Skip to main content

funder_partner: Australian Centre for International Agricultural Research (ACIAR)

CIMMYT and partners set the pace in maize and wheat research in Africa

NAIROBI, Kenya (CIMMYT) – The recent inauguration of a new seed storage cold room at the Kenya Agricultural and Livestock Research Organization (KALRO) research center at Kiboko in Makueni County, about 155 kilometers from the capital, adds to the top notch research establishments managed by the national partners in Africa together with the International Maize and Wheat Improvement Center (CIMMYT). This  successful partnership  continues to help farmers overcome crippling challenges in farming and to realize the yield potential of improved varieties.

Since its establishment in Africa, over 40 years ago, CIMMYT has prioritized high quality research work in state-of-the-art research facilities developed through long-standing partnerships with national research organizations, such as KALRO.

“If CIMMYT were to be established today, it would be headquartered in Africa because this is where smallholder farmers face the biggest challenges.  At the same time, this is the place where outstanding work is being done to help the farmers rise above the challenges, and with great success,” said Martin Kropff, CIMMYT Director General during his recent visit to Kenya.

The cold room jointly inaugurated by Kropff, and KALRO Director General, Eliud Kireger will help store high value maize seeds with an array of traits including resilience to diseases, insect-pests and climatic stresses as drought and heat, for up to 10 years, without the need for seed regeneration every year, thereby avoiding risk of contamination and use of scarce resources.  It will also help make seed readily available for distribution to national partners and seed companies to reach the farmers much faster.

Kireger conveyed his appreciation for the cold room and other research facilities established on KALRO sites, terming these achievements as “rewarding not just to KALRO and to the seed companies, but to many smallholders in Africa, who continue to be the inspiration behind every effort put into maize research and development work by KALRO and partners like CIMMYT.”

In addition to the seed storage cold room, Africa hosts the maize lethal necrosis (MLN) disease screening facility in sub-Saharan Africa. The MLN screening facility was established in 2013 at KALRO Naivasha Center in Kenya in response to the outbreak of the devastating MLN disease in eastern Africa. The facility since then has supported both the private and public institutions to screen maize germplasm for MLN under artificial inoculation and in identifying MLN tolerant/resistant lines and hybrids.

Did you know? •Over 60,000 entries have been tested at the MLN screening site in Naivasha, Kenya since 2013. • 16 private and public institutions including seed companies and national research organizations have screened their germplasm for MLN.
Combating MLN:                                                                                                                                            
• Over 60,000 entries have been tested at the MLN screening site in Naivasha, Kenya since 2013.
• 16 private and public institutions including seed companies and national research organizations have screened their germplasm for MLN. Photo: K. Kaimenyi/CIMMYT

“The MLN screening facility (also a quarantine site) has been supporting the national partners in sub-Saharan Africa, key multinational, local and regional seed companies and CGIAR centers.  This facility has become a major resource in the fight against MLN regionally,” added B.M. Prasanna, Director of CIMMYT’s Global Maize Program as well as the CGIAR Research Program MAIZE. “Tremendous progress has been made through this facility in the last three years. Several promising maize lines with tolerance and resistance to MLN have been identified, and used in breeding programs to develop improved maize hybrids. Already five MLN-tolerant hybrids have been released and now being scaled-up by seed companies for reaching the MLN-affected farmers in Kenya, Uganda and Tanzania. As many as 22 MLN-tolerant and resistant hybrids are presently undergoing national performance trials in east Africa,” remarked Prasanna.

Another major focus of CIMMYT and partners in the region is to prevent the spread of MLN from the endemic to non-endemic countries in Africa.  “This is a strong message to convey that we not only work hard to develop MLN resistant maize varieties for the farmers, but we are also very keen to control the spread of the disease” remarked Kropff during a visit to the site.

In Zimbabwe, an MLN quarantine facility has been established in 2016, in collaboration with the government. This facility is key for safe transfer of research materials, including those with MLN resistance into the currently MLN non-endemic countries in southern Africa, before they get to the partners.

In order to keep up with the emerging stresses and to accelerate development of improved maize varieties, the maize Doubled-Haploid (DH) facility was established in 2013 by CIMMYT and KALRO at the KALRO research center in Kiboko. This facility helps the breeders to significantly shorten the process of developing maize parental lines from 7–8 seasons (using conventional breeding) to just 2–3 seasons.

Over 92,000 Doubled-Haploid (DH) maize lines have been developed from CIMMYT bi-parental crosses. Photo: B. Wawa/CIMMYT
Over 92,000 Doubled-Haploid (DH) maize lines have been developed from CIMMYT bi-parental crosses. Photo: B. Wawa/CIMMYT

“Through the facility at Kiboko, we have been able to develop over 60,000 DH lines in 2015 from diverse genetic backgrounds. The DH facility also supports the national agricultural research organisations and small and medium enterprise partners in sub-Saharan Africa to fast-track their breeding work through DH lines,” said Prasanna.

For wheat research-for-development work in Africa, the largest stem rust phenotyping platform in the world sits at KALRO research center in Njoro, Kenya. The facility screens at least 50,000 wheat accessions annually from 20-25 countries. Following the emergence of the Ug99 wheat rust disease pathogen strain in Uganda, the disease spread to 13 countries in Africa. Close to 65 wheat varieties that are resistant to Ug99 stem rust disease have been released globally as a result of the shuttle breeding that includes selection from the screening site at KALRO Njoro.

“CIMMYT’s yearly investment of USD 37 million in Africa through various projects has translated into a success story because of the strong collaboration with our partners across Africa,” said Stephen Mugo, CIMMYT’s Regional Representative for Africa. He further added that “research work in Africa is not yet done. No institution, including CIMMYT, cannot do this important work alone.  We need to, and will, keep on working together with partners to improve the livelihoods of the African smallholders.”

CIMMYT DG Martin Kropff studying an MLN affected plant. Photo: K. Kaimenyi/CIMMYT
CIMMYT DG Martin Kropff studying an MLN affected plant. Photo: K. Kaimenyi/CIMMYT

 

Key funders of CIMMYT work in Africa include, the USAID, Bill & Melinda Gates Foundation, the Sygenta Foundation for Sustainable Agriculture, Australian Centre for International Research, CGIAR Research Program on Maize, Foreign Affairs Trade and Development Canada.

receive newsletter

Building a sustainable future: A history of conservation agriculture in southern Africa

This story is one of a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.

HARARE, Zimbabwe (CIMMYT) — When practiced unsustainably, agriculture has led to environmental degradation and famine, which have plagued civilizations through the centuries. Innovations such as irrigation or the plow (since circa 6,000 and 3,000 BC) increased productivity, but often deteriorated long-term soil fertility through erosion and other forms of degradation.

