogen-based fertilizers, which prime climate culprits.

“There are already green manure systems in place in China,” said Weidong Cao from CAAS, “but our efforts will integrate all the work being done to establish a framework for developing new green manure crops aid in their deployment across China.”

Triple wins in Kenya

The Kenya Climate Smart Climate Project, active since 2017, is increasing agricultural productivity and building resilience to climate change risks in the targeted smallholder farming and pastoral communities. The innovation sprint will help rapidly achieve three wins in technology development and dissemination, cutting-edge innovations, and developing sets of management practices all designed to increase productive, adaption of climate smart tech and methods, and reduce greenhouse gas (GHG) emissions.

Agricultural innovations in Pakistan

The Agricultural Innovation Program (AIP), a multi-disciplinary and multi-sectoral project funded by USAID, led by CIMMYT, and active in Pakistan since 2015, fosters the emergence of a dynamic, responsive, and competitive system of science and innovation that is ‘owned’ by Pakistan and catalyzes equitable growth in agricultural production, productivity, and value.

“From its beginning, AIP has been dedicated to building partnerships with local organizations and, smallholder farmers throughout Pakistan, which is very much in line with the objectives and goal as envisioned by Pakistan Vision 2025 and the Vision for Agriculture 2030, as Pakistan is a priority country for CIMMYT. However, a concerted effort is required from various players representing public and private sectors,” said Thakur Prasad Tiwari, senior scientist at CIMMYT. “Using that existing framework to deliver rapid climate smart innovations, the innovation sprint is well-situated to react to the needs of Pakistani farmers. “

Policies and partnerships for innovations in soil fertility management in Nepal

The Nepal Seed and Fertilizer (NSAF) project, funded by USAID and implemented by CIMMYT, facilitates sustainable increases in Nepal’s national crop productivity, farmer income, and household-level food and nutrition security. NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective extension, including the use of digital and information and communications technologies. The project facilitated the National Soil Science Research Centre (NSSRC) to develop new domain specific fertilizer recommendations for rice, maize, and wheat to replace the 40 years old blanket recommendations.

Under NSAFs leadership, the Ministry of Agriculture and Livestock Development (MOALD) launched Asia’s first digital soil map and has coordinated governmental efforts to collect and analyze soil data to update the soil map and provide soil health cards to Nepal’s farmers. The project provides training to over 2000 farmers per year to apply ISFM principles and provides evidence to the MOALD to initiate a balanced soil fertility management program in Nepal and to revise the national fertilizer subsidy policy to promote balanced fertilizers. The project will also build efficient soil fertility management systems that significantly increase crop productivity and the marketing and distribution of climate smart and alternative fertilizer products and application methods.

Public-private partnerships accelerate access to innovations in South Asia

The Cereal Systems Initiative for South Asia (CSISA), established in 2009, has reached more than 8 million farmers by conducting applied research and bridging public and private sector divides in the context of rural ‘innovation hubs’ in Bangladesh, India, and Nepal. CSISA’s work has enabled farmers to adopt resource-conserving and climate-resilient technologies and improve their access to market information and enterprise development.

“Farmers in South Asia have become familiar with the value addition that participating in applied research can bring to innovations in their production systems,” said Timothy Krupnik, CIMMYT systems agronomist and senior scientist. “Moreover, CSISA’s work to address gaps between national and extension policies and practices as they pertain to integrated soil fertility management in the context of intensive cropping systems in South Asia has helped to accelerate farmers’ access to productivity-enhancing innovations.”

CSISA also emphasizes support for women farmers by improving their access and exposure to improved technological innovations, knowledge, and entrepreneurial skills.

Sustainable agriculture in Zambia

The Sustainable Intensification of Smallholder Farming systems in Zambia (SIFAZ) is a research project jointly implemented by the UN Food and Agriculture Organization (FAO), Zambia’s Ministry of Agriculture and CIMMYT designed to facilitate scaling-up of sustainable and climate smart crop production and land management practices within the three agro-ecological zones of Zambia. “The Innovation Sprint can take advantage of existing SIFAZ partnerships, especially with Zambia’s Ministry of Agriculture,” said Christian Thierfelder, CIMMYT scientist. “Already having governmental buy-in will enable quick development and dissemination of new sustainable intensification practices to increase productivity and profitability, enhance human and social benefits while reducing negative impacts on the environment.”

