Skip to main content

New publications: Breeders can benefit much more from phenotyping tools

In crop research fields, it is now a common sight to see drones or other high-tech sensing tools collecting high-resolution data on a wide range of traits — from simple measurement of canopy temperature to complex 3D reconstruction of photosynthetic canopies.

This technological approach to collecting precise plant trait information, known as phenotyping, is becoming ubiquitous, but according to experts at the International Maize and Wheat Improvement Center (CIMMYT) and other research institutions, breeders can profit much more from these tools, when used judiciously.

In a new article in the journal Plant Science, CIMMYT researchers outline the different ways in which phenotyping can assist breeding — from large-scale screening to detailed physiological characterization of key traits — and why this methodology is crucial for crop improvement.

“While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models,” explain the authors.

Their review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translations research to deliver other new breeding resources, and how these different categories of phenotyping apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.

The authors make the case for breeders to invest in phenotyping, particularly in light of the imperative to breed crops for warmer and harsher climates. However, wide scale adoption of sophisticated phenotyping methods will only occur if new techniques add efficiency and effectiveness.

In this sense, “breeder-friendly” phenotyping should complement existing breeding approaches by cost-effectively increasing throughput during segregant selection and adding new sources of validated complex traits to crossing blocks. With this in mind, stringent criteria need to be applied before new traits or phenotyping protocols are incorporated into mainstream breeding pipelines.

Read the full article in Plant Science:
Breeder friendly phenotyping.

A researcher flies a UAV to collect field data at CIMMYT’s experiment station in Ciudad Obregón, Mexico. (Photo: Alfonso Cortés/CIMMYT)
A researcher flies a UAV to collect field data at CIMMYT’s experiment station in Ciudad Obregón, Mexico. (Photo: Alfonso Cortés/CIMMYT)

See more recent publications from CIMMYT researchers:

  1. Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. 2019. Chaikam, V., Gowda, M., Nair, S.K., Melchinger, A.E., Prasanna, B.M. In: Euphytica v. 215, no. 8, art. 138.
  2. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: management, breeding options and land use change. 2019. Hernandez-Ochoa, I.M., Pequeno, D.N.L., Reynolds, M.P., Md Ali Babar, Sonder, K., Molero, A., Hoogenboom, G., Robertson, R., Gerber, S., Rowland, D.L., Fraisse, C.W., Asseng, S. In: European Journal of Agronomy.
  3. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. 2019. Gardiner, L.J., Brabbs, T., Akhunova, A., Jordan, K., Budak, H., Richmond, T., Sukhwinder-Singh, Catchpole, L., Akhunov, E., Hall, A.J.W. In: GigaScience v. 8, no. 4, art. giz018.
  4. Rethinking technological change in smallholder agriculture. 2019. Glover, D., Sumberg, J., Ton, G., Andersson, J.A., Badstue, L.B. In: Outlook on Agriculture v. 48, no. 3, p. 169-180.
  5. Food security and agriculture in the Western Highlands of Guatemala. 2019. Lopez-Ridaura, S., Barba‐Escoto, L., Reyna, C., Hellin, J. J., Gerard, B., Wijk, M.T. van. In: Food Security v. 11, no. 4, p. 817-833.
  6. Agronomic, economic, and environmental performance of nitrogen rates and source in Bangladesh’s coastal rice agroecosystems. 2019. Shah-Al Emran, Krupnik, T.J., Kumar, V., Ali, M.Y., Pittelkow, C. M. In: Field Crops Research v. 241, art. 107567.
  7. Highlights of special issue on “Wheat Genetics and Breeding”. 2019. He Zhonghu, Zhendong Zhao, Cheng Shun-He In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 207-209.
  8. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. 2019. Bhavani, S., Hodson, D.P., Huerta-Espino, J., Randhawa, M.S., Singh, R.P. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 210-224.
  9. China-CIMMYT collaboration enhances wheat improvement in China. 2019. He Zhonghu, Xianchun Xia, Yong Zhang, Zhang Yan, Yonggui Xiao, Xinmin Chen, Li Simin, Yuanfeng Hao, Rasheed, A, Zhiyong Xin, Zhuang Qiaosheng, Ennian Yang, Zheru Fan, Yan Jun, Singh, R.P., Braun, H.J. In: Frontiers of Agricultural Science and Engineering v. 6. No. 3, p. 233-239.
  10. International Winter Wheat Improvement Program: history, activities, impact and future. 2019. Morgounov, A.I., Ozdemir, F., Keser, M., Akin, B., Payne, T.S., Braun, H.J. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 240-250.
  11. Genetic improvement of wheat grain quality at CIMMYT. 2019. Guzman, C., Ammar, K., Velu, G., Singh, R.P. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 265-272.
  12. Comments on special issue on “Wheat Genetics and Breeding”. 2019. He Zhonghu, Liu Xu In: Frontiers of Agricultural Science and Engineering, v. 6. No. 3, p. 309.
  13. Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations. 2019. Caiyun Liu, Pinto Espinosa, F., Cossani, C.M., Sukumaran, S., Reynolds, M.P. In: Frontiers of Agricultural Science and Engineering, v. 6, no. 3, p. 296-308.
  14. Beetle and maize yield response to plant residue application and manual weeding under two tillage systems in northern Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Applied Soil Ecology v. 144, p. 139-146.
  15. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. 2019. Rivera Amado, A.C., Trujillo, E., Molero, G., Reynolds, M.P., Sylvester Bradley, R., Foulkes, M.J. In: Field Crops Research v. 240, p. 154-167.
  16. Small businesses, potentially large impacts: the role of fertilizer traders as agricultural extension agents in Bangladesh. 2019. Mottaleb, K.A., Rahut, D.B., Erenstein, O. In: Journal of Agribusiness in Developing and Emerging Economies v. 9, no. 2, p. 109-124.
  17. Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda. 2019. Simtowe, F.P., Marenya, P. P., Amondo, E., Regasa, M.W., Rahut, D.B., Erenstein, O. In: Agricultural and Food Economics v. 7. No. 1, art. 15.
  18. Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat. 2019. Krause, M., Gonzalez-Perez, L., Crossa, J., Perez-Rodriguez, P., Montesinos-Lopez, O.A., Singh, R.P., Dreisigacker, S., Poland, J.A., Rutkoski, J., Sorrells, M.E., Gore, M.A., Mondal, S. In: G3: Genes, Genomes, Genetics v.9, no. 4, p. 1231-1247.
  19. Unravelling the complex genetics of karnal bunt (Tilletia indica) resistance in common wheat (Triticum aestivum) by genetic linkage and genome-wide association analyses. 2019. Emebiri, L.C., Sukhwinder-Singh, Tan, M.K., Singh, P.K., Fuentes Dávila, G., Ogbonnaya, F.C. In: G3: Genes, Genomes, Genetics v. 9, no. 5, p. 1437-1447.
  20. Healthy foods as proxy for functional foods: consumers’ awareness, perception, and demand for natural functional foods in Pakistan. 2019. Ali, A., Rahut, D.B. In: International Journal of Food Science v. 2019, art. 6390650.
  21. Northern Himalayan region of Pakistan with cold and wet climate favors a high prevalence of wheat powdery mildew. 2019. Khan, M.R., Imtiaz, M., Farhatullah, Ahmad, S., Sajid Ali.In: Sarhad Journal of Agriculture v. 35, no. 1, p. 187-193.
  22. Resistance to insect pests in wheat—rye and Aegilops speltoides Tausch translocation and substitution lines. 2019. Crespo-Herrera, L.A., Singh, R.P., Sabraoui, A., Moustapha El Bouhssini In: Euphytica v. 215, no. 7, art.123.
  23. Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia. 2019. Amondo, E., Simtowe, F.P., Rahut, D.B., Erenstein, O. In: International Journal of Climate Change Strategies and Management v. 11, no. 4, p. 570-591.
  24. Review: new sensors and data-driven approaches—A path to next generation phenomics. 2019. Roitsch, T., Cabrera-Bosquet, L., Fournier, A., Ghamkhar, K., Jiménez-Berni, J., Pinto Espinosa, F., Ober, E.S. In: Plant Science v. 282 p. 2-10.
  25. Accountability mechanisms in international climate change financing. 2019. Basak, R., van der Werf, E. In: International Environmental Agreements: Politics, Law and Economics v. 19, no. 3, p. 297-313.
  26. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. 2019. Cobb, J.N., Juma, R.U., Biswas, P.S., Arbelaez, J.D., Rutkoski, J., Atlin, G.N., Hagen, T., Quinn, M., Eng Hwa Ng. In: Theoretical and Applied Genetics v. 132, no. 3, p. 627-645.

New publication: Scaling agricultural mechanization services in smallholder farming systems

A new study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) assesses how three large projects have scaled service provision models for agricultural mechanization in Bangladesh, Mexico and Zimbabwe. In what is possibly the first cross-continental assessment of these issues to date, the study gauges the extent to which each initiative fits with the needs of its environment to enable sustained machinery use by farmers at a large scale, while acknowledging the influence of project design on outcomes.