We are now facing historically unprecedented challenges to food security. We must increase food production by 70 percent to feed nine billion people by 2050, without damaging our finite and often already degraded natural resource base. In addition, farmers face more frequent drought and water scarcity, which makes it increasingly difficult to grow crops, and extreme weather events such as the 2015-2016 El Niño, which has already caused large-scale crop failures and soaring maize prices in southern Africa.

Conservation agriculture (CA) practices based on the principles of minimal soil disturbance, permanent soil cover and crop rotation are helping farmers combat growing environmental challenges by maintaining and boosting yields, while protecting the environment and increasing profits for smallholders globally. When CA practices are coupled with water-use efficient and drought tolerant varieties, the benefits are even greater.

Drought is increasingly common in Malawi, leaving an estimated three million people in need of urgent humanitarian food assistance this year alone. However, a fortunate few will escape hunger, including more than 400 farmers and their families in Balaka, southern Malawi, who have been practicing CA over the last 12 years. "Few farmers have livestock in Balaka, so crop residues can be kept on the fields instead of feeding them to cattle," according to Thierfelder, who says Malawi presents a good case for conservation agriculture. CIMMYT and its strategic development partner Total LandCare have helped more than 65,000 farmers adopt CA systems throughout the entire country. Above, SIMLESA lead farmer Agnes Sendeza harvests maize ears on her farm in Tembwe, Salima District, Malawi. Photo: Peter Lowe/CIMMYT
Drought is increasingly common in Malawi, leaving an estimated 3 million people in need of urgent humanitarian food assistance this year alone. However, more than 400 farmers and their families in Balaka, southern Malawi, who have been practicing CA over the last 12 years will escape hunger. CIMMYT and its partner Total LandCare have helped more than 65,000 farmers adopt CA systems throughout the entire country. Above, SIMLESA lead farmer Agnes Sendeza harvests maize ears on her farm in Tembwe, Salima District, Malawi. Photo: Peter Lowe/CIMMYT

“CA approaches can mean the difference between farmers being able to feed their families or having to starve,” says Christian Thierfelder, senior cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), regarding the recent El Niño – the strongest on record – in southern Africa. To date, approximately 10 million people in southern Africa are dependent on food aid and an estimated 50 million people are projected to be affected, pushing them to the brink of starvation.

Sustainable intensification of agricultural systems and practices such as CA have become a necessity for farmers in Africa, where a combination of climate change and unsustainable agricultural practices are undermining land and water resources. This, coupled with an exploding population, makes increasing productivity while conserving the environment absolutely urgent.

Based on its experience in Latin America, which began in the early 1990s, CIMMYT started its first CA project in Africa in 2004, targeting Malawi, Mozambique, Tanzania, Zambia and Zimbabwe. This initial work focused on understanding CA systems in the context of farmers and their environmental conditions and was funded by the German government and the International Fund for Agriculture Development. Its aim was to facilitate the adoption of CA systems by smallholder farmers. This culminated in the establishment in 2009 of a large PAN-African project on Sustainable Intensification of Maize-Legume Systems in Eastern and Southern Africa (SIMLESA).

Farmers in Shamva District, Zimbabwe, are introduced to an animal traction direct seeder which allows seeding and fertilizing directly into crop residues with minimum soil disturbance. Labor-saving sowing systems are a key benefit for labor-constrained farmers and provide an entry point for CA adoption and outscaling. Photo: Thierfelder/CIMMYT
Farmers in Shamva District, Zimbabwe, are introduced to an animal traction direct seeder which allows seeding and fertilizing directly into crop residues with minimum soil disturbance. Photo: Thierfelder/CIMMYT

Since then, CIMMYT has leveraged its large network of partners to scale out CA. Between 2010 and 2015, CIMMYT, supported by a large group of donors including the Australian Centre for International Agricultural Research, the International Fund for Agricultural Development, the United States Agency for International Development and the Food and Agriculture Organization of the United Nations, helped over 173,000 farming households in the region adopt sustainable intensification practices.

Today, CA research at CIMMYT in Africa is increasingly focused on adaptation to the changing climate, which is leading to more erratic rainfall, increased heat stress and seasonal dry spells, in an effort to increase the use of climate-resilient cropping systems. CIMMYT’s work on CA in the region has shown that the practice can significantly increase farmers’ resilience to climate variability and change. Combining sustainable intensification practices with improved varieties has proved to increase productivity by 30-60 percent and income by 40-100 percent under drought conditions.

Despite CA’s successes, many smallholder farmers in developing countries still lack knowledge and understanding of sustainable agricultural practices and often revert to traditional farming practices that are labor-intensive and environmentally damaging. Also, CA systems are difficult to scale out if favorable policies and markets are not in place.

Araujo Njambo (right), a smallholder maize farmer in Mozambique, was used to the traditional way of farming that his family has practiced for generations, which required clearing a plot of land and burning all plant residues remaining on the soil to get a clean seedbed. However, as demand for land increases, this fuels deforestation and depletes soil nutrients. CIMMYT has been working with farmers like Njambo since 2006 to adapt sustainable intensification practices like CA to his circumstances. In remote areas of Mozambique, where Njambo’s farm is located, CA systems provide significant benefits during dry spells because farmers have no access to irrigation and depend only on rainfall. In the 2013-2014 cropping season, Njambo harvested his best maize yield in the last six years thanks to CA. Photo: Christian Thierfelder/CIMMYT
Araujo Njambo (right), a smallholder maize farmer in Mozambique, was used to the traditional way of farming that his family has practiced for generations, which required clearing a plot of land and burning all plant residues remaining on the soil to get a clean seedbed. However, as demand for land increases, this fuels deforestation and depletes soil nutrients. CIMMYT has been working with farmers like Njambo since 2006 to adapt sustainable intensification practices like CA to his circumstances. In the 2013-2014 cropping season, Njambo harvested his best maize yield in the last six years thanks to CA. Photo: Christian Thierfelder/CIMMYT

Mineral fertilizer, for example, is a basic agricultural input, but its adoption and use remain limited in sub-Saharan Africa. Farmers apply less than 10 kilograms per hectare on average due mainly to poor distribution networks (especially in rural areas) and high prices that are 3-5 times those in Europe. Lack of knowledge and training on how to use mineral fertilizer and other agricultural inputs renders them ineffective.

New discoveries in agriculture and breeding must be adaptable and transferable to smallholder farmers. This means improving physical distribution of technologies, training, knowledge and information sharing, credit availability and creating enabling environments for growth.

Just before passing away in September 2009, world-renowned agricultural scientist Norman Borlaug famously implored the world to “take it to the farmer” – a call to action we must follow if we are to sustainably feed the world by 2050. Without a basic understanding of good agricultural practices, most smallholder farmers will not be able to grow enough crops to move past subsistence farming.