Cover photo: Paul Musembi Katiku, a field worker based in Kiboko, Kenya, weighs maize cobs harvested from a low nitrogen trial. (Florence Sipalla/CIMMYT)

Nepal Government endorses new site-specific fertilizer recommendations for rice

Farmer applying urea with a spreader in a rice field. Photo Uttam Kunwar/ CIMMYT

After four decades, new site-specific fertilizer recommendations for rice have been introduced in Nepal that will help farmers increase the crop’s productivity by 10-30%, compared to their current practices.

The Ministry of Agriculture and Livestock Development (MoALD) endorsed the new fertilizer recommendations for rice crop at a consultative workshop in July 2022 held in Kathmandu. Developed by the International Maize and Wheat Improvement Center (CIMMYT), in close collaboration with the Nepal Agriculture Research Council’s (NARC) National Soil Science Research Center (NSSRC) and International Fertilizer Development Center (IFDC), the new regime replaces the existing blanket approach of recommendations to help increase crop yields and fertilizer use efficiency.

The blanket approach assumed the whole country as one domain despite the heterogeneity in soils, other biophysical conditions and agronomic management practices, including crop varieties. As a result, fertilizers were under-utilized in low fertile soils or overused in farms with high soil fertility status, thereby farmers were not able to obtain the achievable yield.

Unlike the generic recommendations, the site-specific fertilizer management will help farmers to determine the crop’s fertilizer requirements based on soil fertility status of a particular farm, attainable yield target of the selected crop variety, crop’s yield response to fertilizers and agronomic management practices, such as irrigation, cropping systems etc. In other words, this new regime allows farmers to produce more with less fertilizers through a balanced application of fertilizers based on available soil properties.

Old is not always gold

Generally, soil fertility status changes every 3-5 years when there is continuous nutrient removal from soils due to an intensive cropping system with the adoption of high nutrient demanding improved and hybrid varieties. Thus, soil fertility management recommendations should be updated periodically but the existing recommendations were not updated since 1976.

Realizing the limitations, CIMMYT through the Nepal Seed and Fertilizer (NSAF) project, supported by USAID, worked with NSSRC and IFDC to formulate fertilizer recommendations for major cereal crops and vegetables for specific domains of the country.

Under NSSRC’s leadership, a ‘Fertilizer Recommendation Committee’ comprising of a dedicated team of soil scientists within NSSRC and NSAF experts was formed to develop site-specific fertilizer recommendations using the Soil-SMART framework for delivering balanced fertilizers to farmers. Based on soil fertility status, agro-climate, irrigation regimes and geography, the country was divided into six soil fertility domains — four in the Terai region (Eastern, Central, Western and Far-western), one in inner Terai and one in the hills. Under each domain, recommendations were based on the attainable yield, crop variety, and irrigation regime.

This approach was first tested for rice crop.

Formulating new recommendations for rice

Three fundamental steps were used to develop site-specific fertilizer recommendations, which included: i) selection of yield goal, ii) estimation of crop nutrient requirement, and iii) estimation of indigenous nutrient supplies. To collect this information, NSAF and the committee designed field trials on nutrient omission and nutrient rates to determine the yield limiting nutrients and their optimum rate, respectively. Data from fertilizer trials conducted by different research institutes and universities, including trials from the project sites were collected and analyzed by the team to see the crop’s yield response to fertilizers. A modeling approach called Quantitative Evaluation of fertility of the tropical soils (QUEFTS) was also used to estimate the indigenous nutrient supply and attainable yield target of rice for different soil fertility domains. This model was applied as an alternate to extrapolate recommendations in areas where field data were not available, considering large financial and human resources required otherwise to conduct numerous field trials across different soil types and agro ecological zones. The model was validated with field trial data before making extrapolation of the recommendations. The QUEFTS model used soil properties from Nepal’s first digital soil map to identify nutrient status and deficiency.

In addition to agronomic optimum rate, an economic analysis was also conducted to see economic variability of the recommendations.

The newly developed recommendations provide guidance for balanced fertilization as it includes micronutrients zinc and boron, and organic inputs in addition to three major nutrients —Nitrogen, Potassium and Phosphorous (NPK). Results from field trials suggested that the new recommendation could increase rice productivity by 10-30% compared to existing farmers’ practice.

Infographic on developing domain specific fertilizer recommendations.