Each of the projects has made considerable progress towards increasing the adoption of agricultural machinery in their target area. In Bangladesh and Mexico, mechanization service providers and machinery dealers have been able to strengthen their business cases because the projects use geospatial and market data to provide targeted information on client segmentation and appropriate cropping systems. In Zimbabwe, CIMMYT and partners have worked to strengthen the market for two-wheeled tractors by creating demand among smallholders, developing the capacity of existing vocational training centers, and spurring private sector demand.

However, despite these initial successes, it can often be difficult to gauge the sustained change and transformative nature of such interventions.

Applying a scaling perspective

To address this challenge, research teams held a series of workshops with project partners in each country, including regional government representatives, national and local private sector stakeholders, and direct project collaborators such as extension agents and site managers. Participants were asked to answer a series of targeted questions and prompts using the Scaling Scan, a user-friendly tool which facilitates timely, structured feedback from stakeholders on issues that matter in scaling. Responses given during this exercise allowed project designers to analyze, reflect on, and sharpen their scaling ambition and approach, focusing on ten scaling ‘ingredients’ that need to be considered to reach a desired outcome, such as knowledge and skills or public sector governance.

Local service provider uses a bed planter for crop production in Horinofolia, Bangladesh. (Photo: Ranak Martin)

“Although at first sight the case studies seem to successfully reach high numbers of end users, the assessment exposes issues around the sustainable and transformative nature of the project interventions,” says Lennart Woltering, a scaling advisor at CIMMYT.

The added value of this approach, explains Jelle Van Loon, lead author and CIMMYT mechanization specialist, is that lessons learned from project-focused interventions can be amplified to generate broader, actionable knowledge and implement thematic strategies worldwide. “This is especially important for CIMMYT as we do exactly that, but often face different constraints depending on the local context.”

The use of a scaling perspective on each of these projects exposed important lessons on minimizing project dependencies. For example, though each project has invested considerably in both capacity and business development training, in all three case studies the large-scale adoption of recommended service provision models has been limited by a lack of finance and insufficient collaboration among the value chain actors to strengthen and support mechanization service provider entrepreneurs.

“While provision of market and spatial information helps local businesses target their interventions, local stakeholders are still dependent on the projects in terms of transitioning from project to market finance, facilitating collaboration along the value chain, and provision of leadership and advocacy to address issues at governance level,” Woltering explains. This, Van Loon adds, demonstrates a need for the inclusion of properly planned exit strategies from projects, as well as a degree of flexibility during the project development phase.

In all three regions, the supply of appropriate mechanization services is struggling to meet demand and few solutions have been found to support the transition from project to market finance. Continued capacity development is required at all stages of the value chain to ensure the provision of high-quality services and it has been suggested that incentivizing potential clients to access mechanization services and linking service providers with machinery dealers and mechanics might produce more satisfying results than simply supporting equipment purchases.

Read the full study: Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. 2020. Van Loon, J., Woltering, L., Krupnik, T.J., Baudron, F., Boa, M., Govaerts, B. In: Agricultural Systems v. 180.

See more recent publications by CIMMYT researchers:

  1. An R Package for Bayesian analysis of multi-environment and multi-trait multi-environment data for genome-based prediction. Montesinos-Lopez, O.A., Montesinos-Lopez, A., Luna-Vazquez, F.J., Toledo, F.H., Perez-Rodriguez, P., Lillemo, M., Crossa, J. In: G3: genes – genomes – genetics v. 9, no. 5, p. 1355-1369.
  2. New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes. Montesinos-Lopez, O.A., Martin-Vallejo, J., Crossa, J., Gianola, D., Hernandez Suárez, C.M., Montesinos-Lopez, A., JULIANA P., Singh, R.P. In: G3: genes – genomes – genetics v. 9, no. 5, p. 1545-1556.
  3. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. Jia Liu, Bihua Wu, Singh, R.P., Velu, G. In: Journal of Cereal Science v.88,   p. 57-64.
  4. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. 2019. Jat, H.S., Datta, A., Choudhary, M., Sharma, P.C., Yadav, A.K., Choudhary, V., Gathala, M.K., Jat, M.L., McDonald, A. In: Catena v. 181: 104059.
  5. A cost-benefit analysis of climate-smart agriculture options in Southern Africa:  balancing gender and technology. 2019. Mutenje, M., Farnworth, C.R., Stirling, C., Thierfelder, C., Mupangwa, W., Nyagumbo, I. In: Ecological Economics v.163,   p. 126-137.
  6. Yield and labor relations of sustainable intensification options for smallholder farmers in sub-Saharan Africa. A meta-analysis. 2019. Dahlin, S., Rusinamhodzi, L. In: Agronomy for Sustainable Development v. 39, no. 3.
  7. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). 2019. Aguirre-Liguori, J.A., Gaut, B.S., Jaramillo-Correa, J.P., Tenaillon, M.I., Montes Hernandez, S., García-Oliva, F., Hearne, S., Eguiarte, L.E. In: Molecular Ecology v. 28, no. 11, p. 2814-2830.
  8. Tillage, crop establishment, residue management and herbicide applications for effective weed control in direct seeded rice of eastern Indo-Gangetic Plains of South Asia . 2019. Jat, R.K., Singh, Ravi Gopal, Gupta, R.K., Gill, G., Chauhan, B.S., Pooniya, V. In: Crop Protection v. 123, p. 12-20.
  9. Benefits to low-input agriculture. 2019. Reynolds, M.P., Braun, H.J. In: Nature Plants v. 5, p. 652-653.
  10. Improving nutrition through biofortification: preharvest and postharvest technologies. 2019. Listman, G.M., Guzman, C., Palacios-Rojas, N., Pfeiffer, W.H., San Vicente, F.M., Velu, G. In: Cereal Foods World v. 64, no. 3.
  11. Transcriptomics of host-specific interactions in natural populations of the parasitic plant purple witchweed (Striga hermonthica). 2019. Lopez, L., Bellis, E.S., Wafula, E., Hearne, S., Honaas, L., Ralph, P.E., Timko, M.P., Unachukwu, N., dePamphilis, C.W., Lasky, J.R. In: Weed Science v. 67, no. 4, p. 397-411.
  12. Reduced response diversity does not negatively impact wheat climate resilience. 2019. Snowdon, R.J., Stahl, A., Wittkop, B., Friedt, W., Voss-Fels, K.P., Ordon, F., Frisch, M., Dreisigacker, S., Hearne, S., Bett, K.E., Cuthbert, R.D. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS) v. 116, p. 10623-10624.
  13. Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: a study of water markets in Bangladesh. 2019. Mottaleb, K.A., Krupnik, T.J., Keil, A., Erenstein, O. In: Agricultural Water Management v. 222, p. 242-253.
  14. 15N Fertilizer recovery in different tillage-straw systems on a Vertisol in north-west Mexico. 2019. Grahmann, K., Dittert, K., Verhulst, N., Govaerts, B., Buerkert, A. In: Soil Use and Management v. 35, no. 3, p. 482-491.
  15. Agricultural mechanization and reduced tillage: antagonism or synergy?. Debello, M. J., Baudron, F., Branka Krivokapic-Skoko, Erenstein, O. In: International Journal of Agricultural Sustainability v. 17, no. 3, p. 219-230.
  16. Scaling – from “reaching many” to sustainable systems change at scale:  a critical shift in mindset. 2019. Woltering, L., Fehlenberg, K., Gerard, B., Ubels, J., Cooley, L. In: Agricultural Systems v. 176, art. 102652.
  17. Determinants of sorghum adoption and land allocation intensity in the smallholder sector of semi-arid Zimbabwe. Musara, J. P., Musemwa, L., Mutenje, M., Mushunje, A., Pfukwa, C. In: Spanish Journal of Agricultural Research v. 17, no. 1, art. e0105.
  18. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Long Li, Xinguo Mao, Jingyi Wang, Xiaoping Chang, Reynolds, M.P., Ruilian Jing In: Plant Cell and Environment v. 42, no. 9, p. 2540-2553.
  19. Spending privately for education in Nepal. Who spends more on it and why?. Mottaleb, K.A., Rahut, D.B., Pallegedara, A. In: International Journal of Educational Development v. 69, p. 39-47.
  20. Genotype x environment interaction of quality protein maize hybrids under contrasting management condition in Eastern and Southern Africa. 2019. Mebratu, A., Dagne Wegary Gissa, Mohammed, W., Chere, A.T., Amsal Tesfaye Tarekegne In: Crop Science v. 59, no. 4, p. 1576-1589.
  21. Collaborative research on Conservation Agriculture in Bajio, Mexico: continuities and discontinuities of partnerships. Martinez-Cruz, T.E., Almekinders, C., Camacho Villa, T.C. In: International Journal of Agricultural Sustainability v. 17, no. 3, p. 243-256.
  22. Conservation agriculture based sustainable intensification of basmati rice-wheat system in North-West India. 2019. Jat, H.S., Pardeep Kumar, Sutaliya, J.M., Satish Kumar, Choudhary, M., Singh, Y., Jat, M.L. In: Archives of Agronomy and Soil Science v. 65, no. 10, p. 1370-1386.
  23. Gender and household energy choice using exogenous switching treatment regression: evidence from Bhutan. Aryal, J.P., Rahut, D.B., Mottaleb, K.A., Ali, A. In: Environmental Development v. 30, p. 61-75.
  24. Weather shocks and spatial Market efficiency: evidence from Mozambique. 2019. Salazar, C.| Hailemariam Ayalew | Fisker, P. In: Journal of Development Studies v. 55, No. 9, p. 1967-1982.
  25. Effects of Pakistan’s energy crisis on farm households. Ali, A., Rahut, D.B., Imtiaz, M. In: Utilities Policy v. 59, art. 100930.
  26. Social inclusion increases with time for zero-tillage wheat in the Eastern Indo-Gangetic Plains. Keil, A., Archisman Mitra, Srivastava, A., McDonald, A. In: World Development v. 123, art. 104582.