Grain yield from a conservation agriculture demonstration plot in Zomba District, Malawi, is measured precisely as part of CIMMYT’s research on the combined benefits of drought tolerant maize and CA. Photo: Peter Lowe/CIMMYT
Grain yield from a conservation agriculture demonstration plot in Zomba District, Malawi, is measured precisely as part of CIMMYT’s research on the combined benefits of drought tolerant maize and CA. Photo: Peter Lowe/CIMMYT

receive newsletter

Action needed to adapt maize breeding to climate change, report shows

Listen to a podcast of CIMMYT maize breeder Biswanath Das discussing the importance of adapting maize breeding and seed systems to climate change here.

Investment in speeding up the adaptation maize breeding and seed systems to climate change is needed, report finds. Photo: Peter Lowe/ CIMMYT
Investment in accelerating the adaptation of maize breeding and seed systems to climate change is needed a new report finds. Photo: Peter Lowe/ CIMMYT

EL BATAN, Mexico (CIMMYT) – Breeding and seed systems must be adapted to survive projected climate change if major loss of maize yields is to be avoided, a new report shows.

Tools that forecast the response of crops to different weather and climate conditions, coupled with crop yield modeling have enabled agricultural scientists to predict and formulate plans for potential future climate change.

“Responding better to changes in climate by improving efficiency of the breeding cycle and reducing the amount of time it takes to get improved maize into the hands of farmers is key to ensuring a food secure future,” said International Maize and Wheat Improvement Center (CIMMYT) maize breeder and co-author of the study Biswanath Das.

Projections for Africa demonstrate climate-change related increases in temperature will negatively impact on-farm yields as heat and drought stress shorten crop production time, the length of time between maize planting and harvesting, Das said.

Shorter and hotter growing seasons are expected to become a reality over the next 15 years, which could mean that maize varieties currently being developed may struggle to adapt, particularly since current breeding and commercialization cycles to improve maize in Africa can take several decades.

The report published in Nature Climate Change, led by Andy Challinor from the University of Leeds in collaboration with the International Center for Tropical Agriculture (CIAT) and CIMMYT, calls for an acceleration of breeding, delivery and adoption processes. The authors suggest that all stages could be sped up using a variety of techniques, requiring elaborate planning and coordination involving numerous actors and interest groups.

“Current warming will reduce yields unless maize breeding and seed systems adapt immediately,” Das said. “Increased collaboration among different breeding institutes and public-private collaborations are needed so that we share information, technologies and germplasm to make the best germplasm and technology available to the widest number of scientists as possible.”

“Seed systems could be working with regulators to reduce the amount of time it takes for varieties to become available to farmers and developing new ways of producing seed more cheaply and efficiently while maintaining quality.”

Public seed systems should continue working closely with the private sector to encourage the latest genetic advances to become available to farmers in the shortest time possible, Das added.

CIMMYT has undertaken other work in this area. An intensive breeding effort through the Drought Tolerant Maize for Africa (DTMA) project developed a large phenotyping network and breeding pipeline to produce new maize varieties with heat and drought tolerance. In collaboration with over 100 national seed companies, the project supported the production of 54,000 tons of drought-tolerant maize in 2014 alone, benefiting an estimated 5.4 million households – or 43 million people – across 13 countries in Africa.

In 2015, a new project was started to expand the success of DTMA so that more smallholder farmers in Africa would have access to affordable improved maize varieties through a network of national seed companies.

Despite the considerable efforts being made to adapt maize farming to changing climates, Das warned that they must be sustained and encouraged on a larger scale in order for breeding programs to produce climate-ready maize varieties for the future.

This study was supported by the CGIAR Research Program on Climate Change (CCAFS) and the CGIAR Research Program on Maize (MAIZE CRP).

This research is carried out with support from CGIAR Fund DonorsCCAFS Donors, MAIZE CRP Donors and through bilateral funding agreements. Funding for this project came from: Australian Centre for International Agricultural Research;  Ireland Department of Foreign Affairs and Trade; Netherlands Ministry of Foreign Affairs; New Zealand Ministry of Foreign Affairs & Trade;  Swiss Agency for Development and Cooperation; Thailand; UK Department of International Development; The United States Agency for International Development and the European Union. The Program is carried out with technical support from The International Fund for Agricultural Development.

DTMA was funded by the United States Agency for International Development and the Bill & Melinda Gates Foundation.

Read the paper (subscription required)

Current warming will reduce yields unless maize breeding and seed systems adapt immediately

A. J. Challinor, A.-K. Koehler, J. Ramirez-Villegas, S. Whitfield & B. Das

http://dx.doi.org/10.1038/nclimate3061

 

SIMLESA meeting reveals many successes, gears up for phase II

Malawian smallholder farmer Dyless Kasawala, of Kasungu District, demonstrating her maize-legume rotations technologies. Through SIMLESA, she has managed to attain household food security in an area plagued by frequent droughts. Photo: Johnson Siamachira/CIMMYT.
Malawian smallholder farmer Dyless Kasawala of Kasungu District demonstrates her maize-legume rotation technologies. Through SIMLESA, she has managed to attain household food security in an area plagued by frequent droughts. CIMMYT/Johnson Siamachira

HARARE, Zimbabwe (CIMMYT) — A recent gathering of more than 60 researchers and representatives of donors, seed companies, national agricultural research systems (NARS), and non-governmental organizations from Africa and Australia, led to strategic discussions about  the Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) program.

Delegates gathered in Malawi’s capital, Lilongwe, for the sixth SIMLESA annual review and planning meeting  to discuss the project’s progress and achievements, share lessons learned over the past six years, and deliberate over potential improvements for implementing activities in the project’s final two years.

“The SIMLESA project has targeted increasing farm-level food security and productivity in the context of climate risk and change,” said Bright Kumwembe,  principal secretary of Malawi’s Ministry of Agriculture and Food Security, speaking on behalf of the minister. “The program has become a model to many regional and sub-regional collaborative projects that address agricultural intensification. In this respect, the challenge to NARS lies especially in developing technologies, information and knowledge that sustainably increase agricultural productivity and at the same time reduce down-side risks.”

As part of the meeting, participants visited three farmers in Kasungu District who are involved in on-farm trials assessing conventional farming practices, conservation agriculture with no herbicide application, conservation agriculture using herbicides and conservation agriculture including maize-legume crop rotations. Farmer Dyless Kasawala, was observed to have managed to improve soil fertility in her fields, increase her maize yield and improve food security in her household.

Farmers in the area are engaging in agro-processing activities, such as extracting oil from groundnuts, to add value to their farming enterprises.

Established in 2010 and funded by the Australian Centre for International Agricultural Research (ACIAR), SIMLESA has as its primary objective to improve food security for 650,000 small farming households by increasing food production and incomes of vulnerable farmers with commercial viability by 2023. Ongoing SIMLESA Phase II activities will conclude in June 2018.

