Skip to main content

funder_partner: Aarhus University

CropSustaiN BNI Wheat Mission

The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)—and to accelerate breeding and farmer access to BNI wheat varieties.

With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI crops’ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.

The challenge

Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest ‘crop’ consumer of nitrogen-based fertilizer—a relatively nitrogen-inefficient cereal—at the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.

A solution: BNI-wheat

BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.

A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.

Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.

 

Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.

Other BNI-crops

CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.

Objectives and outcomes

This high risk, high reward mission aims to:

  • Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
  • Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
  • Work with stakeholders on policy change that enables BNI crops production and markets

Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.

Wheat spikes against the sky at CIMMYT’s El BatĂĄn, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)

A collaborative effort

CIMMYT is the lead implementer of Novo Nordisk Foundation’s mission funding. CropSustaiN’s interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.

The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.

Impact on climate change mitigation and Nationally Determined Contributions (NDCs)

The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.

International public goods, governance, and management

CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.

Invitation to join the mission

The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.

Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundation’s Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.

Additional reference material

  1. BNI International Consortium (Japan International Research Center for Agricultural Sciences, JIRCAS)
  2. Nitrification inhibitors: biological and synthetic (German Environment Agency, Umweltbundesamt)
  3. CropSustaiN: new innovative crops to reduce the nitrogen footprint form agriculture
  4. Annual Technical Report 2024. CropSustaiN: A new paradigm to reduce the nitrogen footprint from agriculture
  5. BNI-Wheat Future: towards reducing global nitrogen use in wheat
  6. CIMMYT Publications Repository

Scientists convene in Kenya for intensive wheat disease training

An international cohort of scientists representing 12 countries gathered at the Kenya Agricultural and Livestock Research Organization (KALRO) station in Njoro for a comprehensive training course aimed at honing their expertise in wheat rust pathology.

The two-week program “Enhancing Wheat Disease Early Warning Systems, Germplasm Evaluation, Selection, and Tools for Improving Wheat Breeding Pipelines,” was a collaborative effort between CIMMYT and Cornell University and supported by the Wheat Disease Early Warning Advisory System (DEWAS) and Accelerating Genetic Gains in Maize and Wheat projects.

With a mission to bolster the capabilities of National Agricultural Research Systems (NARS), the training course attracted more than 30 participants from diverse corners of the globe.

Maricelis Acevedo, a research professor of global development at Cornell and the associate director of Wheat DEWAS, underscored the initiative’s significance. “This is all about training a new generation of scientists to be at the forefront of efforts to prevent wheat pathogens epidemics and increase food security all over the globe,” Acevedo said.

First initiated in 2008 through the Borlaug Global Rust Initiative, these training programs in Kenya have played a vital role in equipping scientists worldwide with the most up-to-date knowledge on rust pathogens. The initial twelve training sessions received support from the BGRI under the auspices of the Durable Rust Resistance in Wheat and Delivering Genetic Gain in Wheat projects.

This year’s training aims to prepare global scientists to protect against disease outbreaks that threaten wheat productivity in East Africa and South Asia. The course encompassed a wide array of practical exercises and theoretical sessions designed to enhance the participants’ knowledge in pathogen surveillance, diagnostics, modeling, data management, early warning assessments, and open science publishing. Presentations were made by DEWAS partners from the John Innes Centre, Aarhus University, the University of Cambridge and University of Minnesota.

(Photo: Borlaug Global Rust Initiative)

The course provided practical, hands-on experience in selecting and evaluating wheat breeding germplasm, race analysis and greenhouse screening experiments to enhance knowledge of rust diseases, according to Sridhar Bhavani, training coordinator for the course.

“This comprehensive training program encompasses diverse aspects of wheat research, including disease monitoring, data management, epidemiological models, and rapid diagnostics to establish a scalable and sustainable early warning system for critical wheat diseases such as rusts, fusarium, and wheat blast,” said Bhavani, wheat improvement lead for East Africa at CIMMYT and head of wheat rust pathology and molecular genetic in CIMMYT’s Global Wheat program.