New publications: Optimum nitrogen fertilizer rates for rice and wheat in the Indo-Gangetic Plains of India

 

Wheat spikes against the sky. (Photo: H. Hernandez Lira/CIMMYT)

New research by an international team of scientists, including International Maize and Wheat Improvement Center (CIMMYT) agricultural systems and climate change scientist Tek Sapkota, has identified the optimum rates of nitrogen fertilizer application for rice and wheat crops in the Indo-Gangetic Plains of India.

By measuring crop yield and nitrous oxide (N2O) fluxes over two years, Sapkota and his colleagues reported that the optimum rate of N fertilizer for rice is between 120 and 200 kg per hectare, and between 50 and 185 kg per hectare for wheat. The results of the study have the potential to save farmer’s money and minimize dangerous greenhouse gas emissions while maintaining crop productivity.

Nitrous oxide, one of the most important greenhouse gases in the earth’s atmosphere, is responsible for ozone depletion and global climate change, and has a global warming potential 265 times that of carbon dioxide (CO2).

Research has shown that agricultural soils account for around 60% of global nitrous oxide emissions. These emissions are directly related to the application of nitrogen fertilizers to croplands. While these fertilizers help crop yields, studies show that only about one third of the applied nitrogen is actually used by crops. The rest is released as nitrous oxide or seeps into waterways, causing harmful algal blooms.

In India, the total consumption of nitrogen fertilizer is about 17 million tons — expected to rise to 24 million tons by 2030 to feed a growing population. Nitrous oxide emissions will rise along with it if farmers do not minimize their fertilizer use and manage application more efficiently. What’s more, farmers receive a higher subsidy for nitrogen fertilizer — a policy that leads farmers to apply more fertilizer than the recommended dose.

Measured methods

The study, led by Sapkota, estimated the rate of nitrogen fertilizer application with the most economically optimum yield and minimum environmental footprint. Applying more fertilizer than this would be a waste of farmer’s money and cause unnecessary harm to the environment.

Researchers measured crop yield and nitrous oxide fluxes for two wheat seasons and one rice season from 2014 to 2016.  The scientists found that nitrogen fertilization rate clearly influenced daily and cumulative soil nitrous oxide emissions in wheat and rice for both years. Nitrous oxide emissions were higher in both wheat and rice in the nitrogen-fertilized plots than in the control plots.

Using statistical methods, the researchers were able to measure the relationship between crop productivity, nitrogen rate and emissions intensity, in both rice and wheat. This gave them the optimum rate of nitrogen fertilizer application.

This work was carried out by International Maize and Wheat Improvement Center (CIMMYT) and implemented as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), with support from the CGIAR Trust Fund and through bilateral funding agreements.

Read the full study:
Identifying optimum rates of fertilizer nitrogen application to maximize economic return and minimize nitrous oxide emission from rice–wheat systems in the Indo-Gangetic Plains of India

See more recent publications by CIMMYT researchers: 

  1. Landscape composition overrides field level management effects on maize stemborer control in Ethiopia. 2019. Kebede, Y., Bianchi, F., Baudron, F., Tittonell, P. In: Agriculture, Ecosystems and Environment v. 279, p. 65-73.
  2. From plot to scale: ex-ante assessment of conservation agriculture in Zambia. 2019. Komarek, A.M.| Hoyoung Kwon, Haile, B., Thierfelder, C., Mutenje, M., Azzarri, C. In: Agricultural Systems v. 173, p. 504-518.
  3. Importance of considering technology growth in impact assessments of climate change on agriculture. 2019. Aggarwal, P.K., Vyas, S., Thornton, P., Campbell, B.M., Kropff, M. In. Global Food Security v. 23, p. 41-48.
  4. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. 2019. Buchaillot, M.L., Gracia-Romero, A., Vergara, O., Zaman-Allah, M., Amsal Tesfaye Tarekegne, Cairns, J.E., Prasanna, B.M., Araus, J.L., Kefauver, S.C. In: Sensors v. 19. No. 8, art. 1815.
  5. Understanding tropical maize (Zea mays L.): the major monocot in modernization and sustainability of agriculture in sub-Saharan Africa. 2019. Awata, L.A.O., Tongoona, P., Danquah, E., Ifie, B.E., Mahabaleswara, S.L., Jumbo, M.B., Marchelo-D’ragga, P.W., Sitonik, C. In: International Journal of Advance Agricultural Research v. 7, no. 2, p. 32-77.
  6. Genome-wide genetic diversity and population structure of tunisian durum wheat landraces based on DArTseq technology. 2019. Robbana, C., Kehel, Z., Ben Naceur, M., Sansaloni, C.P., Bassi, F., Amri, A. In: International Journal of Molecular Sciences v. 20, no. 6, art. 1352.
  7. High-throughput phenotyping for crop improvement in the genomics era. 2019. Mir, R., Reynolds, M.P., Pinto Espinosa, F., Khan, M.A., Bhat, M. In: Plant Science     v. 282, p. 60-72.
  8. Conservation agriculture based sustainable intensification: increasing yields and water productivity for smallholders of the Eastern Gangetic Plains. 2019. Islam, S., Gathala, M.K., Tiwari, T.P., Timsina, J., Laing, A.M., Maharjan, S., Chowdhury, A.K., Bhattacharya, P.M., Dhar, T., Mitra, B.,Kumar, S., Srivastwa, P.K., Dutta, S.K., Shrestha, R, Manandhar, S, Sherestha, S.R, Paneru, P, Siddquie, N, Hossain, A, Islam, R,Ghosh, A.K., Rahman, M.A., Kumar, U., Rao, K. K., Gerard, B. In: Field Crops Research v. 238, p. 1-17.
  9. Application of remote sensing for phenotyping tar spot complex resistance in maize. 2019. Loladze, A., Rodrigues, F., Toledo, F.H., San Vicente, F.M., Gerard, B., Prasanna, B.M. In: Frontiers in Plant Science v. 10, art. 552.
  10. 10. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. 2019. Xia Yang, X., Yubo Pan, Singh, P.K., Xinyao He, Yan Ren, Lei Zhao, Ning Zhang, Cheng Shun-He, Feng Chen In: BMC Plant Biology v. 19, art. 153.
  11. Is labour a major determinant of yield gaps in sub-Saharan Africa?: a study of cereal-based production systems in Southern Ethiopia. 2019. Silva, J.V., Baudron, F., Reidsma, P., Giller, K.E. In: Agricultural Systems v. 174, p. 39-51.
  12. Stakeholders prioritization of climate-smart agriculture interventions: evaluation of a framework. 2019. Khatri-Chhetri, A., Pant, A., Aggarwal, P.K., Vasireddy, V.V., Yadav, A. In: Agricultural Systems v. 174, p. 23-31.
  13. Effect of crop management practices on crop growth, productivity and profitability of rice-wheat system in western Indo-gangetic plains. 2019. Sharma, P.C., Datta, A., Yadav, A.K., Choudhary, M., Jat, H.S., McDonald, A. In: Proceedings of the National Academy of Sciences India Section B – Biological Sciences v. 89, no. 2, p. 715-727.
  14. Economic benefits of blast-resistant biofortified wheat in Bangladesh: the case of BARI Gom 33. 2019. Mottaleb, K.A., Velu, G., Singh, P.K., Sonder, K., Xinyao He, Singh, R.P., Joshi, A.K., Barma, N.C.D., Kruseman, G., Erenstein, O. In: Crop Protection v. 123, p. 45-58.
  15. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. 2019. Sitonik, C., Mahabaleswara, S.L., Beyene, Y., Olsen, M., Makumbi, D., Kiplagat, O., Das, B., Jumbo, M.B., Mugo, S.N., Crossa, J., Amsal Tesfaye Tarekegne, Prasanna, B.M., Gowda, M. In: Theoretical and Applied Genetics v. 132, no. 8, p. 2381-2399.
  16. Sub-Saharan african maize-based foods: processing practices, challenges and opportunities. 2019. Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V., Linnemann, A. In: Food Reviews International v. 35, no. 7, p. 609-639.
  17. Provitamin A carotenoids in grain reduce aflatoxin contamination of maize while combating vitamin A deficiency. 2019. Suwarno, W.B., Hannok, P., Palacios-Rojas, N., Windham, G., Crossa, J., Pixley, K.V. In: Frontiers in Plant Science v. 10, art. 30.
  18. The 4th International Plant Phenotyping Symposium. 2019. Reynolds, M.P., Schurr, U. In: Plant Science v. 282, P. 1.
  19. Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. 2019. Patra, S., Julich, S., Feger, K., Jat, M.L., Jat, H.S., Sharma, P.C., Schwärzel, K. In: Soil and Tillage Research v. 192, p. 151-163.
  20. Effects of crop residue retention on soil carbon pools after 6 years of rice-wheat cropping system. 2019. Sharma, S., Thind, H.S., Singh, Y., Sidhu, H.S., Jat, M.L., Parihar, C.M. In: Environmental Earth Sciences v. 78, no. 10, art. 296.
  21. 21. How to increase the productivity and profitability of smallholder rainfed wheat in the Eastern African highlands?: Northern Rwanda as a case study. 2019. Baudron, F., Ndoli, A., Habarurema, I., Silva, J.V. In: Field Crops Research v. 236, P. 121-131.
  22. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: providing low-cost, smallholder friendly solutions to an invasive pest. 2019. Harrison, R., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U., van den Berg, J. In: Journal of Environmental Management v. 236, p. 121-131.
  23. Preliminary characterization for grain quality traits and high and low molecular weight glutenins subunits composition of durum wheat landraces from Iran and Mexico. 2019. Hernandez Espinosa, N., Payne, T.S., Huerta-Espino, J., Cervantes, F., González-Santoyo, H., Ammar, K., Guzman, C. In: Journal of Cereal Science v. 88, p. 47-56.
  24. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. 2019. Dechorgnat, J., Francis, K.L., Dhugga, K., Rafalski, A., Tyerman, S.D., Kaiser, B.N. In: BMC Plant Biology v. 19, art. 206.
  25. CGIAR Operations under the Plant Treaty Framework. 2019. Lopez-Noriega, I., Halewood, M., Abberton, M., Amri, A., Angarawai, I.I., Anglin, N., Blummel, M., Bouman, B., Campos, H., Costich, D.E., Ellis, D., Pooran M. Gaur., Guarino, L., Hanson, J., Kommerell, V., Kumar, P.L., Lusty, C., Ndjiondjop, M.N., Payne, T.S., Peters, M., Popova, E.,Prakash, G., Sackville-Hamilton, R., Tabo, R., Upadhyaya, H., Yazbek, M., Wenzl, P.  In: Crop Science v. 59, no. 3, p. 819-832.