Advocating for endorsement

A three-day workshop was organized by CIMMYT and NSSRC to primarily share and approve the recommended fertilizer dose for rice crop as well as its relevance to achieve potential yield at farm level. Rajendra Mishra, joint secretary of MoALD inaugurated the event that was chaired by the Director of NARC’s Crop and Horticulture Research. Workshop attendees included MoALD, NARC, Department of Agriculture, USAID Nepal, secretaries from the Province Ministry of Land Management, soil scientists, university professors, agronomists and other high-level government officials.

During the workshop, NSAF explained the application of QUEFTS model with reference to the case of rice based on the field trial data for domain specific fertilizer recommendations. Shree Prasad Vista, soil scientist at NSSRC, summarized the results for rice as the approach and facilitated its approval from MoALD. The participants also discussed on strategies to link with the extension system to reach a large number of farmers through the three-tier governments. Fourteen research papers on nutrient management for major cereal crops were also reviewed at the event.

“I congratulate NARC for this historical work on updating the fertilizer recommendations after 46 years. Now, we are moving towards sustainable soil fertility management by adopting site-specific fertilizer recommendations,” said MoALD Secretary Govinda Prasad Sharma.

Although the recommendation for rice was a significant output of the workshop, fertilizer recommendations for other major crops will be carried out following a similar process.

NARC’s Executive Director Deepak Bhandari commented, “It is our pleasure to move from a blanket approach to site-specific approach. This is a milestone for agricultural research in the country and I would like to thank all the scientists, NSAF project and USAID’s support for this notable achievement.”

Similarly, speaking at the event, Jason Seuc, Director of Economic Growth Office at USAID Nepal, emphasized the importance of soil fertility management for achieving food security targets set by the Government of Nepal. Seuc remarked that a sustainable soil fertility management is critical not only for food security but also for reducing the environmental pollution.

A climate-smart remodeling of South Asia’s rice-wheat cropping is urgent

A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches — a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.

Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.

Getting down in the dirt

A recent scientific review examines the potential of a suite of improved practices — reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control — to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.

Another study on soil quality in India’s extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.

Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms — major contributors to soil health — in soils under farmers’ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.

The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)

Rebooting marginal farms by design

Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.

More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the region’s puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.

Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmers’ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.

Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.

Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.

Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)

Q&A: Regenerative agriculture for soil health

South Asia was the epicenter of the Green Revolution, a historic era of agricultural innovation that fed billions of people on the brink of famine.

Yet despite the indisputably positive nutritional and developmental impacts of the Green Revolution of the 1960s, the era of innovation also led to the widespread use of farming practices—like intensive tilling, monoculture, removal and burning of crop residues, and over-use of synthetic fertilizer—that have a deleterious effect on the soil and cause off-site ecological harm. Excess pumping of irrigation water over decades has dried out the region’s chief aquifer.

South Asia’s woes illustrate the environmental costs of intensive food production to feed our densely-populated planet. Currently, one billion hectares of land worldwide suffers from degraded soils.

The International Maize and Wheat Improvement Center (CIMMYT) works with two of the world’s most widely cultivated and consumed cereal crops. To grow enough of these staple foods to feed the world, a second Green Revolution is needed: one that avoids the mistakes of the past, regenerates degraded land and reboots biodiversity in farm areas.

M.L. Jat, a CIMMYT Principal Scientist, has spent 20 years studying and promoting sustainable agricultural practices for maize- and wheat-based farming systems. In the following Q&A, Jat tells us about regenerative agriculture: integrated farming and grazing practices intended to rebuild soil organic matter and restore degraded soil biodiversity.

Q: What major components or practices are part of regenerative agriculture?

A: Regenerative agriculture is a comprehensive system of farming that harnesses the power of soil biology to rebuild soil organic matter, diversify crop systems, and improve water retention and nutrient uptake. The depletion of biodiversity, degradation of soil health, warming, and drier weather in farm areas have necessitated a reversal in agriculture from “degeneration to regeneration.”

The practices address food and nutritional security challenges while protecting natural resources and lowering agriculture’s environmental footprint, in line with the United Nations Sustainable Development Goals. CIMMYT has worked for years to research and promote conservation agriculture, which contributes to the aims of regenerative agriculture, and is already practiced on more than 200 million hectares globally — 15% of all cropland — and is expanding at a rate of 10.5 million hectares per year.

Q: What are the potential roles of major food crops — maize, rice, and wheat — in regenerative agriculture systems?