“The Program Steering Committee (PSC) recognizes the hard work of all participants and especially the dedicated scientists in the national programs. SIMLESA is on track to deliver significant impacts in the next two years, “said Eric Craswell, committee co-chair.

Delegates discussed the favorable Mid-Term Review (MTR) conducted last year. “SIMLESA I and II is a complex program with many partner countries, agencies, science disciplines, and objectives. Despite that complexity, the MTR found the program on the whole to be well-managed by CIMMYT, and the NARS partners had a strong sense of ownership of the program. It was very evident that the whole SIMLESA team is determined to meet the objectives of the program, to contribute and to work as a team,” Craswell said.

Mulugetta Mekuria, SIMLESA project leader, highlighted the 2015 MTR recommendations, which indicate that SIMLESA should rebalance plans and activities of all program objectives and various program-wide themes; ensure that the science which underpins the development of sustainable intensification packages and policy dialogue is completed and published in extension reports and peer-reviewed literature; and refocus its monitoring and evaluation processes, communication plans and gender activities.

To achieve these changes, each country and the program as a whole should prepare, within the approved budget, a revised work plan extending to the end of SIMLESA II. The program would then be able to make an informed decision on what to prioritize and what needs to be phased out, Mekuria said.

Participants discussed key issues in phase II, related to MTR recommendations, concluding that the goals should include:

  • consolidating activities during the 2016-2018 period, with no new activities implemented during the remaining life of the program
  • documenting scientific outputs for all the research conducted and synthesize the lessons learned
  • streamlining logframe activities and developing a revised work plan
  • scaling-out available technologies in collaboration with partners; and
  • redesigning the project’s livestock component to align it with SIMLESA objectives.
SIMLESA Program Steering Committee co-chair Eric Craswell told participants to refocus their work through scaling up activities. Photo: Johnson Siamachira/CIMMYT.
SIMLESA program steering committee co-chair Eric Craswell told participants to refocus their work through scaling up activities. CIMMYT/Johnson Siamachira

John Dixon, ACIAR principal advisor/research program manager, cropping systems and economics, said the 2015 SIMLESA review had highlighted the commitment to the program by national partners.

“This gives us the opportunity to rebalance plans, focus on areas that can be brought together and synthesize results,” Dixon said. “Now is the time to scale-up by taking our research to farmers through extension, non-governmental organizations and farmers’ associations – moving from doing, to handing over the research.”

 

Tackling spread of wheat blast in Bangladesh

PK Malaker, BARI senior wheat pathologist (2nd from the left) and other BARI scientists showing blast affected wheat to Kropff in Jessore district. Malaker is the scientist who first identified the emergence of wheat blast in Bangladesh. Photo: CIMMYT-Bangladesh
P.K. Malaker, BARI senior wheat pathologist (2nd from left) and other BARI scientists showing blast affected wheat to Martin Kropff in Jessore district. Malaker first identified the emergence of wheat blast in Bangladesh. Photo credit: CIMMYT/Bangladesh

DHAKA, Bangladesh (CIMMYT) — On a recent visit to Bangladesh, Martin Kropff , director general of the International Maize and Wheat Improvement Center (CIMMYT) held discussions with partners and government officials on combating wheat blast disease and other aspects of maintaining food security in the country.

Meetings were held with Bangladesh’s agriculture minister and member of Parliament Begum Matia Chowdhury and Secretary of Agriculture Mohammad Moinuddin Abdullah, where CIMMYT’s activities in Bangladesh were also discussed. Wheat blast is one of the most feared and intractable wheat diseases.

A new, severe outbreak of the disease in Bangladesh validated the prediction of the spread of the disease beyond its origins in Latin America to Africa and South Asia. The spread of wheat blast could be devastating to South Asia, which is home to 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.

Martin Kropff and Nynke Kropff- Nammensma with CIMMYT-Bangladesh staff. Photo: Utam Barman/CIMMYT
Martin Kropff and Nynke Kropff-Nammensma with CIMMYT-Bangladesh staff. CIMMYT/Utam Barman

During a two day field visit, Kropff saw the impacts of wheat blast in the Bangladesh Agricultural Research Institute’s (BARI) research station in Jessore and farmers’ fields. He also spent the visit meeting Bangladeshi farmers, observing mechanization scaling efforts and visiting a range of CIMMYT varietal and agronomic research trials and demonstrations funded by the U.S. Agency for International Development and the Australian Centre for International Agricultural Research in Jessore and Dinajpur districts.  In addition he held discussions with scientists from BARI and visited the organization’s headquarters in Gazipur and

Kropff (L) meets with Bangladesh’s Agriculture Minister and Member of Parliament Begum Matia Chowdhury (2nd from left) to address the spread of wheat blast in the country, along with (from L-R) Nynke Kropff – Nammensma, CIMMYT-Bangladesh Country Representative TP Tiwari and Secretary of Agriculture Mohammad Moinuddin Abdullah. Photo: Zia Ahmed/CIMMYT
Martin Kropff (L) meets with Bangladesh’s agriculture minister and Member of Parliament Begum Matia Chowdhury (2nd from left) to address the spread of wheat blast in the country, along with (from L-R) Nynke Kropff – Nammensma, CIMMYT-Bangladesh Country Representative TP Tiwari and Secretary of Agriculture Mohammad Moinuddin Abdullah. CIMMYT/Zia Ahmed

the Wheat Research Centre in Dinajpur district. Kropff also learned how irrigation management advisory with satellite technology is being developed with BARI, the Bangladesh Agricultural Research Council (BARC) and other core partners to release mobile applications for farming.

Kropff also held discussions with partners, including BARI Director General Rafiqul Islam Mondal and Abul Kalam Azad, executive director of BARC. Mondal lauded CIMMYT for its continuous support of BARI’s promotion of maize and wheat for food security in Bangladesh.

 

Participatory approaches to gender in agricultural development

When designing and implementing agricultural development projects, it is difficult to ensure that they are responsive to gender dynamics. For Mulunesh Tsegaye, a gender specialist attached to two projects working on the areas of nutrition and mechanization in Ethiopia, participatory approaches are the best way forward.

“I have lived and worked with communities. If you want to help a community, they know best how to do things for themselves. There are also issues of sustainability when you are not there forever. You need to make communities own what has been done in an effective participatory approach,” she said.

Maize dish prepared with QPM maize with cook Amina Ibrahim at NuME field day, Sayo village, Dano district
Maize dish prepared with QPM maize with cook Amina Ibrahim at NuME field day, Sayo village, Dano district. Photo: P. Lowe/CIMMYT

Including both men and women

The CIMMYT-led Nutritious Maize for Ethiopia (NuME) project uses demonstrations, field days, cooking demonstrations and messaging to encourage farmers to adopt and use improved quality protein maize (QPM) varieties, bred to contain the essential amino acids lysine and tryptophan that are usually lacking in maize-based diets. The Ethiopian government adopted a plan to plant QPM on 200,000 hectares by 2015-2017.

