Skip to main content

funder_partner: Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL)

The right time for the right place

Wheat is a strategically important crop for Afghanistan because as a major source of nutrition — accounting for up to 60% of a family’s daily caloric intake — it is linked directly to national food security. However, despite occupying over 2.5 million hectares of arable land across the country, Afghanistan does not currently produce enough wheat to meet the needs of a growing population. On average, annual production is estimated at around 5 million metric tons — 2 million metric tons less than needed — and as a result Afghanistan makes up this significant shortfall by importing wheat flour from neighboring countries where wheat productivity is significantly higher.

There is tremendous potential to increase national wheat productivity by introducing improved agronomic practices and making use of suitable farming technologies. However, given Afghanistan’s vast agro-ecological diversity, it is essential that best practices are recommended based on local conditions, as these vary greatly across the country.

Take seeding, for instance. Sowing wheat seed at the optimum time has been shown to help maximize yields and significant research has been undertaken to determine the optimal sowing dates for winter and spring wheat in different areas. These times are governed not only by environmental requirements and growing cycles, but also by the need to avoid certain diseases and insect pests, which may be more prevalent at specific times of year.

But these can vary widely even within a season. For example, research shows that the best time to sow irrigated winter wheat in Afghanistan’s hot and arid western provinces is from the second week of October up until the end of the month. However, the optimum window falls one month later in the more mountainous and forested provinces of the East, and even later for rain-fed wheat.

The same distinctions apply to seeding and fertilizer application rates, which can vary subtly between similar regions. Consider that the optimum seed rate for irrigated wheat sown using the broadcast method is the same in both the Northern and Central zones, 25-30 kilograms per jerib (approx. half an acre). One might expect the optimum rates for row cultivation to match, but in fact they differ by two kilograms. This might not seem like much, but given how significantly seed density and spacing influence crop yield and quality, these figures are vital knowledge for farmers looking to maximize their yield potential.

To help disseminate these research-based recommendations to farmers and local agricultural extension staff, researchers at the International Maize and Wheat Improvement Center (CIMMYT) have partnered with Afghanistan’s Ministry of Agriculture, Irrigation and Livestock, Michigan State University’s Global Center for Food Systems Innovation and the USAID to compile four new booklets featuring zone-specific advice for irrigated and rain-fed systems in each of Afghanistan’s main agro-ecological zones.

Covering between four and ten provinces each, these guides include localized recommendations for the best sowing dates, nutrient management, weed management, and best practices in irrigation, arming wheat farmers with the key information they need to effectively increase production in their area and support the country’s wider food security needs.

More information is available in the booklets below:

Zone-Specific Recommendations for: Northern Region

Zone-Specific Recommendations for: Central Region

Zone-Specific Recommendations for: Eastern Region

Zone-Specific Recommendations for: Western Region

Cover photo: The optimal time for wheat sowing in Afghanistan varies by region according to the country’s vast agro-ecological diversity. CIMMYT recommends a localized approach. (Photo: Rajiv Sharma/CIMMYT)

Setting a standard: improving field trial data

“In Afghanistan, wheat is synonymous with food,” says Rajiv K. Sharma, formerly a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). Standing at about 250kg per year, the country’s per capita consumption of the crop is among the highest in the world. However, Afghanistan does not have a robust wheat research and development system. The majority of wheat varieties have been introduced from outside the country and the national wheat seed replacement rate is one of the lowest in the world at around 5%.

In a bid to strengthen research and development and boost crop productivity in the country, CIMMYT scientists have collaborated with Michigan State University and USAID to design a new, illustrated manual for wheat researchers, intended to aid them during experiments and facilitate smooth and timely data collection. As applied wheat research requires the monitoring and measurement of both qualitative and quantitative traits by different researchers across multiple locations, consistency of approach is crucial.

As well as providing descriptions of characteristics like glaucousness (the presence or absence of leaf waxes) and advice on measuring leaf area, the manual provides several different scales for determining the extent to which a wheat plant is affected by frost damage, cereal rusts or foliar diseases like Septoria and powdery mildew. Covering everything from leaf angle to chlorophyll content, this resource ensures that scientists throughout Afghanistan are supported to follow the same observation and measurement protocols while recording trial data, ensuring a standardized approach, thus bolstering the country’s wheat research sector and ensuring the data is also aligned to international projects.

The manual has since been distributed to National Agricultural Research System (NARS) researchers and other stakeholders across the country, accompanied by a number of CIMMYT-led trainings on how best to use the resource.

Download the manual here: Wheat Field Trial Data Collection Manual

Cover photo: Researchers check for stand reduction in wheat seedlings in Afghanistan. (Credit: CIMMYT)

Scientists use DNA fingerprinting to gauge the spread of modern wheat in Afghanistan

Wheat is Afghanistan’s number-one staple crop, but the country doesn’t grow enough and must import millions of tons of grain each year to satisfy domestic demand.
Wheat is Afghanistan’s number-one staple crop, but the country does not grow enough and must import millions of tons of grain each year to satisfy domestic demand.