An integral part of the program, Acevedo said, was the hands-on training on wheat pathogen survey and sample collection at KALRO.  The scientists utilized the international wheat screening facility at KALRO as a training ground for hot-spot screening for rust diseases resistance.

Daisy Kwamboka, an associate researcher at PlantVillage in Kenya, said the program provided younger scientists with essential knowledge and mentoring.

“I found the practical sessions particularly fascinating, and I can now confidently perform inoculations and rust scoring on my own,” said Kwamboka said, who added that she also learned how to organize experimental designs and the basics of R language for data analysis.

DEWAS research leaders Dave Hodson, Bhavani and Acevedo conducted workshops and presentations along with leading wheat rust experts. Presenters included Robert Park and Davinder Singh from the University of Sydney; Diane Sauders from the John Innes Centre; Clay Sneller from Ohio State University; Pablo Olivera from the University of Minnesota; Cyrus Kimani, Zennah Kosgey and Godwin Macharia from KALRO; Leo Crespo, Susanne Dreisigacker, Keith Gardner, Velu Govindan, Itria Ibba, Arun Joshi, Naeela Qureshi, Pawan Kumar Singh and Paolo Vitale from CIMMYT; Chris Gilligan and Jake Smith from the University of Cambridge; and Jens GrÞnbech Hansen and Mogens S. HovmÞller from the Global Rust Reference Center at Aarhus University.

“I thoroughly enjoyed the knowledge imparted by the invited experts, along with the incredible care they have shown us throughout this wonderful training.”

Narain Dhar, Borlaug Institute for South Asia 

For participants, the course offered a crucial platform for international collaboration, a strong commitment to knowledge sharing, and its significant contribution to global food security.

“The dedication of the trainers truly brought the training to life, making it incredibly understandable,” said Narain Dhar, research fellow at the Borlaug Institute for South Asia.

The event not only facilitated learning but also fostered connections among scientists from different parts of the world. These newfound connections hold the promise of sparking innovative collaborations and research endeavors that could further advance the field of wheat pathology.

Wheat pathogen surveillance system set to expand through new investment

One of the world’s largest crop pathogen surveillance systems is set to expand its analytic and knowledge systems capacity to protect wheat productivity in food vulnerable areas of East Africa and South Asia.

Researchers announced the Wheat Disease Early Warning Advisory System (Wheat DEWAS), funded through a $7.3 million grant from the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth & Development Office, to enhance crop resilience to wheat diseases.

The project is led by David Hodson, principal scientist at CIMMYT, and Maricelis Acevedo, research professor of global development and plant pathology at Cornell University’s College of Agriculture and Life Sciences. This initiative brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.

Wheat DEWAS aims to be an open and scalable system capable of tracking important pathogen strains. The system builds on existing capabilities developed by the research team to provide near-real-time model-based risk forecasts and resulting in accurate, timely and actionable advice to farmers. As plant pathogens continue to evolve and threaten global food production, the system strengthens the capacity of countries to respond in a proactive manner to transboundary wheat diseases.

The system focuses on the two major fungal pathogens of wheat known as rust and blast diseases. Rust diseases, named for a rust-like appearance on infected plants, are hyper-variable and can significantly reduce crop yields when they attack. The fungus releases trillions of spores that can ride wind currents across national borders and continents and spread devastating epidemics quickly over vast areas.

Wheat blast, caused by the fungus Magnaporte oryzae Tritici, is an increasing threat to wheat production, following detection in both Bangladesh and Zambia. The fungus spreads over short distances and through the planting of infected seeds. Grains of infected plants shrivel within a week of first symptoms, providing little time for farmers to take preventative actions. Most wheat grown in the world has limited resistance to wheat blast.

“New wheat pathogen variants are constantly evolving and are spreading rapidly on a global scale,” said Hodson, principal investigator for Wheat DEWAS. “Complete crop losses in some of the most food vulnerable areas of the world are possible under favorable epidemiological conditions. Vigilance coupled with pathogen-informed breeding strategies are essential to prevent wheat disease epidemics. Improved monitoring, early warning and advisory approaches are an important component for safeguarding food supplies.”