NuME’s project staff, and donor Canada’s Department of Foreign Affairs, Trade and Development (DFATD), are highly committed to gender-based approaches, meaning that Mulunesh’s initial role was to finalize the gender equality strategy and support implementation with partners.

By involving partners in an action planning workshop, Mulunesh helped them to follow a less technical and more gender-aware approach, for example by taking women’s time constraints into account when organizing events.

This involved introducing some challenging ideas. Due to men’s role as breadwinners and decision-makers in Ethiopian society, Mulunesh suggested inviting men to learn about better nutrition in the household in order to avoid perpetuating stereotypes about the gender division of labor.

“For a project to be gender-sensitive, nutrition education should not focus only on women but also on men to be practical. Of course, there were times when the project’s stakeholders resisted some of my ideas. They even questioned me: ‘How can we even ask men farmers to cook?’”

Now, men are always invited to nutrition education events, and are also presented in educational videos as active partners, even if they are not themselves cooking.

“Nutrition is a community and public health issue,” said Mulunesh. “Public involves both men and women, when you go down to the family level you have both husbands and wives. You cannot talk about nutrition separately from decision-making and access to resources.”

Faxuma Adam harvests green maize Sidameika Tura village, Arsi Negele Photo: Peter Lowe/ CIMMYT
Faxuma Adam harvests green maize Sidameika Tura village, Arsi Negele Photo: Peter Lowe/ CIMMYT
Empowering men and women through mechanization

The Farm Power and Conservation Agriculture for Sustainable Intensification (FACASI) project is involved in researching new technologies that can be used to mechanize farming at smaller scales. Introducing mechanization will likely alter who performs different tasks or ultimately benefits, meaning that a gender-sensitive approach is crucial.

Again, Mulunesh takes the participation perspective. “One of the issues of introducing mechanization is inclusiveness. You need to include women as co-designers from the beginning so that it will be easier for them to participate in their operation.”

“In general, the farmers tell us that almost every agricultural task involves both men and women. Plowing is mostly done by oxen operated by men, but recently, especially where there are female-headed households, women are plowing and it is becoming more acceptable. There are even recent findings from Southern Ethiopia that women may be considered attractive if they plow!”

Women and men are both involved to some extent with land preparation, planting, weeding, harvesting or helping with threshing. However, women do not just help in farming, they also cook, transport the food long distances for the men working in the farm, and also take care of children and cattle.

A study by the Dutch Royal Tropical Institute, Gender Matters in Farm Power, has already drawn some conclusions about gender relations in farm power that are being used as indicators for the gender performance of the mechanization project.

These indicators are important to track how labor activities change with the introduction of mechanization. “My main concern is that in most cases, when a job traditionally considered the role of women gets mechanized, becomes easier or highly paid, it is immediately taken over by men, which would imply a lot in terms of control over assets and income,” said Mulunesh.

Front row, from left to right: Mulunesh Tsegaye, FACASI gender and agriculture specialist; Katrine Danielsen KIT; Elizabeth Mukewa consultant; Mahlet Mariam, consultant; and David Kahan CIMMYT, business model specialist. Back row, from left to right: Anouka van Eerdewijk KIT; Lone Badstue CIMMYT strategic leader, gender research and mainstreaming; and Frédéric Baudron, FACASI project leader. Credit: Steffen Schulz/CIMMYT
Front row, from left to right: Mulunesh Tsegaye, FACASI gender and agriculture specialist; Katrine Danielsen KIT; Elizabeth Mukewa consultant; Mahlet Mariam, consultant; and David Kahan CIMMYT, business model specialist. Back row, from left to right: Anouka van Eerdewijk KIT; Lone Badstue CIMMYT strategic leader, gender research and mainstreaming; and Frédéric Baudron, FACASI project leader. Credit: Steffen Schulz/CIMMYT

Community conversations

In order to foster social change and identify the needs of women and vulnerable groups, Mulunesh initiated a community conversation program, based on lines first developed by the United Nations Development Programme. Pilots are ongoing in two districts in the south of Ethiopia; a total of four groups are involved, each of which may include 50-70 participants.

“You need to start piece-by-piece, because there are lots of issues around gender stereotypes, culture and religious issues. It is not that men are not willing to participate; rather it is because they are also victims of the socio-cultural system in place.”

When asked about the situation of women in the community, many people claim that things have already changed; discussions and joint decisions are occurring in the household and women are getting empowered in terms of access to resources. Over the coming year, Mulunesh will compare how information diffuses differently in gender-segregated or gender mixed groups.

FACASI is funded by the Australian International Food Security Research Centre, managed by the Australian Centre for International Agricultural Research and implemented by the International Maize and Wheat Improvement Center (CIMMYT).

NuME is funded by DFATD and managed by CIMMYT in collaboration with Ethiopian research institutions, international non-governmental organizations, universities and public and private seed companies in Ethiopia.

Direct seeding with two-wheel tractors increases wheat yield and saves time in the Ethiopian highlands

A service provider in Lemo, Ethiopia. Photo: Frédéric Baudron
A service provider in Lemo, Ethiopia. Photo: Frédéric Baudron

Agronomic practices that can close the wheat yield gap in the Ethiopian highlands are well known: row planting, precise fertilizer application, timely planting, etc. But their implementation generally increases the demand for human labor and animal draft power. And the availability of farm power in the Ethiopian highlands is stagnating, or even declining. The cost of maintaining a pair of oxen is becoming prohibitive for most farmers. Also, the rural population is aging as a result of young people migrating to the fast-growing cities of Ethiopia in search of more rewarding livelihood opportunities than farming.

Continue reading

SIMLESA review finds many successes and major challenges

Farmers selecting pigeon pea varieties at Msingisi village, Gairo district, through SIMLESA. Photo: CGIAR Research Program on Grain Legumes

On 16-31 October 2015, the Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project undertook a two-week long Mid-Term Review (MTR) of its agricultural research and development activities on station and on farm. SIMLESA undertook this review to assess project performance and recommend actions to refine activities. The last MTR was carried out in 2012.

To wrap up the review, a two-day meeting was held with the participation of 40 people, including representatives from the Australian Centre for International Agricultural Research (ACIAR), Queensland Alliance for Agriculture and Food Innovation, the International Center for Tropical Agriculture (CIAT), the International Livestock Research Institute (ILRI), the national agricultural research systems (NARS) of Ethiopia, Malawi, Mozambique, Kenya, and Tanzania, and CIMMYT scientists from Ethiopia, Kenya, and Zimbabwe.