New publications: Durum wheat selection under zero tillage increases early vigor and is neutral to yield

CIMMYT's multi-crop, multi-use zero-tillage seeder at work on a long-term conservation agriculture trial plot at the center's global headquarters in Mexico. Maize crop residues are visible in the foreground. (Photo: CIMMYT)
CIMMYT’s multi-crop, multi-use zero-tillage seeder at work on a long-term conservation agriculture trial plot at the center’s global headquarters in Mexico. Maize crop residues are visible in the foreground. (Photo: CIMMYT)

New research published in Field Crops Research by scientists at the International Maize and Wheat Improvement Center (CIMMYT) responds to the question of whether wheat varieties need to be adapted to zero tillage conditions.

With 33% of global soils already degraded, agricultural techniques like zero tillage — growing crops without disturbing the soil with activities like plowing — in combination with crop residue retention, are being considered to help protect soils and prevent further degradation. Research has shown that zero tillage with crop residue retention can reduce soil erosion and improve soil structure and water retention, leading to increased water use efficiency of the system. Zero tillage has also been shown to be the most environmentally friendly among different tillage techniques.

While CIMMYT promotes conservation agriculture, of which zero tillage is a component, many farmers who use CIMMYT wheat varieties still use some form of tillage. As farmers adopt conservation agriculture principles in their production systems, we need to be sure that the improved varieties breeders develop and release to farmers can perform equally well in zero tillage as in conventional tillage environments.

The aim of the study was to find out whether breeding wheat lines in a conservation agriculture environment had an effect on their adaptability to one tillage system or another, and whether separate breading streams would be required for each tillage system.

The scientists conducted parallel early generation selection in sixteen populations from the breeding program. The best plants were selected in parallel under conventional and zero-till conditions, until 234 and 250 fixed lines were obtained. They then grew all 484 wheat lines over the course of three seasons near Ciudad Obregon, Sonora, Mexico, under three different environments — zero tillage, conventional tillage, and conventional tillage with reduced irrigation — and tested them for yield and growth traits.

The authors found that yields were better under zero tillage than conventional tillage for all wheat lines, regardless of how they had been bred and selected, as this condition provided longer water availability between irrigations and mitigated inter-irrigation water stress.

The main result was that selection environment, zero-till versus conventional till, did not produce lines with specific adaptation to either conditions, nor did it negatively impact the results of the breeding program for traits such as plant height, tolerance to lodging and earliness.

One trait which was slightly affected by selection under zero-till was early vigor — the speed at which crops grow during the earliest stage of growth. Early vigor is a useful adaptive trait in conservation agriculture because it allows the crop to cope with high crop residue loads — materials left on the ground such as leaves, stems and seed pods — and can improve yield through rapid development of maximum leaf area in dry environments. Results showed that varieties selected under zero tillage showed slightly increased early vigor which means that selection under zero tillage may drive a breeding program towards the generalization of this useful attribute.

The findings demonstrate that CIMMYT’s durum wheat lines, traditionally bred for wide adaptation, can be grown, bred, and selected under either tillage conditions without negatively affecting yield performance. This is yet another clear demonstration that breeding for wide adaptation, a decades-long tradition within CIMMYT’s wheat improvement effort, is a suitable strategy to produce varieties that are competitive in a wide range of production systems. The findings represent a major result for wheat breeders at CIMMYT and beyond, with the authors concluding that it is not necessary to have separate breeding programs to address the varietal needs of either tillage systems.

This work was implemented by CIMMYT as part of the CGIAR Research Program on Wheat (WHEAT).

Read the full study:
Durum wheat selection under zero tillage increases early vigor and is neutral to yield.

Policy brief highlights opportunities to promote balanced nutrient management in South Asia

Hafiz Uddin, a farmer from Ulankhati, Tanpuna, Barisal, Bangladesh. He used seeder fertilizer drills to plant mung beans on one acre of land, which resulted in a better yield than planting manually. (Photo: Ranak Martin)
Hafiz Uddin, a farmer from Ulankhati, Tanpuna, Barisal, Bangladesh. He used seeder fertilizer drills to plant mung beans on one acre of land, which resulted in a better yield than planting manually. (Photo: Ranak Martin)

Over the last few decades, deteriorating soil fertility has been linked to decreasing agricultural yields in South Asia, a region marked by inequities in food and nutritional security.

As the demand for fertilizers grows, researchers are working with government and businesses to promote balanced nutrient management and the appropriate use of organic amendments among smallholder farmers. The Cereal Systems Initiative for South Asia (CSISA) has published a new policy brief outlining opportunities for innovation in the region.

Like all living organisms, crops need access to the right amount of nutrients for optimal growth. Plants get nutrients — like nitrogen, phosphorus, and potassium, in addition to other crucially important micronutrients — from soils and carbon, hydrogen, oxygen from the air and water. When existing soil nutrients are not sufficient to sustain good crop yields, additional nutrients must be added through fertilizers or manures, compost or crop residues. When this is not done, farmers effectively mine the soil of fertility, producing short-term gains, but undermining long-term sustainability.

Nutrient management involves using crop nutrients as efficiently as possible to improve productivity while reducing costs for farmers, and also protecting the environment by limiting greenhouse gas emissions and water quality contamination. The key behind nutrient management is appropriately balancing soil nutrient inputs — which can be enhanced when combined with appropriate soil organic matter management — with crop requirements. When the right quantities are applied at the right times, added nutrients help crops yields flourish. On the other hand, applying too little will limit yield and applying too much can harm the environment, while also compromising farmers’ ability to feed themselves or turn profits from the crops they grow.