A: Regenerative agriculture is “crop neutral;” that is, it is applicable to almost all crops and farming systems. The world’s rice, wheat, and maize crops have an enormous physical and ecological footprint on land and natural resources, but play a critical role in food and nutrition security. Considering that anthropogenic climate change has reduced the global agricultural total factor productivity by about 21% in the past six decades, applying regenerative agriculture approaches to these systems represents a momentous contribution toward sustainable farming under increasing climatic risks.

Download "Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.
Download “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations”.

Q: What elements or approaches of regenerative agriculture are applicable in India and how can they be applied?

A: Regenerative practices for maize and wheat systems in India include no-tillage, crop residue recycling, legume inter-cropping and cover crops, crop diversification, integrated nutrient management, and precision water management.

The potential area of adoption for regenerative agriculture in India covers at least 50 million hectares across a diversity of cropping systems and agroecologies — including irrigated, rainfed, and arid farmlands — and can be approached through appropriate targeting, investments, knowledge and capacity enhancement, and enabling policies.

In the breadbasket region of the Indo-Gangetic Plains, regenerative agriculture can help address the aforementioned second-generation problems of the Green Revolution, as well as contributing to the Indian government’s Soil Health Mission and its COP26 commitments.

Q: In order to get regenerative agriculture off the ground in South Asia, who will be involved?

A: Adapting and applying regenerative agriculture’s portfolio of practices will require the participation of all stakeholders associated with farming. Application of these principles is location- and situation-specific, so researchers, extension functionaries, value chain actors, philanthropists, environmentalists, NGOs, farmers, and policy planners all have a role to play in the impact pathway.

CIMMYT, the Borlaug Institute for South Asia (BISA), public and private programs and agencies, and farmers themselves have been developing, refining, and scaling out conservation agriculture-based regenerative agriculture practices for some three decades in South Asia. CIMMYT and BISA will continue to play a key role in mainstreaming regenerative agriculture in local, national, and regional development plans through science-based policy and capacity development.

Q: Farmers constitute a strong economic and political force in India. How can they be brought on board to practice regenerative agriculture, which could be more costly and knowledge-intensive than their current practices?

A: We need to pursue business “unusual” and harness the potential opportunities of regenerative agriculture to sequester soil carbon and reduce greenhouse gas emissions. Regenerative agriculture practices can offer farmers additional income and certainly create a “pull factor” for their adoption, something that has already started and will constitute a strong business case. For example, innovative business models give farmers an opportunity to trade ecosystem services and carbon credits through repurposing subsidies and developing carbon markets for private sectors. CIMMYT, along with the Indian Council of Agricultural Research and private partners such as Grow Indigo, are already helping to put in place a framework to acquire carbon credits through regenerative agriculture in India.

For more information about the application of regenerative agriculture on India’s farmlands, see “Regenerative Agriculture for Soil Health, Food and Environmental Security: Proceedings and Recommendations” from the Trust for Advancement of Agricultural Sciences.

Cover photo: Brown and green fields. (Photo: Elizabeth Lies/Unsplash)

Nepal launches digital soil map

A new digital soil map for Nepal provides access to location-specific information on soil properties for any province, district, municipality or a particular area of interest. The interactive map provides information that will be useful to make new crop- and site-specific fertilizer recommendations for the country.

Produced by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Nepal Agricultural Research Council’s (NARC) National Soil Science Research Center (NSSRC), this is the first publicly available soil map in South Asia that covers the entire country.

The Prime Minister of Nepal, K.P. Sharma Oli, officially launched the digital soil map at an event on February 24, 2021. Oli highlighted the benefits the map would bring to support soil fertility management in the digital era in Nepal. He emphasized its sustainability and intended use, mainly by farmers.

CIMMYT and NSSRC made a live demonstration of the digital soil map. They also developed and distributed an informative booklet that gives an overview of the map’s major features, operation guidelines, benefits, management and long-term plans.

The launch event was led by the Ministry of Agriculture and Livestock Development and organized in coordination with NARC, as part of the Nepal Seed and Fertilizer (NSAF) project, implemented by CIMMYT. More than 200 people participated in the event, including government officials, policymakers, scientists, professors, development partner representatives, private sector partners and journalists. The event was also livestreamed.

Better decisions

Immediately after the launch of the digital soil map, its CPU usage grew up to 94%. Two days after the launch, 64 new accounts had been created, who downloaded different soil properties data in raster format for use in maps and models.