Previous long-term investments in rust pathogen surveillance, modelling, and diagnostics built one of the largest operational global surveillance and monitoring system for any crop disease. The research permitted the development of functioning prototypes of advanced early warning advisory systems (EWAS) in East Africa and South Asia. Wheat DEWAS seeks to improve on that foundation to build a scalable, integrated, and sustainable solution that can provide improved advanced timely warning of vulnerability to emerging and migrating wheat diseases.

“The impact of these diseases is greatest on small-scale producers, negatively affecting livelihoods, income, and food security,” Acevedo said. “Ultimately, with this project we aim to maximize opportunities for smallholder farmers to benefit from hyper-local analytic and knowledge systems to protect wheat productivity.”

The system has already proven successful, contributing to prevention of a potential rust outbreak in Ethiopia in 2021. At that time, the early warning and global monitoring detected a new yellow rust strain with high epidemic potential. Risk mapping and real-time early forecasting identified the risk and allowed a timely and effective response by farmers and officials. That growing season ended up being a production record-breaker for Ethiopian wheat farmers.

While wheat is the major focus of the system, pathogens with similar biology and dispersal modes exist for all major crops. Discoveries made in the wheat system could provide essential infrastructure, methods for data collection and analysis to aid interventions that will be relevant to other crops.

Wheat Disease Early Warning Advisory System (DEWAS)

The Wheat Disease Early Warning Advisory System (Wheat DEWAS) project is bringing new analytic and knowledge systems capacity to one of the world’s largest and most advanced crop pathogen surveillance systems. With Wheat DEWAS, researchers are building an open and scalable system capable of preventing disease outbreaks from novel pathogen strains that threaten wheat productivity in food vulnerable areas of East Africa and South Asia.

The system builds from capabilities developed previously by multi-institutional research teams funded through long-term investments in rust pathogen surveillance, modelling, and diagnostics. Once fully operationalized, the project aims to provide near-real-time, model-based risk forecasts for governments. The result: accurate, timely and actionable advice for farmers to respond proactively to migrating wheat diseases.

The Challenge

Farmers growing wheat face pathogen pressures from a range of sources. Two of the most damaging are the fungal diseases known as rust and blast. Rust is a chronic issue for farmers in all parts of the world. A study in 2015 estimated that the three rust diseases — stem, stripe and leaf — destroyed more than 15 million tons of wheat at a cost of nearly $3 billion worldwide. Wheat blast is an increasing threat to wheat production and has been detected in both Bangladesh and Zambia. Each of these diseases can destroy entire harvests without warning, wiping out critical income and food security for resource-poor farmers in vulnerable areas.

The Response

Weather forecasts and early-warning alerts are modern technologies that people rely on for actionable information in the case of severe weather. Now imagine a system that lets farmers know in advance when dangerous conditions will threaten their crop in the field. Wheat DEWAS aims to do just that through a scalable, integrated, and sustainable global surveillance and monitoring system for wheat.

Wheat DEWAS brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.

Together, the researchers are focused on six interlinked work packages: 