Smallholder farmers in South Asia commonly practice poor nutrition management with a heavy reliance on nitrogenous fertilizer and a lack of balanced inputs and micronutrients. Declining soil fertility, improperly designed policy and nutrient management guidelines, and weak fertilizer marketing and distribution problems are among the reasons farmers fail to improve fertility on their farms. This is why it is imperative to support efforts to improve soil organic matter management and foster innovation in the fertilizer industry, and find innovative ways to target farmers, provide extension services and communicate messages on cost-effective and more sustainable strategies for matching high yields with appropriate nutrient management.

Cross-country learning reveals opportunities for improved nutrient management. The policy brief is based on outcomes from a cross-country dialogue facilitated by CSISA earlier this year in Kathmandu. The meeting saw researchers, government and business stakeholders from Bangladesh, India, Nepal, and Sri Lanka discuss challenges and opportunities to improving farmer knowledge and access to sufficient nutrients. Several key outcomes for policy makers and representatives of the agricultural development sector were identified during the workshop, and are included in the brief.

Extension services as an effective way to encourage a more balanced use of fertilizers among smallholder farmers. There is a need to build the capacity of extension to educate smallholders on a plant’s nutritional needs and proper fertilization. It also details how farmers’ needs assessments and human-centered design approaches need to be integrated while developing and delivering nutrient application recommendations and extension materials.

Nutrient subsidies must be reviewed to ensure they balance micro and macro-nutrients. Cross-country learning and evidence sharing on policies and subsidies to promote balanced nutrient application are discussed in the brief, as is the need to balance micro and macro-nutrient subsidies, in addition to the organization of subsidy programs in ways that assure farmers get access the right nutrients when and where they are needed the most. The brief also suggests additional research and evidence are needed to identify ways to assure that farmers’ behavior changes in response to subsidy programs.

Market, policy, and product innovations in the fertilizer industry must be encouraged. It describes the need for blended fertilizer products and programs to support them. A blend is made by mixing two or more fertilizer materials. For example, particles of nitrogen, phosphate and small amounts of secondary nutrients and micronutrients mixed together. Experience with blended products are uneven in the region, and markets for blends are nascent in Bangladesh and Nepal in particular. Cross-country technical support on how to develop blending factories and markets could be leveraged to accelerate blended fertilizer markets and to identify ways to ensure equitable access to these potentially beneficial products for smallholder farmers.

Download the CSISA Policy and Research Note:
Development of Balanced Nutrient Management Innovations in South Asia: Lessons from Bangladesh, India, Nepal, and Sri Lanka.

The CSISA project is led by CIMMYT with partners the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI) and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

New publications: Understanding changes in farming systems to propose adapted solutions

A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)
A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)

Farming systems are moving targets. Agricultural Research and Development (R&D) must understand where they come from and where they are going to offer solutions that are adapted. This is one of the main objectives of the Trajectories and Trade-offs for Intensification of Cereal-based systems (ATTIC), project funded by the CGIAR Research Program on Maize (MAIZE) and implemented by the International Maize and Wheat Improvement Center (CIMMYT) and the Farming System Ecology group at Wageningen University & Research.

A recent study led by Yodit Kebede — who obtained her PhD last year under the ATTIC project — examined the drivers of change affecting smallholder farming in southern Ethiopia, farmer’s responses to these changes, and consequences for agricultural landscapes.

As in many parts of the developing world, small farms in southern Ethiopia have become smaller. Population increase and urban expansion have been major drivers of this change. Population has been increasing over 3% annually in Ethiopia, the second most populated country in Africa. Grazing areas and forests were converted to cropland, putting stress on the availability of livestock feed and fuelwood.

Farmers responded to these changes through three broad trajectories: diversification — mixed cropping and intercropping, particularly for the smallest farms —, specialization — often in high-value but non-food crops — and consolidation — maintenance or increase of farm area. Each of these trajectories has its own specific R&D needs, although farms following a consolidation trajectory are often favored by R&D programs. The same three trajectories can be identified in many rural areas where rural transformation has not taken place yet, in Africa and elsewhere in the developing world.

The loss of grassland and forest produced a landscape more susceptible to erosion and loss of soil fertility. However, all outcomes from these landscape changes may not be negative. Another study conducted by the same authors in the same study area demonstrated that an increasingly fragmented agricultural landscape may lead to increased pest control by natural enemies.

While aiming to mitigate against negative outcomes from landscape changes — for example, land degradation — policies should be careful not to inadvertently reduce some of the positive outcomes of these changes, such as increased pest control. As concluded by the study, “a better understanding of interlinkages and tradeoffs among ecosystem services and the spatial scales at which the services are generated, used, and interact is needed in order to successfully inform future land use policies”.

Read the full study:
Drivers, farmers’ responses and landscape consequences of smallholder farming systems changes in southern Ethiopia

See more recent publications by CIMMYT researchers:

  1. Estimation of hydrochemical unsaturated soil parameters using a multivariational objective analysis. 2019. Lemoubou, E.L., Kamdem, H.T.T., Bogning, J.R., Tonnang, H. In: Transport in Porous Media v. 127, no. 3, p. 605-630.
  2. Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform : diversity, quality control and molecular breeding. 2019. Raatz, B., Mukankusi, C., Lobaton, J.D., Male, A., Chisale, V., Amsalu, B., Fourie, D., Mukamuhirwa, F., Muimui, K., Mutari, B., Nchimbi-Msolla, S., Nkalubo, S., Tumsa, K., Chirwa, R., Maredia, M.K., He, Chunlin In: Genetic Resources and Crop Evolution v.66, no. 3, p. 707-722.
  3. Deep blade loosening increases root growth, organic carbon, aeration, drainage, lateral infiltration and productivity. 2019. Hamilton, G.J., Bakker, D., Akbar, G., Hassan, I., Hussain, Z., McHugh, A., Raine, S.R. In: Geoderma v. 345, p. 72-92.
  4. Maize crop nutrient input requirements for food security in sub-Saharan Africa. 2019. Berge, H.F.M. ten., Hijbeek, R., Loon, M.P. van., Rurinda, J., Fantaye, K. T., Shamie Zingore, Craufurd, P., Heerwaarden, J., Brentrup, F., Schröder, J.J., Boogaard, H., Groot, H.L.E. de., Ittersum, M.K. van. In: Global Food Security v. 23 p. 9-21.
  5. Primary hexaploid synthetics : novel sources of wheat disease resistance. 2019. Shamanin, V., Shepelev, S.S., Pozherukova, V.E., Gultyaeva, E.I., Kolomiets, T., Pakholkova, E.V., Morgounov, A.I. In: Crop Protection v. 121, p. 7-10.
  6. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. 2019. Baudron, F., Zaman-Allah, M., Chaipa, I., Chari, N., Chinwada, P. In: Crop Protection v. 120 p. 141-150.
  7. Predicting dark respiration rates of wheat leaves from hyperspectral reflectance. 2019. Coast, O., Shahen Shah, Ivakov, A., Oorbessy Gaju, Wilson, P.B., Posch, B.C., Bryant, C.J., Negrini, A.C.A., Evans, J.R., Condon, A.G., Silva‐Pérez, V., Reynolds, M.P. Pogson, B.J., Millar A.H., Furbank, R.T., Atkin, O.K. In: Plant, Cell and Environment v. 42, no. 7, p. 2133-2150.
  8. Morphological and physiological responses of Guazuma ulmifolia Lam. to different pruning dates. 2019. Ortega-Vargas, E., Burgueño, J., Avila-Resendiz, C., Campbell, W.B., Jarillo-Rodriguez, J., Lopez-Ortiz, S. In: Agroforestry Systems v. 93 no. 2 p. 461-470.
  9. Stripe rust resistance in wild wheat Aegilops tauschii Coss.: genetic structure and inheritance in synthetic allohexaploid Triticum wheat lines. 2019. Kishii, M., Huerta-Espino, J., Hisashi Tsujimoto, Yoshihiro Matsuoka. In: Genetic Resources and Crop Evolution v. 66, no. 4, p.  909-920.
  10. Comparative assessment of food-fodder traits in a wide range of wheat germplasm for diverse biophysical target domains in South Asia. 2019. Blummel, M., Updahyay, S.R., Gautam, N.R., Barma, N.C.D., Abdul Hakim, M., Hussain, M., Muhammad Yaqub Mujahid, Chatrath, R., Sohu, V.S., Gurvinder Singh Mavi, Vinod Kumar Mishra, Kalappanavar, I.K., Vaishali Rudra Naik, Suma S. Biradar., Prasad, S.V.S., Singh, R.P., Joshi, A.K. In: Field Crops Research v. 236, p. 68-74.
  11. Comment on ‘De Roo et. al. (2019). On-farm trials for development impact? The organization of research and the scaling of agricultural technologies. 2019. Wall, P.C., Thierfelder, C., Nyagumbo, I., Rusinamhodzi, L., Mupangwa, W. In: Experimental Agriculture v. 55 no. 2 p. 185-194.
  12. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. 2019. Singh, D., Xu Wang, Kumar, U., Liangliang Gao, Muhammad Noor, Imtiaz, M., Singh, R.P., Poland, J.A. In: Frontiers in Plant Science v. 10 art. 394.
  13. Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. 2019. Jat, S.L., Parihar, C.M., Singh, A.K., Hari S. Nayak, Meena, B.R., Kumar, B., Parihar M.D., Jat, M.L. In: Field Crops Research v. 236, p. 96-110.
  14. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. 2019. Sandhu, O.S., Gupta, R.K., Thind, H.S., Jat, M.L., Sidhu, H.S., Singh, Y. In: Agricultural Water Management v. 219 p. 19-26.
  15. Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indo‐gangetic plains of India. Kumar, V., Gathala, M.K., Saharawat, Y.S., Parihar, C.M., Rajeev Kumar, Kumar, R., Jat, M.L., Jat, A.S., Mahala, D.M., Kumar, L., Hari S. Nayak, Parihar M.D., Vikas Rai, Jewlia, H.R., Bhola R. Kuri In: Soil Use and Management v. 35, no. 2, p. 303-313.
  16. Increasing profitability, yields and yield stability through sustainable crop establishment practices in the rice-wheat systems of Nepal. 2019. Devkota, M., Devkota, K.P., Acharya, S., McDonald, A. In: Agricultural Systems v. 173, p. 414-423.
  17. Identification of donors for low-nitrogen stress with maize lethal necrosis (MLN) tolerance for maize breeding in sub-Saharan Africa. 2019. Das, B., Atlin, G.N., Olsen, M., Burgueño, J., Amsal Tesfaye Tarekegne, Babu, R., Ndou, E., Mashingaidze, K., Lieketso Moremoholo |Ligeyo, D., Matemba-Mutasa, R., Zaman-Allah, M., San Vicente, F.M., Prasanna, B.M., Cairns, J.E. In: Euphytica v. 215, no. 4, art. 80.
  18. On-farm trials as ‘infection points’? A response to Wall et al. 2019. Andersson, J.A., Krupnik, T.J., De Roo, N. In: Experimental Agriculture v. 55, no. 2 p. 195-199.
  19. Doing development-oriented agronomy: Rethinking methods, concepts and direction. 2019. Andersson, J.A., Giller, K.Ehttps://repository.cimmyt.org/handle/10883/20154. In: Experimental Agriculture v. 55, no. 2, p. 157-162.
  20. Scale-appropriate mechanization impacts on productivity among smallholders : Evidence from rice systems in the mid-hills of Nepal. 2019. Paudel, G.P., Dilli Bahadur KC, Rahut, D.B., Justice, S., McDonald, A. In: Land Use Policy v. 85, p. 104-113.