Continue reading

Agriculture ministers support policies to achieve Africa’s growth potential

Participants in the SIMLESA high level policy forum in Entebbe, Uganda. Photo: Johnson Siamachira/CIMMYT
Participants in the SIMLESA high level policy forum in Entebbe, Uganda.
Photo: Johnson Siamachira/CIMMYT

East and Southern African countries need to formulate and implement appropriate policies to help smallholder farmers access technologies that will enable them to increase farm yields and improve crop resilience and nutrition to address poverty, food security, and economic growth, renowned Zimbabwean agricultural economist and academic Mandivamba Rukuni told a high-level policy forum.

Delivering the keynote address at the SIMLESA policy forum co-organized by CIMMYT and the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) in Entebbe, Uganda, on 27–28 October, Rukuni said this can only be achieved through a dramatic shift to help smallholder farmers produce sufficient food for themselves, plus generate income. “Such technologies include improved seed varieties and fertilizers, and better infrastructure, such as roads and small-scale irrigation,’’ said Rukuni. SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by CIMMYT.

Continue reading

Green manure crop cover reduces need for mineral fertilizer in Africa

Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.
Velvet bean planted in rotation with maize increases soil fertility, provides biomass for feed and suppresses weeds in Chipata, Zambia. Photo: Christian Thierfelder/CIMMYT.

It is widely accepted that improved maize germplasm will only express its yield potential under optimum agronomic management such as timely planting, optimal plant/space arrangements, and timely weed and pest control. But perhaps the most important agronomic intervention is adequate fertilization. Although farmers in Europe and America have used mineral fertilizers for generations, these have become available in Africa only relatively recently. However, the excessive use of mineral fertilizer in Europe and America has led to water pollution and eutrophication, and has increased the energy requirements of the fertilizer production process.

In Africa, mineral fertilizer remains a scarce, expensive and risky resource for most smallholder farmers. On average, farmers use less than 10 kg/ha of NPK fertilizer, and many do not apply it at all. The price of fertilizer is 3-5 times higher in Africa than in Europe due to the lack of infrastructure and production facilities, often making it unaffordable for farmers. Fertilizer is primarily applied to higher value and horticulture crops that, unlike maize, give farmers greater return on their investment.

Many farmers in southern Africa plant maize extensively on large areas, harvest less than 1 t/ha on average and mine already depleted nutrients from the soil while trying to become food secure and escape from poverty – an impossible task! But farmers are now being offered a range of solutions that provide a way out of the poverty trap, such as improved drought and stress tolerant maize germplasm, conservation agriculture (CA), improved rotation systems with legumes and green manure cover crops.

The use of CA principles (minimum soil disturbance, crop residue retention and diversification through rotation and intercropping) hinges on the ability of farmers to retain sufficient surface crop residues to protect the soil from heavy rain, evaporation and sunlight. However, farmers in mixed crop/livestock systems face competing demands for these residues because they also feed them to their animals.

It is against this background that the Food and Agriculture Organization of the United Nations (FAO) involved CIMMYT in a small project aimed at introducing green manures to smallholder farmers in eastern Zambia and central and southern Malawi. Green manures are grown primarily to improve the soil, generate biomass for ground cover and provide fodder; some also produce grain for feed and food.

In Lilongwe District, Malawi, farmer Bikoni Yohane and wife Esnart proudly present their maize-cowpea intercropped field, which will produce grain and leaves for home consumption and im-prove soil fertility. Photo: Christian Thierfelder/CIMMYT.

A range of varieties have been tested by the Global Conservation Agriculture Program over the past five years. Crops such as velvet bean, lablab, cowpea, sunnhemp, jackbean, pigeonpea and groundnuts have been identified as viable options with great potential for smallholders. They provide 5-50 t/ha of extra biomass for groundcover and/or fodder, leave 50-350 kg/ha of residual nitrogen in the soil and do not need extra fertilizer to grow. The new project is testing these species in full rotation or intercropped with maize on farmers’ fields in the three project regions. To increase adoption, the project is using an intensive participatory process to adapt the green manures to smallholder conditions.

This initiative is not the only one where CIMMYT has been involved with green manure cover crops: in northern Mozambique, a collaboration with CARE International reports that yield increased from 4 t/ha to 13 t/ha by only using lab-lab and improved germplasm in cassava-based CA systems. The ACIAR-funded ZimCLIFFS project in Zimbabwe was also very successful in growing lablab and velvet beans to generate supplementary fodder for livestock during the dry winter period.

Through innovative approaches, CIMMYT will further explore new ways of integrating green manures into smallholder farming systems so they become the status quo, not just an option!

14 years of CA research on display

In 2002, ACIAR and Gansu Agricultural University initiated a rainfed conservation agriculture research project in Dingxi County, Loess Plateau, Gansu Province. Li Lingling and her team have religiously maintained this site, gathering data and training postgraduates, while quantifying the long-term impacts of CA in a very arid environment. CIMMYT-China, in close collaboration with GAU, is developing the site into an innovation platform to demonstrate and promote sustainable farming approaches in the region, which was demonstrated through a farm walk during China Science Week.

The research station has housed and trained 100 students at a time, and is home to 10-15 postgraduates during peak sampling periods. Refurbished laboratories, a collection of field tools and Li Lingling’s 14 years of research results were displayed during the farm walk.

That increased crop water use efficiency can be achieved in this arid zone was a key message from the wheat/pea rotation system under CA, whereas zero tillage with straw removal was one of the worst performing soil treatments. The farm walk effectively demonstrated soil-water interactions under CA, no till, straw removal and continuous grazing, highlighting the benefits of CA and its effectiveness in addressing local and regional resource management issues.

Activities culminated with a postgraduate research walk where the main presenters were two Ph.D. students from Ghana who are working on greenhouse gas emissions, among other subjects.

Conservation agriculture in Africa: where does it fit?

Conservation agriculture (CA) encompasses the principles of minimum soil disturbance, retention of crop residues on the soil and diversification through crop rotations and associations. Worldwide, CA adoption exceeds 125 million hectares. Its benefits include reduced production costs and soil degradation, more effective and efficient use of resources like water and fertilizer, and greater overall cropping system productivity. CA-based practices have recently regained scientific attention as part of newly emerging concepts such as sustainable intensification, ecological intensification and climate-smart agriculture.

CIMMYT’s increasing efforts to promote CA in Sub-Saharan Africa began at a regional hub in southern Africa in 2004, moved to eastern Africa in 2009, and subsequently expanded to other Africa locations. In Africa, conservation agriculture has benefitted from significant donor attention and the call to address multiple agricultural challenges, which include the pressure of expanding populations on land resources, declining soil fertility, low productivity, and the negative effects of climate variability.