Work package Lead Objectives
Data Management Aarhus University; Global Rust Reference Center
  • Maintain, strengthen and expand the functionality of the existing Wheat Rust Toolbox data management system
  • Create new modules within the Toolbox to include wheat blast and relevant wheat host information
  • Consolidate and integrate datasets from all the participating wheat rust diagnostic labs
  • Develop an API for the two-way exchange of data between the Toolbox and the Delphi data stack
  • Develop an API for direct access to quality-controlled surveillance data as inputs for forecast models
  • Ensure fair access to data
Epidemiological Models Cambridge University
  • Maintain operational deployment and extend geographical range
  • Productionalize code for long-term sustainability
  • Multiple input sources (expert, crowd, media)
  • Continue model validation
  • Ensure flexibility for management scenario testing
  • Extend framework for wheat blast
Surveillance (host + pathogen) CIMMYT
  • Undertake near-real-time, standardized surveys and sampling in the target regions
  • Expand the coverage and frequency of field surveillance
  • Implement fully electronic field surveillance that permits near real-time data gathering
  • Target surveillance and diagnostic sampling to validate model predictions
  • Map vulnerability of the host landscape
Diagnostics John Innes Centre
  • Strengthen existing diagnostic network in target regions & track changes & movement
  • Develop & integrate new diagnostic methodology for wheat rusts & blast
  • Align national diagnostic results to provide a regional & global context
  • Enhance national capacity for wheat rust & blast diagnostics
Information Dissemination and Visualization Tools PlantVillage; Penn State
  • Create a suite of information layers and visualization products that are automatically derived from the quality-controlled data management system and delivered to end users in a timely manner
  • Deliver near real time for national partners to develop reliable and actionable advisory and alert information to extension workers, farmers and policy makers
National Partner Capacity Building Cornell University
  • Strengthening National partner capacity on pathogen surveillance, diagnostics, modeling, data management, early warning assessment, and open science publishing

 

Wheat DEWAS partners 

Academic organizations: Aarhus University / Global Rust Reference Center; Bangabandhu Sheikh Mujibur Rahman Agricultural University; Cornell University / School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section; Hazara University; Penn State University / PlantVillage; University of Cambridge; University of Minnesota

 Research organizations: Bangladesh Wheat and Maize Research Institute (BWMRI); CIMMYT; Department of Agricultural Extension (DAE), Bangladesh; Ethiopian Agricultural Transformation Institute (ATI); Ethiopian Institute of Agricultural Research (EIAR); ICARDA; John Innes Centre (JIC); Kenya Agricultural and Livestock Research Organization (KALRO); National Plant Protection Centre (NPPC), Bhutan; Nepal Agricultural Research Council (NARC); Pakistan Agricultural Research Council (PARC); UK Met Office; Tanzania Agricultural Research Institute (TARI); The Sainsbury Laboratory (TSL) / GetGenome; U.S. Department of Agriculture, Agricultural Research Service; Zambia Agricultural Research Institute (ZARI)

Fast-tracked adoption of second-generation resistant maize varieties key to managing maize lethal necrosis in Africa

Scientists are calling for accelerated adoption of new hybrid maize varieties with resistance to maize lethal necrosis (MLN) disease in sub-Saharan Africa. In combination with recommended integrated pest management practices, adopting these new varieties is an important step towards safeguarding smallholder farmers against this devastating viral disease.

A new publication in Virus Research shows that these second-generation MLN-resistant hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) offer better yields and increased resilience against MLN and other stresses. The report warns that the disease remains a key threat to food security in eastern Africa and that, should containment efforts slacken, it could yet spread to new regions in sub-Saharan Africa.

The publication was co-authored by researchers at the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO), the Alliance for a Green Revolution in Africa (AGRA), the African Agricultural Technology Foundation (AATF) and Aarhus University in Denmark.

CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

Stemming the panic

The first reported outbreak of MLN in Bomet County, Kenya in 2011 threw the maize sector into a panic. The disease caused up to 100% yield loss. Nearly all elite commercial maize varieties on the market at the time were susceptible, whether under natural of artificial conditions. Since 2012, CIMMYT, in partnership with KALRO, national plant protection organizations and commercial seed companies, has led multi-stakeholder, multi-disciplinary efforts to curb MLN’s spread across sub-Saharan Africa. Other partners in this endeavor include the International Institute of Tropical Agriculture (IITA), non-government organizations such as AGRA and AATF, and advanced research institutions in the United States and Europe.

In 2013 CIMMYT established an MLN screening facility in Naivasha. Researchers developed an MLN-severity scale, ranging from 1 to 9, to compare varieties’ resistance or susceptibility to the disease. A score of 1 represents a highly resistant variety with no visible symptoms of the disease, while a score of 9 signifies extreme susceptibility. Trials at this facility demonstrated that some of CIMMYT’s pre-commercial hybrids exhibited moderate MLN-tolerance, with a score of 5 on the MLN-severity scale. CIMMYT then provided seed and detailed information to partners for evaluation under accelerated National Performance Trials (NPTs) for varietal release and commercialization in Kenya, Tanzania and Uganda.