New publications: Special collection on wheat genetics and breeding

Global wheat production is currently facing great challenges, from increasing climate variation to occurrence of various pests and diseases. These factors continue to limit wheat production in a number of countries, including China, where in 2018 unseasonably cold temperatures resulted in yield reduction of more than 10% in major wheat growing regions. Around the same time, Fusarium head blight spread from the Yangtze region to the Yellow and Huai Valleys, and northern China experienced a shortage of irrigated water.

In light of these ongoing challenges, international collaboration, as well as the development of new technologies and their integration with existing ones, has a key role to play in supporting sustainable wheat improvement, especially in developing countries. The International Maize and Wheat Improvement Center (CIMMYT) has been collaborating with China on wheat improvement for over 40 years, driving significant progress in a number of areas.

Notably, a standardized protocol for testing Chinese noodle quality has been established, as has a methodology for breeding adult-plant resistance to yellow rust, leaf rust and powdery mildew. More than 330 cultivars derived from CIMMYT germplasm have been released in the country and are currently grown over 9% of the Chinese wheat production area, while physiological approaches have been used to characterize yield potential and develop high-efficiency phenotyping platforms. The development of climate-resilient cultivars using new technology will be a priority area for future collaboration.

In a special issue of Frontiers of Agricultural Science and Engineering focused on wheat genetics and breeding, CIMMYT researchers present highlights from global progress in wheat genomics, breeding for disease resistance, as well as quality improvement, in a collection of nine review articles and one research article. They emphasize the significance of using new technology for genotyping and phenotyping when developing new cultivars, as well as the importance of global collaboration in responding to ongoing challenges.

In a paper on wheat stem rust, CIMMYT scientists Sridhar Bhavani, David Hodson, Julio Huerta-Espino, Mandeep Randawa and Ravi Singh discuss progress in breeding for resistance to Ug99 and other races of stem rust fungus, complex virulence combinations of which continue to pose a significant threat to global wheat production. The authors detail how effective gene stewardship and new generation breeding materials, complemented by active surveillance and monitoring, have helped to limit major epidemics and increase grain yield potential in key target environments.

In the same issue, an article by Caiyun Lui et al. discusses the application of spectral reflectance indices (SRIs) as proxies to screen for yield potential and heat stress, which is emerging in crop breeding programs. The results of a recent study, which evaluated 287 elite lines, highlight the utility of SRIs as proxies for grain yield. High heritability estimates and the identification of marker-trait associations indicate that SRIs are useful tools for understanding the genetic basis of agronomic and physiological traits.

Other papers by CIMMYT researchers discuss the history, activities and impact of the International Winter Wheat Improvement Program, as well as the ongoing work on the genetic improvement of wheat grain quality at CIMMYT.

Find the full collection of articles in Frontiers of Agricultural Science and Engineering, Volume 6, Issue 3, September 2019.

See more recent publications by CIMMYT researchers:

  1. Genetic diversity among tropical provitamin A maize inbred lines and implications for a biofortification program. 2019. Julius Pyton Sserumaga, Makumbi, D., Warburton, M.L., Opiyo, S.O., Asea, G., Muwonge, A., Kasozi, C.L. In: Cereal Research Communications v. 47, no. 1, p. 134-144.
  2. Diversity and conservation priorities of crop wild relatives in Mexico. 2019. Contreras-Toledo, A. R., Cortes-Cruz, M. A., Costich, D.E., Rico-Arce, M. de L., Magos Brehm, J., Maxted, N. In: Plant Genetic Resources: Characterisation and Utilisation v. 17, no. 2, p. 140-150.
  3. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. 2019. Bing Liu, Martre, P., Ewert, F., Porter, J.R., Challinor, A.J., Muller, C., Ruane, A.C., Waha, K., Thorburn, P.J., Aggarwal, P.K., Mukhtar Ahmed, Balkovic, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., De Sanctis, G., Dumont, B., Espadafor, M., Eyshi Rezaei, E., Ferrise, R., Garcia-Vila, M., Gayler, S., Yujing Gao, Horan, H., Hoogenboom, G., Izaurralde, R.C., Jones, C.D., Kassie, B.T., Kersebaum, K.C., Klein, C., Koehler, A.K., Maiorano, A., Minoli, S., Montesino San Martin, M., Soora Naresh Kumar, Nendel, C., O’Leary, G.J., Palosuo, T., Priesack, E., Ripoche, D.,Rotter, R., Semenov, M.A., Stockle, C., Streck, T., Supit, I., Fulu Tao, Van der Velde, M., Wallach, D., Wang, E. |Webber, H., Wolf, J., Liujun Xiao, Zhao Zhang, Zhigan Zhao, Yan Zhu, Asseng, S. In: Global Change Biology v. 25, no. 4, p. 1428-1444.
  4. Marker Assisted Breeding to Develop Multiple Stress Tolerant Varieties for Flood and Drought Prone Areas. 2019. Sandhu, N., Dixit, S., Mallikarjuna Swamy, B.P., Raman, A.K., Kumar, S., Singh, S.P., Yadaw, R.B., Singh, O.N., Reddy, J.N., Anandan, A., Yadav, S., Venkataeshwarllu, C., Henry, A., Verulkar, S., Mandal, N.P., Ram, T., Badri, J., Vikram, P., Arvind Kumar In: Rice v. 12, no. 1, art. 8.
  5. Modeling Genotype × Environment Interaction Using a Factor Analytic Model of On-Farm Wheat Trials in the Yaqui Valley of Mexico. 2019. Vargas-Hernández, M., Ortiz-Monasterio, I., Perez-Rodriguez, P., Montesinos-Lopez, O.A., Montesinos-Lopez, A., Burgueño, J., Crossa, J. In: Agronomy Journal v. 111, no. 1, p. 1-11.
  6. Does Size Matter? A Critical Review of Meta-analysis in Agronomy. 2019. Krupnik, T.J., Andersson, J.A., Rusinamhodzi, L., Corbeels, M., Shennan, C., Gerard, B. In: Experimental Agriculture v. 55 no. Special issue 2, p. 200-229.
  7. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. 2019. Jat, H.S., Datta, A., Choudhary, M., Yadav, A.K., Choudhary, V., Sharma, P.C., Gathala, M.K., Jat, M.L., McDonald, A. In: Soil and Tillage Research v. 190, p. 128-138.
  8. Transgenic solutions to increase yield and stability in wheat: shining hope or flash in the pan? 2019. Araus, J.L., Serret, M.D., Lopes, M.S. In: Journal of Experimental Botany v. 70, no. 5, p. 1419-1424.
  9. Model-Driven Multidisciplinary Global Research to Meet Future Needs: The Case for “Improving Radiation Use Efficiency to Increase Yield.” 2019. Asseng, S., Martre, P., Ewert, F., Dreccer, M.F., Beres, B.L., Reynolds, M.P., Braun, H.J., Langridge, P., Gouis, J. Le., Salse, J., Baenziger, P.S. In: Crop Science v. 59, p. 1-7.
  10. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. 2019. Calvillo-Medina, R.P., Reyes‐Grajeda, J.P., Barba‐Escoto, L., Bautista-Hernandez, L.A., Campos‐Guillen, J., Jones, G.H., Bautista‐de Lucio, V.M. In: Microbial Pathogenesis v. 130, p. 232-241.