The new online resource was prepared using soil information from 23,273 soil samples collected from the National Land Use Project, Central Agricultural Laboratory and Nepal Agricultural Research Council. The samples were collected from 56 districts covering seven provinces. These soil properties were combined with environmental covariates (soil forming factors) derived from satellite data and spatial predictions of soil properties were generated using advanced machine learning tools and methods.

The platform is hosted and managed by NARC, who will update the database periodically to ensure its effective management, accuracy and use by local government and relevant stakeholders. The first version of the map was finalized and validated through a workshop organized by NSSRC among different stakeholders, including retired soil scientists and university professors.

Ivan Ortiz-Monasterio, principal scientist at CIMMYT, shared his remarks in a video message. (Photo: Shashish Maharjan/CIMMYT)
Ivan Ortiz-Monasterio, principal scientist at CIMMYT, shared his remarks in a video message. (Photo: Shashish Maharjan/CIMMYT)

“The ministry can use the map to make more efficient management decisions on import, distribution and recommendation of appropriate fertilizer types, including blended fertilizers. The same information will also support provincial governments to select suitable crops and design extension programs for improving soil health,” said Padma Kumari Aryal, Minister of Agriculture and Livestock Development, who chaired the event. “The private sector can utilize the acquired soil information to build interactive and user-friendly mobile apps that can provide soil properties and fertilizer-related information to farmers as part of commercial agri-advisory extension services,” she said.

“These soil maps will not only help to increase crop yields, but also the nutritional value of these crops, which in return will help solve problems of public health such as zinc deficiency in Nepal’s population,” explained Ivan Ortiz-Monasterio, principal scientist at CIMMYT, in a video message.

Yogendra Kumar Karki, secretary of the Ministry of Agriculture and Livestock Development, presented the program objectives and Deepak Bhandari, executive director of NARC, talked about the implementation of the map and its sustainability. Special remarks were also delivered by USAID Nepal’s mission director, the secretary of Livestock, scientists and professors from Tribhuwan University, the International Fertilizer Development Center (IFDC) and the International Centre for Integrated Mountain Development (ICIMOD).

K.P. Sharma Oli (left), Prime Minister of Nepal, and Padma Kumari Aryal, Minister of Agriculture and Livestock Development, launch the digital soil map. (Photo: Shashish Maharjan/CIMMYT)
K.P. Sharma Oli (left), Prime Minister of Nepal, and Padma Kumari Aryal, Minister of Agriculture and Livestock Development, launch the digital soil map. (Photo: Shashish Maharjan/CIMMYT)

Benefits of digital soil mapping

Soil properties affect crop yield and production. In Nepal, access to soil testing facilities is rather scarce, making it difficult for farmers to know the fertilizer requirement of their land. The absence of a well-developed soil information system and soil fertility maps has been lacking for decades, leading to inadequate strategies for soil fertility and fertilizer management to improve crop productivity. Similarly, existing blanket-type fertilizer recommendations lead to imbalanced application of plant nutrients and fertilizers by farmers, which also negatively affects crop productivity and soil health.

This is where digital soil mapping comes in handy. It allows users to identify a domain with similar soil properties and soil fertility status. The digital platform provides access to domain-specific information on soil properties including soil texture, soil pH, organic matter, nitrogen, available phosphorus and potassium, and micronutrients such as zinc and boron across Nepal’s arable land.

Farmers and extension agents will be able to estimate the total amount of fertilizer required for a particular domain or season. As a decision-support tool, policy makers and provincial government can design and implement programs for improving soil fertility and increasing crop productivity. The map also allows users to identify areas with deficient plant nutrients and provide site-specific fertilizer formulations; for example, determining the right type of blended fertilizers required for balanced fertilization programs. Academics can also obtain periodic updates from these soil maps and use it as a resource while teaching their students.

As digital soil mapping advances, NSSRC will work towards institutionalizing the platform, building awareness at the province and local levels, validating the map, and establishing a national soil information system for the country.

Nepal’s digital soil map is readily accessible on the NSSRC web portal:
https://soil.narc.gov.np/soil/soilmap/

Breaking Ground: Dyutiman Choudhary builds strong agribusinesses for sustainable economic growth

Agricultural market systems play a pivotal role in food security, livelihood development and economic growth. However, the agricultural sector in Nepal is constrained by a lack of spatially-explicit technologies and practices related to improved seed and fertilizer. Embracing these challenges, Dyutiman Choudhary, a scientist in market development with the International Maize and Wheat Improvement Center (CIMMYT), works to strengthen the seed and fertilizer market systems and value chains, with the ultimate goal to ensure demand-driven, inclusive and market-oriented cereal production.