Between 2013 and 2014, four CIMMYT-derived MLN-tolerant hybrid varieties were released by public and private sector partners in East Africa. With an average MLN severity score of 5-6, these varieties outperformed commercial MLN-sensitive hybrids, which averaged MLN severity scores above 7. Later, CIMMYT breeders developed second-generation MLN-resistant hybrids with MLN severity scores of 3–4. These second-generation hybrids were evaluated under national performance trials. This led to the release of several hybrids, especially in Kenya, over the course of a five-year period starting in 2013. They were earmarked for commercialization in East Africa beginning in 2020.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

Widespread adoption critical

The last known outbreak of MLN was reported in 2014 in Ethiopia, marking an important break in the virus’s spread across the continent. Up to that point, the virus had affected the Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. However, much remains to be done to minimize the possibility of future outbreaks.

“Due to its complex and multi-faceted nature, effectively combating the incidence, spread and adverse effects of MLN in Africa requires vigorous and well-coordinated efforts by multiple institutions,” said B.M. Prasanna, primary author of the report and director of the Global Maize Program at CIMMYT and of the CGIAR Research Program on Maize (MAIZE). Prasanna also warns that most commercial maize varieties being cultivated in eastern Africa are still MLN-susceptible. They also serve as “reservoirs” for MLN-causing viruses, especially the maize chlorotic mottle virus (MCMV), which combines with other viruses from the Potyviridae family to cause MLN.

“This is why it is very important to adopt an integrated disease management approach, which encompasses extensive adoption of improved MLN-resistant maize varieties, especially second-generation, not just in MLN-prevalent countries but also in the non-endemic ones in sub-Saharan Africa,” Prasanna noted.

The report outlines other important prevention and control measures including: the production and exchange of “clean” commercial maize seed with no contamination by MLN-causing viruses; avoiding maize monocultures and continuous maize cropping; practicing maize crop rotation with compatible crops, especially legumes, which do not serve as hosts for MCMV; and continued MLN disease monitoring and surveillance.

L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)

Noteworthy wins

In addition to the development of MLN-resistant varieties, the fight against MLN has delivered important wins for both farmers and their families and for seed companies. In the early years of the outbreak, most local and regional seed companies did not understand the disease well enough to produce MLN-pathogen free seed. Since then, CIMMYT and its partners developed standard operating procedures and checklists for MLN pathogen-free seed production along the seed value chain. Today over 30 seed companies in Ethiopia, Kenya, Uganda, Rwanda and Tanzania are implementing these protocols on a voluntary basis.

“MLN represents a good example where a successful, large-scale surveillance system for an emerging transboundary disease has been developed as part of a rapid response mechanism led by a CGIAR center,” Prasanna said.

Yet, he noted, significant effort and resources are still required to keep the maize fields of endemic countries free of MLN-causing viruses. Sustaining these efforts is critical to the “food security, income and livelihoods of resource-poor smallholder farmers.

To keep up with the disease’s changing dynamics, CIMMYT and its partners are moving ahead with novel techniques to achieve MLN resistance more quickly and cheaply. Some of these innovative techniques include genomic selection, molecular markers, marker-assisted backcrossing, and gene editing. These techniques will be instrumental in developing elite hybrids equipped not only to resist MLN but also to tolerate rapidly changing climatic conditions.

Read the full report on Virus Research:
Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa

Cover photo: Researchers and visitors listen to explanations during a tour of infected maize fields at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

CIMMYT scientist cautions against new threats from wheat rust diseases

David Hodson, senior scientist with CIMMYT, trains South Asian wheat scientists on the use of handheld surveillance and monitoring devices. Hodson directs the rusttracker.org global wheat rust monitoring system for the Delivering Genetic Gain in Wheat (DGGW) project. Credit: CORNELL/Linda McCandless

EL BATAN, Mexico (CIMMYT) – Scientists are concerned over the proliferation of highly virulent fungal wheat diseases, including two new races of yellow rust – one in Europe and North Africa, the other taking hold in East Africa and Central Asia – and a new race of stem rust emerging in Europe.