Research has proven the biophysical and economic benefits of CA for Africa, yet CA adoption and spatial expansion by African farmers is relatively low, compared to its acceptance in similar agro-ecologies in the Americas and Australia.

The lack of widespread adoption in Africa has led some researchers to question the suitability of CA for smallholder farmers in Africa or the wisdom of spending resources to study and promote it. A divide between CA-for-Africa proponents and opponents in the research community has opened, obscuring issues and hindering unbiased examination of CA opportunities and constraints. Adding to the uncertainty, there is little research in Africa to assess where CA might make the best impact or, more generally, where conditions are simply too marginal for cropping systems of any type.

AFTER 10 YEARS OF RESEARCH, WE FEEL IT IS CRITICAL TO LOOK OBJECTIVELY AT WHERE WE ARE WITH CA IN AFRICA. Specifically: What is CIMMYT’s comparative advantage in the research and development of CA systems? Does “business-as-usual” — that is, conventional tillage systems — provide better outcomes? Is there any form of alternative agriculture being adopted more quickly or widely than CA? Do we gain anything if we lose our comparative advantage as a leading global CA research institute and only focus on “good agronomic practices”?

We believe that CA has great promise for smallholder farmers in sub-Saharan Africa but CIMMYT and other organizations may have approached its study and extension from the wrong angle. In particular, CA has often been promoted in Africa as a way to raise yields. In fact, short-term yield gains are common from better moisture capture and retention under CA, in seasons with erratic and prolonged dry spells. But yield benefits from CA are normally not immediate; they generally begin to appear after two-to-five cropping seasons. Smallholder farm households often live at the edge of food insecurity year-in and year-out and are undisposed to risk an innovation that raises system productivity only in the medium term.

In contrast, the adoption of CA outside of Africa has been driven by benefits such as energy savings, reduced erosion, more timely sowing, and enhanced water- and nutrient-use efficiency. Furthermore, CA adopters worldwide have typically been large-scale commercial farmers who seek enhanced and sustainable profits and, as a consequence, ways to cut production costs. So how can their positive experience apply to smallholders and be used for proper targeting and extension of CA systems in Africa?

IN OUR OPINION, CIMMYT AND ITS PARTNERS SHOULD FOCUS ON (1) identifying the key drivers that have facilitated adoption of CA worldwide and (2) delineating the niches in Africa where these drivers are present, meaning where CA is likely to fit. As a start, we may wish to look at settings where:

  • Farm energy is scarce or expensive (whether provided by motors, draft animals or human labor ).
  • Timely planting is crucial, soil degradation extensive, and climate-related stress common. (This niche might be bigger than we think in Africa)

WE BELIEVE THAT CHALLENGES HAVE TOO OFTEN BEEN CONFUSED WITH BARRIERS TO ADOPTION. Too much time and effort have been spent highlighting challenges arising when implementing CA, instead of actively looking for ways to overcome them through technological and institutional innovations, including improved working arrangements between multiple actors. Furthermore, we feel that far too many resources are being channelled by CIMMYT’s Global Conservation Agriculture and Socioeconomics Programs into diagnostic studies, without commensurate investments in applied research for innovations to address the challenges.

Future research with farmers and other stakeholders should explore opportunities to ensure that CA systems meet smallholder farmers’ needs. It should also aim to target CA principles and practices in areas where highest returns are expected. In conclusion, we believe that BUSINESS AS USUAL IS NOT AN OPTION and that, in many places where CIMMYT works, CA IS IN DEMAND to alleviate labor bottlenecks, improve the timeliness of operations, control erosion and improve water- and nutrient-use efficiency. Should this demand be ignored? Of course challenges exist, but research – and international research in particular – should not simply document challenges but also provide solutions.

Christian ThierfelderChristian Thierfelder is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked since 2004 in CA projects in Malawi, Mozambique, Zambia and Zimbabwe and has conducted applied and strategic research on-farm and on-station to adapt CA to the needs of smallholder farmers in southern Africa. Through effective partnerships he has reached out to more than 10,000 farmers in southern Africa. He guided the research programs of 25 B.Sc., M.Sc. and Ph.D. students, and has authored and co-authored more than 30 research articles in high-impact peer-reviewed journals and books.

Frederic Baudron
A CIMMYT systems agronomist based in Addis Ababa, Ethiopia, Frédéric Baudron trained as a tropical agronomist, specialized as a livestock scientist and worked for various development programs targeting the interface between people (mainly farmers) and wildlife. He then completed a PhD in plant production systems. Projects he leads include Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI), implemented in Ethiopia, Kenya, Tanzania and Zimbabwe.

IsaiahNyagumboIsaiah Nyagumbo is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked in water harvesting and soil conservation research initiatives and was a pioneer of CA work on smallholder farming systems in Zimbabwe since the 1990s. Isaiah currently leads the agronomy component of the CIMMYT managed and ACIAR funded regional program ‘Sustainable Intensification of Maize-Legume Systems in Eastern and Southern Africa (SIMLESA)’ operating in 5 countries of Eastern and Southern Africa. Isaiah has also authored and contributed to regional research publications focusing mainly on CA, agricultural water management, water harvesting and technology dissemination.

For further detail regarding these views, stay tuned for the upcoming paper:

Baudron, F., Thierfelder, C., Nyagumbo, I., Gérard B., 2015. Where to target conservation agriculture? How to overcome challenges associated with its implementation? Experience from Eastern and Southern Africa. Forthcoming (expected in early-July) in Environments.

First international training workshop on farming systems analysis in India

The international training workshop “Approaches for integrated analysis of agricultural systems in South Asia: Field, to farm, to landscape scale,” jointly organized by CIMMYT and the Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute (CSSRI), was held at Karnal, Haryana, India, during 18-23 May. The workshop targeted farming systems and agricultural development researchers in South Asia and provided an overview of the approaches and tools used to assess agricultural systems.

Workshop participants and facilitators. Photo: CIMMYT
Workshop participants and facilitators. Photo: CIMMYT

Compared to the rest of the world, South Asia’s natural resources are 3-5 times more stressed due to population and economic pressures. Several agricultural technologies and practices have been developed to address resource management challenges. However, researchers need to conduct specialized analyses of complex farming systems to find out which technologies are appropriate for farmers.

The training workshop allowed participants to share their experiences in the field and create better methods to ensure successful interventions. P.C. Sharma, Head of the Crop Improvement Program, CSSRI, commenced the workshop and greeted the participants, who comprised 30 young researchers from national research institutions and universities in India, Nepal and Bangladesh. Santiago López Ridaura, CIMMYT Global Conservation Agriculture Program Systems Agronomist, presented workshop objectives, which included introducing participants to integrated farming systems analysis as well as to modeling tools and technology designed for specific farming communities.