Nepal’s agricultural sector is dominated by smallholder farmers. As farming is mostly semi-commercial and subsistence in nature, many smallholder farmers are isolated from markets and lack knowledge about the latest farming technologies and inputs. They are unable to upgrade their farms to increase productivity for generating marketable surplus to make profitable income. Agribusiness entities in Nepal — such as seed companies, agrodealers and importers — face market development challenges and lack the commercial and business orientation to develop and deliver new technologies to farmers. Output market linkages are weak and loosely integrated, leading to poor coordination, weak information flow and lower return to actors.

This is where Choudhary’s expertise in agribusiness management fits in to make a difference.

Born and raised in Shillong, a hill station in northeastern India with a distinctive charm, he was enrolled as an engineering student. However, his interest took a sudden turn when he got drawn towards biological sciences and ultimately decided to leave the engineering course by stepping into agribusiness management. “I realized I was walking in the right direction as I was fascinated to learn about the livelihood benefits of agroforestry and the scope of agribusiness in fostering overall economic growth.”

He joined CIMMYT in 2017 as an expert in market development, but his roles and responsibilities transitioned to working as a Lead for the Nepal Seed and Fertilizer (NSAF) project within four months of his appointment. His role involves leading an interdisciplinary team of scientists, partners and experts to develop a synergistic market system. The NSAF team fosters public private partnerships, improves access to support services and strengthens inclusive value chains in a supportive policy environment.

Choudhary’s research focuses on assessing crops, seed and fertilizer value chains; developing commercial and inclusive upgrading strategies with businesses and stakeholders; assessing competitiveness of seed companies; lobbying for policies to foster the growth of seed and fertilizer business; and building pathways for public and private sector services to market actors and smallholder farmers.

Dyutiman Choudhary (seventh from left) with seed producers during a field visit. (Photo: Dipak Kafle)
Dyutiman Choudhary (seventh from left) with seed producers during a field visit. (Photo: Dipak Kafle)

A roadmap to innovative market systems

Choudhary introduced the vision of a market system approach and put together a strategic roadmap in collaboration with a team from CIMMYT researchers from the Global Maize program, the Sustainable Intensification program and the Socioeconomics program. The roadmap addressed the concerns of low crop productivity, poor private sector growth and a less supportive policy environment inhibiting agricultural innovations in Nepal.

“Seed and fertilizer market systems in Nepal are uncompetitive and lack influx of new knowledge and innovations that restricts agriculture growth,” Choudhary explained.

Having prior experience as a regional lead for high-value products and value chains for South Asia and an inclusive market-oriented development expert in Eastern and Southern Africa, Choudhary carries unique capabilities for putting together a winning team and working with diverse partners to bring about a change in farming practices and build a strong agribusiness sector in Nepal.

Under his leadership, Nepalese seed companies are implementing innovative and competitive marketing approaches to develop newly acquired hybrid varieties under their brands. The companies are upgrading to build business models that cater to the growth of seed business, meet market demands and offer innovative services to smallholder farmers to build a sustainable national market. Facilitating financing opportunities has enabled these enterprises to produce strategic business plans to leverage $2 million to finance seed business. Improved value chain coordination mechanisms are increasing demand of seed company’s products and enhancing smallholder farmers’ access to output markets.

There is a renewed interest and confidence beaming from the private sector to invest in fertilizer business due to improved knowledge, communication and collaborative methods. The government committed to support balanced soil fertility management and allocated $2.4 million in 2019 to initiate fertilizer blending in Nepal.

The landscape is changing, and policy makers are considering new ideas to strengthen the delivery of targets under the Government of Nepal’s National Seed Vision 2013-2025 and the Agriculture Development Strategy 2015-2035.

Dyutiman Choudhary (left) welcomes the Feed the Future team leader to the CIMMYT office in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Dyutiman Choudhary (left) welcomes the Feed the Future team leader to the CIMMYT office in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Dyutiman Choudhary shows a demonstration plot during a field visit with USAID and project partners in Nepal. (Photo: Darbin Joshi)
Dyutiman Choudhary shows a demonstration plot during a field visit with USAID and project partners in Nepal. (Photo: Darbin Joshi)
Dyutiman Choudhary (left) receives a token of appreciation at an International Seed Conference organized in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Dyutiman Choudhary (left) receives a token of appreciation at an International Seed Conference organized in Nepal. (Photo: Bandana Pradhan/CIMMYT)

Competitiveness fosters productivity

The results of Choudhary’s work have the potential to transform Nepalese agriculture by unleashing new investments, changes in policies and practices, and innovative business management practices. “Despite a huge change in my TOR and the challenges to deliver impactful outcomes, I was able to successfully steer the project to produce exciting results that made the donor to declare it as their flagship project in Nepal,” he explained. “At the end of the day, reflecting upon the work achieved with my team and the stakeholders in co-creating solutions for complex issues brings me immense satisfaction.”