New publications: Do market shocks generate gender-differentiated impacts?

Female-headed households are likely to experience higher welfare losses due to commodity price hikes than their male-headed counterparts, as they tend to spend a larger percentage of their income on food items. However, the full extent of this impact of market has not been widely examined in the empirical literature.

Applying the difference-in-difference estimation procedure to data collected from more than 22,000 households in Bangladesh in 2005 and 2010, researchers at the International Maize and Wheat Improvement Center (CIMMYT) set out to examine the gender-differentiated impacts of the commodity price hikes during the food price crisis of 2008 on food and non-food consumption behavior based on the sex of the household head.

They found that, in general, the commodity price hikes had more adversely affected female-headed households, which reduced their expenditure on food and non-food items such as cereals and education at a greater rate than their male-headed counterparts did.

However, their study also reveals that the welfare impacts on these households varied greatly depending on socio-economic conditions. Results showed that households headed by women who were relatively better educated, who owned larger pieces of land and received remittances were buffered to a certain extent and their expenditure was affected less.

Understanding these buffering factors, the authors argue, is crucial when designing policy interventions in developing countries. The study provides a number of recommendations for government and international donor agencies to help female-headed households better cope with market shocks. For example, they could improve the reach of general education, increase women’s access to land and agricultural assets and remove barriers to the in-flow of remittances for female-headed households. Extending the reach of social protection and microcredit programs could further complement market shock buffering capacity, as could providing targeted capital.

Read more results and recommendations in the study, “Do market shocks generate gender-differentiated impacts? Policy implications from a quasi-natural experiment in Bangladesh” in Women’s Studies International Forum, Volume 76, September–October 2019.

This study was made possible through the support provided by the United States Agency for International Development (USAID) to the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project, and the Bill & Melinda Gates Foundation to the CSISA Phase II project.

See more recent publications by CIMMYT researchers:

  1. Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. 2019. Molero, G., Joynson, R. , Piñera Chavez, F.J. , Gardiner, L.J. , Rivera Amado, A.C. , Hall, A.J.W. , Reynolds, M.P. In: Plant Biotechnology Journal v. 17, no. 7, p. 1276-1288.
  2. Identification of recombinants carrying stripe rust resistance gene Yr57 and adult plant stem rust resistance gene Sr2 through marker‐assisted selection. 2019. Lodhi, S., Bariana, H.S., Randhawa, M.S., Gul Kazi, A., Peter John., Bansal, U. In: Plant Breeding v. 138, no. 2, p. 148-152.
  3. Effect of different tillage and residue management practices on crop and water productivity and economics in maize (Zea mays) based rotations. 2019. Parihar M.D., Parihar, C.M., Nanwal, R.K., Singh, A.K., Jat, S.L., Hari S. Nayak, Prakash Chand Ghasal, Jewlia, H.R., Choudhary, M. , Jat, M.L. In: Indian Journal of Agricultural Sciences v. 89, no. 2.
  4. A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. 2019. Shelia, V., Hansen, J., Sharda, V., Porter, C., Aggarwal, P.K., Wilkerson, C.J., Hoogenboom, G. In: Environmental Modelling and Software v. 115, no. 144-154.
  5. Averting wheat blast by implementing a ‘wheat holiday’: in search of alternative crops in West Bengal, India. 2019. Mottaleb, K.A., Singh, P.K., Sonder, K., Kruseman, G., Erenstein, O. In: PLoS One v. 114, no. 2, art. E0211410.
  6. Estimating soil evaporation in dry seeded rice and wheat crops after wetting events. 2019. Gupta, N., Eberbach, P.L., Humphreys, E., Singh, B., Sudhir-Yadav, Kukal, S.S. In: Agricultural Water Management v. 217, p. 98-106.
  7. Dependence of temperature sensitivity of soil organic carbon decomposition on nutrient management options under conservation agriculture in a sub-tropical Inceptisol. 2019. Parihar, C.M., Singh, A.K., Jat, S.L., Ghosh, A., Dey, A., Hari S. Nayak, Parihar M.D., Mahala, D.M., Yadav, R.K., Rai, V., Satayanaryana, T., Jat, M.L. In: Soil and Tillage Research v. 190, p. 50-60.
  8. Biogas adoption and elucidating its impacts in India: implications for policy. 2019. Mottaleb, K.A., Rahut, D.B. In: Biomass and Bioenergy v. 123, p. 166-174.
  9. Reaction of Australian durum, common wheat and triticale genotypes to Karnal bunt (Tilletia indica) infection under artificial inoculation in the field. 2019. Emebiri, L. C., Singh, P.K. , Tan, M. K. , Fuentes Dávila, G., Xinyao He, Singh, R.P. In: Crop and Pasture Science v. 70, no. 2, p. 107-112.
  10. A farm-level assessment of labor and mechanization in Eastern and Southern Africa. 2019. Baudron, F., Misiko, M.T., Getnet, B., Nazare, R., Sariah, J., Kaumbutho, P. In: Agronomy for Sustainable Development v. 39, no. 2, art. 17.

New publications: Exploring how women seize control of wheat–maize technologies in Bangladesh

A new study published in the Canadian Journal of Development Studies shows how some of Bangladesh’s indigenous women are overcoming social norms and institutional biases to gain direct access to maize and wheat agricultural innovations through developing women-led agricultural organizations, which benefit low-income Muslim women members as well.

Agriculture is important to Bangladesh’s economy and employs a large percentage of the male and female population as farmers, hired labor, and decision-makers. Bangladesh also has a positive policy commitment to gender equality. The UN Sustainable Development Goals are embedded into the country’s national growth plans, including a strong commitment to Goal 5, Gender Equality, and Goal 10, Reduced Inequalities.

However, this new study shows that agricultural innovation programs are primarily directed at middle-income male farmers. Institutional biases in agricultural partners — extension officers, research organizations, policymakers, private sector partners and others — can hamper indigenous peoples and women from participating in wheat–maize innovation processes, as they rarely meet the requisite criteria: sufficient land and social capital. In addition, their participation in markets varies according to their socioeconomic location in society.

Drawing on GENNOVATE case studies, the authors provide insights into how overlapping layers of disadvantage are being challenged in one community in northern Bangladesh.

Indigenous Santal women in the community are active in agriculture, both in the field and in decision-making, but are often marginalized by agricultural partners. Through mobilizing themselves organizationally into a woman-led agricultural organization, they have provided a forum for the delivery of technical training. This process has encouraged low-income Muslim women — who work in the field but are also marginalized by agricultural partners — to join the organization and benefit from training as well.

The findings provide insights into how agricultural research partners can work to strengthen the contribution and voices of the women who have long experienced differing forms of marginalization and to support their efforts to secure technical training.

The data used in this article is derived from GENNOVATE (Enabling Gender Equality in Agricultural and Environmental Innovation), a global research initiative supported by the Bill & Melinda Gates Foundation. This is a cross-CGIAR initiative examining how interactions between gender norms, agency and other contextual factors shape access to, adoption of and benefits from agricultural innovations in rural communities worldwide.

Read the full paper:
Leaving no one behind: how women seize control of wheat–maize technologies in Bangladesh.