“This course is the first of its kind in the region,” emphasized M.L. Jat, CIMMYT Cropping Systems Agronomist. “It is unique, demand-driven and organized to strengthen the capacity of young researchers in the region so that they may more effectively help build livelihood security for smallholder farmers.”

D.K. Sharma, CSSRI Director, stressed the need for systems research in the region and how partnerships with centers ike CIMMYT have helped to successfully implement conservation agriculture, sustainable intensification and other practices. Sharma also described CSSRI’s farmer participatory model, which provides farmers with land for cultivation against their annual compensation, thereby improving livelihoods.

A book on sustainable intensification was released. Photo: CIMMYT
A book on sustainable intensification was released. Photo: CIMMYT

Workshop attendees participated in modeling, analysis and participatory exercises that helped them to better understand the challenges of technology adoption in the field. Participants also visited farms, where they learned farmers’ needs first-hand and observed the complexity of different farming systems.

The workshop was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the Cereal Systems Initiative for South Asia (CSISA) and the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project of the Australian Centre for International Agricultural Research’s (ACIAR). Other attendees included Mahesh Gathala, CIMMYT Cropping Systems Agronomist and SRFSI Project Leader; Jeroen Groot, Wageningen University Farming Systems Modeling Specialist; David Berre, CIMMYT Farming Systems Agronomist; Timothy Krupnik, CIMMYT Agronomist; and Alison Laing, Cropping Systems Modeler at ACIAR CSIRO Climate Adaptation Flagship.

Green manures help Zambian and Malawian farmers feed crops and livestock

The Food and Agriculture Organization of the United Nations (FAO) has tasked CIMMYT with a new project to introduce green manure cover crops to smallholder farmers in eastern Zambia and central and southern Malawi.

Green manures can improve fertility, protect soils and provide fodder and grain for farm animals and humans. They also help substitute for mineral fertilizers, which are costly for landlocked African nations to produce or import. Most smallholder farmers cannot afford them and apply less than 10 kg per hectare of fertilizer to their crops, according to a 2013 study on profitable and sustainable nutrient management systems for eastern and southern African smallholder farming systems.

“This is less than one-tenth of average fertilizer rates in prosperous countries and a key reason why maize yields in southern Africa are around only one ton per hectare,” said Christian Thierfelder, CIMMYT conservation agriculture specialist based in southern Africa. “As a result, many farm families in the region remain food insecure and caught in a seemingly unbreakable cycle of poverty.”

Farmers admiring their maize-cowpea intercrop. Photo: Christian Thierfelder/CIMMYT
Farmers admiring their maize-cowpea intercrop. Photo: Christian Thierfelder/CIMMYT

With full participation of farmers, the project will test green manures in rotation with maize and as intercrops or relay crops in different farming systems, according to Thierfelder.

“Improved, high-yielding maize can show its potential only under good agronomic practices, such as optimal plant spacing, timely planting, good weed and pest control and adequate fertilization,” Thierfelder explained. “Farmers in Europe and the Americas have followed these basic principles for generations, and some of the ideas spread to Asia and Africa during the Green Revolution. But in Africa mineral fertilizers are most often used by rich farmers and for high-value crops.“

“Improved maize that tolerates drought and other stresses, coupled with conservation agriculture practices –minimum soil disturbance, crop residue retention and diversification through rotations and intercropping systems – are farmers’ best bet to escape the poverty trap,” Thierfelder said.

Keeping crop residues on the soil is a critical component of conservation agriculture, but the residues are traditionally fed to livestock, which also underpin smallholder farmers’ livelihoods. So the use of conservation agriculture hinges on the ability of a cropping system to produce enough biomass to feed farm animals while providing an adequate residue cover. This requires a source of fertilization to feed the cropping system.

The FAO-CIMMYT project will address this by allocating green manure cover crops for different uses. “Over the last five years, CIMMYT’s global conservation agriculture program has identified potential cover crop varieties that fit farmers’ needs,” Thierfelder said. “Velvet bean, lablab, cowpea, sunnhemp or jackbean can provide 10-50 tons per hectare of extra biomass for livestock. They can also leave 50-150 kilograms per hectare of nitrogen in the soil and do not need any additional fertilizer to grow. Finally, lablab and cowpea provide grain that humans can eat.”

One approach Thierfelder promotes is for a farmer to dedicate part of her land to grow maize under conservation agriculture practices, and other areas to sow green manures, nutritional and cash crops that increase soil fertility and household income. “In this way, a farmer can diversify and gradually have money to purchase mineral fertilizer, boost productivity and move out of poverty.”

Green manure cover crops are not new in Africa. Why should they work this time?

According to Thierfelder, there are examples of success in northern Mozambique with CIMMYT’s partner organization CARE International, using lablab and improved germplasm in cassava-based CA systems can increase cassava tuber yields from 4 to 13 tons per hectare, without using additional mineral fertilizer. “In Tanzania, lablab and other green manures are an important part of the cropping system,” he said. “In Zimbabwe, successful experiments with maize and green manures under an ACIAR-funded ZimCLIFFS project also provide hope. The FAO-CIMMYT project will guide the way on integrating green manures cover crops into these farming systems.”

CIMMYT showcases advances in agricultural technology and development in Pakistan

Mr. Sikandar Hayat Bosan (left), Federal Minister of Food Security & Research, and Mr. Gregory Gottlieb (red tie), Director for USAID Pakistan, visited the stand and talked to Imtiaz Muhammad (far right), CIMMYT Country Representative in Pakistan, and AIP component leads about their programs.Photos: Amina Nasim Khan
Mr. Sikandar Hayat Bosan (left), Federal Minister of Food Security & Research, and Mr. Gregory Gottlieb (red tie), Director for USAID Pakistan, visited the stand and talked to Imtiaz Muhammad (far right), CIMMYT Country Representative in Pakistan, and AIP component leads about their programs.
Photos: Amina Nasim Khan

The Agricultural Innovation Program (AIP), led by CIMMYT and funded by USAID, presented the latest advances in agricultural technology and provided a platform for local industry to explore innovative technologies, products and services at the Pakistan Agriculture Conference and Expo 2015 in Islamabad.

The main attractions were the Zero-Tillage Happy Seeder, durum wheat, biofortified maize, goats bred through artificial insemination, alternate wetting and drying in rice, rice storage in hermetic bags and protected vegetable cultivation models. The AIP exhibit attracted many visitors including farmers, policymakers, agriculture experts and scientists from both public- and private-sector organizations, opening new avenues for AIP to connect with target groups and explore agricultural opportunities in Pakistan.

Imtiaz Muhammad, CIMMYT Country Representative, Pakistan, at the AIP-maize component display.
Imtiaz Muhammad, CIMMYT Country Representative, Pakistan, at the AIP-maize component display.