An amiable individual, he feels close to natural science and loves interacting with farmers. “I’ve always enjoyed traveling to biodiversity-rich locations, to understand local cultures and livelihood practices, so as to gauge the drivers of innovation and adaptation to change among diverse rural populations.”

“Keeping up the momentum, I want to continue to support growth in agribusiness management in less favorable regions, helping stakeholders in the farm-to-fork continuum to leverage the potential of innovations in research, development and delivery.”

En route to improved agronomic literacy

Masuriya, a rural village in Nepal’s Gauriganga municipality, was one of the villages affected during the country’s civil war which ran from 1996-2006. Since 2012, Bandana Joshi, chairperson of a local cooperative, has been encouraging women in her village to optimize fertilizer application to maximize plant growth and profitability, and improve livelihoods. However, her journey to this day was not an easy one.

In the years of the civil war, women in the villages like Masuriya faced the burden to make ends meet for their children and elderly family members, as most men fled in fear of war or migrated to earn income. It was during this time that Joshi and a group of 24 women who were operating a savings and credit firm realized that more women in their village needed monetary support to carry out their livelihood activities. They decided to expand their services and formed a cooperative to empower rural women and make finance available in the village. Their cooperative, Sana Kisan Sahakari Sanstha Limited, now has 1,186 women members, more than half of whom belong to marginalized communities – 514 Janajatis and 154 Dalits.

Many of the members are small commercial farmers, owning about 1.4 ha of land for farming as their sole source of income. Most have traditionally grown cereals such as rice and wheat alongside a few vegetables and had limited knowledge on cash crop farming and soil fertility management. They would produce and sell their surplus rice and wheat when they needed cash to buy groceries or pay household bills.

Woman prepares cauliflower for marketing.
Cooperative member prepares cauliflower for marketing. (Photo: Uttam Kunwar/CIMMYT)

In October 2016, researchers from the International Maize and Wheat Improvement Center’s (CIMMYT) Nepal Seed and Fertilizer (NSAF) project and the International Fertilizer Development Center (IFDC), launched an integrated soil fertility management (ISFM) program and worked alongside the cooperative to disseminate and encourage the use of ISFM technologies among its members. The purpose was to show farmers the benefits of ISFM – an integration of organic inputs and inorganic fertilizers with improved seeds – for rice, wheat and cauliflower cultivation, that includes balanced fertilizer application to increase yield. The project team conducted research trials and on-farm demonstrations on these crops as part of the initiative and built capacity through farmer field days and trainings on best management practices.

As a strategic entry point, the cooperative in coordination with female community volunteers helped implement the ISFM program. Women received training on the right source and amount of fertilizer that matches crop needs, and the right time and place to apply these fertilizers to maximize nutrient uptake and improve crop yields. NSAF researchers engaged with lead farmers and the cooperative’s leadership to influence their acceptance of the new fertilizer application practices, and they in turn motivated the members to use balanced fertilizer application. In 2020, these activities have been critical in building awareness on balanced fertilizer application for more than 800 farmers on over 700 ha of land, with each household able to raise their crop productivity by at least 50% for vegetables and 25% for cereals.

Better soil, better harvest

So far, the use of balanced fertilizer application has benefited more than a hundred members of the cooperative by gaining an average income of $219 in a season from cultivating cauliflower – a cash crop in Nepal’s Terai region. This additional return has helped farmers to adequately feed an average family of 4.5 people for the entire year.

Dutrani Chaudhary, a cooperative member, said that she was able to raise cauliflower production by 64% by applying balanced fertilizers that supplied all the essential nutrients – nitrogen, phosphorus, potash and micro-nutrient boron. She earned about $238 from 0.033 ha of land, which is a much larger gain for any farmer from a single season. As well as boosting her pride and confidence, she can now contribute for her children’s school fees and household expenditures.