The collaborative Global Rust Reference Center (GRRC) hosted by Aarhus University in Denmark and including the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA), was instrumental in identifying the new races of yellow and stem rust.

A strategic tool developed by David Hodson, a senior scientist with CIMMYT plays a key role in monitoring the movement of wheat-rust pathogens, helping farmers combat the disease in time to save crops and prevent food insecurity.

“We see an alarming increase in severe disease, more disease diversity and rapid spread,” said Hodson, who invented the Rust Tracker field surveillance tool.

Last year, the Italian island of Sicily was badly hit by a strain of wheat stem rust – an event not seen in Europe since the 1950s, following concerted efforts by wheat breeders to eliminate it.

Stem rust appears as a reddish-brown fungal build-up on wheat stems or leaves, stunting and weakening plants, preventing kernels from forming, leading to shriveled grain and potential crop losses of 50 to 100 percent.

Dispersal modeling, undertaken by the University of Cambridge and the UK Met Office, which forecasts weather and climate change, indicates that spores from the Sicilian outbreak could potentially have spread within the Mediterranean wheat growing region, but scientists are unsure whether they will successfully over-winter, surviving and proliferating, according to a recent story in the journal Nature.

EARLY WARNING

“Several factors may be influencing the changes and rapid spread: increased travel and trade; increasing pathogen populations; more uniform cropping systems and also climate change, but the rapid changes we are observing highlight the need for an enhanced early-warning system,” said Hodson, a member of an international team of scientists collaborating under the Delivering Genetic Gain in Wheat (DGGW) project administered by Cornell University through the Borlaug Global Rust Initiative (BGRI).

Scientists engaged with the major four-year international project – which has a budget of $34.5 million due to grants equalling $24 million from the Bill & Melinda Gates Foundation and a recent $10.5 million grant from UK Aid (Britain’s Department for International Development, or DFID) – use comparative genomics and big data to develop new wheat varieties. The aim is to help governments provide smallholder farmers in the developing world with seeds incorporating resilience to environmental stresses and diseases through local entrepreneurial distributors.

“The sooner farmers are notified of a potential rust outbreak, the better chance they have to save their crops through fungicides or by planting resilient wheat varieties,” Hodson said.

“It’s a constant challenge. We’re always on the lookout for new diseases and variants on old diseases to put the wheels in motion to aid governments who can distribute seeds bred specifically to outsmart rusts.”

However, the long-term sustainability of these vital disease-monitoring systems is uncertain. Despite the significant investments, challenges remain, Hodson said.

“It’s worrying that just as stem rust is re-appearing in Europe we’re at risk of losing the only stem rust pathotyping capacity in Europe at GRRC, due to a funding shortfall. Given the threats and changes we are observing, there really is a critical need for a long-term strategy to address major crop diseases.”

TRACKER ORIGINS

The online Rust Tracker was originally conceived as a tool to battle stem rust, including the lethal Ug99 race, which since its discovery in 1998 has spread from Uganda into the Middle East and is now found in 13 countries. If Ug99 takes hold in a field it can completely wipe out a farmer’s crop. In developing countries, farmers have more difficulty accessing and affording fungicides, which can potentially save a crop.

Under the Durable Rust Resistance in Wheat project, the predecessor to the DGGW project, BGRI-affiliated scientists aimed to prevent the spread of Ug99 into the major global breadbaskets of China and India. So far, they have succeeded in keeping it in check and raising awareness among governments and farmers of its potentially devastating impact.

“Researchers and farmers are connected in the global village,” Hodson said. “Plant pathogens know no borders. We must leave no stone unturned in our efforts to understand the dynamics of wheat rusts, how they’re changing, where they’re spreading and why. If wheat scientists can help prevent a food crisis, we’re doing our job to help maintain political and economic stability in the world.”