Despite the severe social and political unrest that constrain agriculture in Afghanistan, many farmers are growing high-yielding, disease resistant varieties developed through international, science-based breeding and made available to farmers as part of partnerships with national wheat experts and seed producers.

These and other findings have emerged from the first-ever large-scale use of DNA fingerprinting to assess Afghanistan farmers’ adoption of improved wheat varieties, which are replacing less productive local varieties and landraces, according to a paper published yesterday in the science journal BMC Genomics.

The study is part of an activity supported between 2003 and 2018 by the Australian Department of Foreign Affairs and Trade, through which the Agricultural Research Institute of Afghanistan and the International Maize and Wheat Improvement Center (CIMMYT) introduced, tested, and released improved wheat varieties.

“As part of our study, we established an extensive ‘reference library’ of released varieties, elite breeding lines, and Afghan wheat landraces,” said Susanne Dreisigacker, wheat molecular breeder at CIMMYT and lead author of the new paper.

“We then compared wheat collected on farmers’ fields with the reference library. Of the 560 wheat samples collected in 4 provinces during 2015-16, farmers misidentified more than 40%, saying they were of a different variety from that which our DNA analyses later identified.”

Wheat is the most important staple crop in Afghanistan — more than 20 million of the country’s rural inhabitants depend on it — but wheat production is unstable and Afghanistan has been importing between 2 and 3 million tons of grain each year to meet demand.

Over half of the population lives below the poverty line, with high rates of malnutrition. A key development aim in Afghanistan is to foster improved agronomic practices and the use of high quality seed of improved wheat varieties, which together can raise yields by over 50%.

“Fungal diseases, particularly yellow rust and stem rust, pose grave threats to wheat in the country,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR) and co-author of the present paper. “It’s crucial to know which wheat varieties are being grown where, in order to replace the susceptible ones with high-performing, disease resistant varieties.”

Varietal adoption studies typically rely on questionnaires completed by breeders, extension services, seed producers, seed suppliers, and farmers, but such surveys are complicated, expensive, and often inaccurate.

“DNA fingerprinting resolves uncertainties regarding adoption and improves related socioeconomic research and farm policies,” Huttner explained, adding that for plant breeding this technology has been used mostly to protect intellectual property, such as registered breeding lines and varieties in more developed economies.

This new study was commissioned by ACIAR as a response to a request from the Government of Afghanistan for assistance in characterizing the Afghan wheat gene bank, according to Huttner.

“This provided the reference library against which farmers’ samples could be compared,” he explained. “Accurately identifying the varieties that farmers grow is key evidence on the impact of introducing improved varieties and will shape our future research

Joint research and development efforts involving CIMMYT, ACIAR, the Food and Agriculture Organization (FAO) of the United Nations, the International Centre of Agricultural Research in Dry Areas (ICARDA), French Cooperation, and Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) and Agricultural Research Institute (ARIA) have introduced more than 400 modern, disease-resistant wheat varieties over the last two decades. Nearly 75% of the wheat grown in the areas surveyed for this study comes from these improved varieties.

“New sequencing technologies are increasingly affordable and their cost will continue to fall,” said Dreisigacker. “Expanded use of DNA fingerprinting can easily and accurately identify the wheat cultivars in farmers’ fields, thus helping to target breeding, agronomy, and development efforts for better food security and farmer livelihoods.”


For more information, or to arrange interviews with the researchers, please contact:

Marcia MacNeil, Wheat Communications Officer, CIMMYT
M.MacNeil@cgiar.org, +52 (55) 5804 2004, ext. 2070

Rodrigo Ordóñez, Communications Manager, CIMMYT
r.ordonez@cgiar.org, +52 (55) 5804 2004, ext. 1167

About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

About ACIAR
As Australia’s specialist international agricultural research for development agency, the Australian Centre for International Agricultural Research (ACIAR) brokers and funds research partnerships between Australian scientists and their counterparts in developing countries. Since 1982, ACIAR has supported research projects in eastern and southern Africa, East Asia, South and West Asia and the Pacific, focusing on crops, agribusiness, horticulture, forestry, livestock, fisheries, water and climate, social sciences, and soil and land management. ACIAR has commissioned and managed more than 1,500 research projects in 36 countries, partnering with 150 institutions along with more than 50 Australian research organizations.

About Afghanistan’s Ministry of Agriculture, Irrigation and Livestock
The Ministry of Agriculture, Irrigation and Livestock (MAIL) of the Islamic Republic of Afghanistan works on the development and modernization of agriculture, livestock and horticulture. The ministry launches programs to support the farmers, manage natural resources, and strengthen agricultural economics. Its programs include the promotion and introduction of higher-value economic crops, strengthening traditional products, identifying and publishing farm-tailored land technologies, boosting cooperative programs, agricultural economics, and export with marketing.