After witnessing positive results, many other farmers in the village started applying major nutrients using urea, DAP (Di-ammonium Phosphate) and MoP (Muriate of Potash) to increase crop productivity. In 2017, Joshi and her members noticed a sharp rise in fertilizer procurement from the cooperative among farmers resulting in almost double the sales compared to 2015. Prior to the project’s agronomic literacy programs on soil fertility management, she sold merely 15 tons urea and 10 tons of DAP. Thereafter, fertilizer sales increased to 32.6 tons and 27.9 tons, for urea and DAP respectively, in just two years.

“For the first time in 2018 we sold 500 kilograms of MoP since the cooperative established,” explained Joshi. MoP was never considered a priority by the farmers before and they rarely purchased it from the cooperative.

Women in field.
Women participating in farmer field day of cauliflower in Masuriya. (Photo: Uttam Kunwar/CIMMYT)

On the rise

Now more organized and well-equipped, the cooperative has started organizing programs this year on off-seasonal and seasonal vegetable cultivation on crops such as tomato, cauliflower and cucurbits that have aided around 150 member households. “We have prioritized balanced fertilizer application in our vegetable production program,” says Madhuri Chaudhary, manager of the cooperative.

The woman-led rural institution has achieved remarkable success over the years by learning and adopting best agronomic practices including fertilizer application, planting and cultivation methods that helped increase crop productivity and household income. Having seen the benefits, male family members now encourage them to participate in agronomic literacy programs to acquire advanced knowledge and skills.

Joshi and her team of visionary women have been successful in setting up an inclusive new movement in Masuriya village, which has led to their active participation in development activities and decision-making roles not only at the household level but also in societal issues around women’s rights. Passionate to learn new skills and grow financially independent, these rural women are confident in making their own decisions for themselves, their family and for the wider society. Although it started small, the cooperative has now boomed towards improving rural women’s economic empowerment and sparking better livelihood opportunities in the area.

Cover photo: Balanced nutrient management helps farmer Dharma Devi generate better household income from cauliflower cultivation. (Photo: Uttam Kunwar/CIMMYT)

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

Nepal Seed and Fertilizer Project (NSAF)

The Nepal Seed and Fertilizer (NSAF) project facilitates sustainable increases in Nepal’s national crop productivity, income and household-level food and nutrition security, across 20 districts, including five earthquake-affected districts.

Nepal’s agriculture is mostly small-scale and subsistence-oriented, characterized by a mix of crop and livestock farming. The agriculture sector represents about one-third of the country’s gross domestic product and employs 75 percent of the labor force.

Over half of Nepal’s farms operate on less than half a hectare, with the majority unable to produce enough to meet their household food requirements for the whole year. Combined with an increasing urban population, it will not be possible for the country to meet future food demand without increased agricultural productivity and competitiveness of domestic production.

Major cereal crops and vegetables currently have low yields, but there are significant prospects for increases through improved seed and soil fertility management practices. A large part of this yield gap results from a lack of knowledge, inadequate access to affordable improved technologies, extension services and markets due to weak public and private sector capacity to provide support services needed by small scale farmers.

NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective and efficient extension, including the use of digital and information and communications technologies. The project will specifically increase availability of technologies to improve productivity in cauliflower, lentils, maize, onions, rice and tomatoes. It will also build competitive seed and fertilizer systems that significantly expand seed production, marketing and distribution by enhancing the capacity of public and private sectors in seed and fertilizer value chains.

Agriculture development needs to be locally owned and led through inclusive business models involving women and disadvantaged groups and farmers institutions. There is a need to further the development of Nepal’s cereals, legumes and vegetable sector by:

  • Strengthening public-private coordination mechanisms
  • Developing market systems that are agile, resilient, and adaptive
  • Propelling agricultural growth through evidence-based policy change and harmonization.

Food security in Ukraine

Supplemental funds released in 2022 will be used to respond to the impact of the Ukraine war at the household level. CIMMYT and its partners will develop food security and resilient agriculture market systems, to advance the delivery of improved agriculture input management knowledge and technologies, application of best crop management practices, and development of local capacity to apply improved technologies.

The objective is to build resilience of smallholder farmers in four areas:

  • Protecting and sustaining crop production for strengthening local food production and consumption systems.
  • Supporting efficient agriculture supply chain.
  • Strengthening local cooperatives and micro, small- and medium-sized agribusiness enterprises.
  • Addressing the impact of global fertilizer shortages by exploring innovative products, novel application techniques and local market development.