See more recent publications by CIMMYT researchers:

  1. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. 2019. Narinder Singh, Shuangye Wu, Raupp, W.J., Sunish Sehgal, Sanu Arora, Vijay Tiwari, Vikram, P., Sukhwinder-Singh, Chhuneja Parveen, Gill, B.S., Poland, J. In: Nature Scientific reports v. 9, art. 650.
  2. Soil zinc is associated with serum zinc but not with linear growth of children in Ethiopia. 2019. Tessema, M., De Groote, H., Brouwer, I.D., Feskens, E.J.M., Belachew, T., Zerfu, D., Belay, A., Demelash,Yoseph, Gunaratna, N.S. In: Nutrients v. 11, no. 2, art. 221.
  3. Assessing adoption potential in a risky environment: the case of perennial pigeonpea. 2019. Grabowski, P., Schmitt Olabisi, L., Jelili Adebiyi, Waldman, K., Richardson, R., Rusinamhodzi, L., Snapp, S.S. In: Agricultural Systems v. 171, p. 89-99.
  4. Untangling gender differentiated food security gaps in Bhutan: An application of exogenous switching treatment regression. 2019. Aryal, J.P., Mottaleb, K.A., Rahut, D.B. In: Review of Development Economics v. 23, no. 2, p. 782-802.
  5. Genetic diversity and population structure of synthetic hexaploid-derived wheat (Triticum aestivum L.) accessions. 2019. Gordon, E., Kaviani, M., Kagale, S., Payne, T.S., Navabi, A. In: Genetic Resources and Crop Evolution v. 66, no. 2, p. 335-348.
  6. Molecular characterisation of maize introgressed inbred lines bred in different environments. 2019. Lennin Musundire, Derera, J., Shorai Dari, Tongoona, P., Cairns, J.E. In: Euphytica v. 215, art. 46.
  7. A benchmarking between deep learning, support vector machine and bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding. 2019. Montesinos-Lopez, O.A., Martin-Vallejo, J., Crossa, J., Gianola, D., Hernández Suárez, C.M., Montesinos-Lopez, A., Juliana, P., Singh, R.P. In: G3: Genes, Genomes, Genetics v. 9, no. 2, p. 601-618.
  8. Farmers’ preferences for high-input agriculture supported by site-specific extension services : evidence from a choice experiment in Nigeria. 2019. Oyakhilomen Oyinbo, Chamberlin, J., Vanlauwe, B., Liesbet Vranken, Kamara, A. Y., Craufurd, P., Maertens, M., In: Agricultural Systems v. 173, p. 12-26.
  9. Effects of three in-field water harvesting technologies on soil water content and maize yields in a semi-arid region of Zimbabwe. 2019. Nyagumbo, I., Nyamadzawo, G., Connie Madembo. In: Agricultural Water Management v. 216 p. 206-213.
  10. Genomic selection for winter survival ability among a diverse collection of facultative and winter wheat genotypes. 2019. Beil, C. T., Anderson, V.A., Morgounov, A.I., Haley, S. D. In: Molecular Breeding v. 30, art. 29.
  11. Can minimum tillage enhance productivity? Evidence from smallholder farmers in Kenya. 2019. Jena, P.R. In: Journal of Cleaner Production v. 218, p. 465-475.
  12. 12. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system : a breakthrough for addressing water and nitrogen use efficiency. 2019. Sidhu, H.S., Jat, M.L., Singh, Y., Ravneet Kaur Sidhu, Gupta, N., Singh, P., Pankaj Singh, Jat, H.S., Gerard, B. In: Agricultural Water Management v. 216, p. 273-283.
  13. Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. 2019. Caiyun Lu, Sukumaran, S., Claverie, E., Sansaloni, C.P., Dreisigacker, S., Reynolds, M.P. In: Molecular Breeding v. 39, art. 34.
  14. Genetic analysis of cob resistance to F. verticillioides: another step towards the protection of maize from ear rot. 2019. Cong Mu, Jingyang Gao, Zijian Zhou, Zhao Wang, Xiaodong Sun, Zhang, X, Huafang Dong, Yanan Han, Xiaopeng Li, Yabin Wu, Yunxia Song, Peipei Ma, Chaopei Dong, Jiafa Chen, Jianyu Wu. In: Theoretical and Applied Genetics v. 132, no. 4, p. 1049-1059.
  15. Two large-effect QTLs, Ma and Ma3, determine genetic potential for acidity in apple fruit : breeding insights from a multi-family study. 2019. Verma, S., Evans, K., Guan, Y., Luby, J.J., Rosyara, U., Howard, N.P., Bassil, N.V., van de Weg, W.E., Peace, C.P. In: Tree Genetics and Genomes v. 15, no. 2, art. 18.
  16. Yielding to the image: how phenotyping reproductive growth can assist crop improvement and production. 2019. Dreccer, M.F., Molero, G., Rivera Amado, A.C., Carus John-Bejai, Wilson Zoe. In: Plant Science v. 282, p. 73-82.
  17. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. 2019. Zifeng Guo, Hongwu Wang, Jiajun Tao, Yonghong Ren, Cheng Xu, Kunsheng Wu, Cheng Zou, Jianan Zhang, Yunbi Xu. In: Molecular Breeding v. 39, art. 37.
  18. Agriculturally productive yet biodiverse: human benefits and conservation values along a forest-agriculture gradient in Southern Ethiopia. 2019. Baudron, F., Schultner, J., Duriaux, J., Gergel, S., Sunderland, T. In: Landscape Ecology v. 34, no. 2, p. 341–356.
  19. Trends in regional and chronological diversity of maize (zea mays l.) germplasm in Pakistan. 2019. Maqbool, M.A.| Aslam, M. | Issa, A.B. | Babar Manzoor Atta. In: Pakistan Journal of Botany v. 51, no. 2, p. 1-13.
  20. Do metabolic changes underpin physiological responses to water limitation in alfalfa (Medicago sativa) plants during a regrowth period? 2019. Molero, G., Tcherkez, G., Roca, R., Mauve, C., Cabrera-Bosquet, L., Araus, J.L., Nogués, S., Aranjuelo, I. In: Agricultural Water Management v. 212, p. 1-11.

New publications: A study of water markets in Bangladesh

Domestic rice and wheat production in Bangladesh has more than doubled in the last 30 years, despite declining per capita arable land. The fact that the country is now almost self-sufficient in staple food production is due in large part to successful and rapid adoption of modern, high-yielding crop varieties. This has been widely documented, but less attention has been paid to the contribution of small-scale irrigation systems, whose proliferation has enabled double rice cropping and a competitive market system in which farmers can purchase irrigation services from private pump owners at affordable rates.

However, excess groundwater abstraction in areas of high shallow tube-well density and increased fuel costs for pumping have called into question the sustainability of Bangladesh’s groundwater irrigation economy. Cost-saving agronomic methods are called for, alongside aligned policies, markets, and farmers’ incentives.

A recent study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) examines the different institutions and water-pricing methods for irrigation services that have emerged in Bangladesh, each of which varies in their incentive structure for water conservation, and the level of economic risk involved for farmers and service providers.

Using primary data collected from 139 irrigation service providers and 556 client-farmers, the authors assessed the structure of irrigation service types as well as the associated market and institutional dimensions. They found that competition between pump owners, social capital, and social relationship between of pump owners and client farmers, significantly influence the structure of irrigation services and irrigation water pricing methods. Greater competition between pump owners, for instance, increases the likelihood of pay-per-hour services while reducing that of crop sharing arrangements.

Based on these and other findings, authors made policy recommendations for enhancing irrigation services and sustainability in Bangladesh. As Bangladesh is already highly successful in terms of the conventional irrigation system, the authors urge taking it to the next level for sustainability and efficiency.

Currently Bangladesh’s irrigation system is based on centrifugal pumps and diesel engines. The authors suggest scaling out the energy efficient axial flow pump, and the alternate wetting and drying system for water conservation and irrigation efficiency. They also recommend further investment in rural electrification to facilitate the use of electric motors, which can reduce air pollution by curbing dependency on diesel engines.

Read the full article:
Understanding clients, providers and the institutional dimensions of irrigation services in developing countries: A study of water markets in Bangladesh” in Agricultural Water Management, Volume 222, 1 August 2019, pages 242-253.

This study was made possible through the support provided by the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation to the Cereal Systems Initiative for South Asia (CSISA). Additional support was provided by the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT).

Local irrigation service providers in southern Bangladesh demonstrate the use of a two-wheeled tractor to power an axial flow pump to provide fuel-efficient surface water irrigation. (Photo: Tim Krupnik/CIMMYT)
Local irrigation service providers in southern Bangladesh demonstrate the use of a two-wheeled tractor to power an axial flow pump to provide fuel-efficient surface water irrigation. (Photo: Tim Krupnik/CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. A spatial framework for ex-ante impact assessment of agricultural technologies. 2019. Andrade, J.F., Rattalino Edreira, J.I., Farrow, A., Loon, M.P. van., Craufurd, P., Rurinda, J., Shamie Zingore, Chamberlin, J., Claessens, L., Adewopo, J., Ittersum, M.K. van, Cassman, K.G., Grassini, P. In: Global Food Security v. 20, p. 72-81.
  2. Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain ZN and FE concentrations. 2019. Velu, G., Crespo-Herrera, L.A., Guzman, C., Huerta-Espino, J., Payne, T.S., Singh, R.P. In: Frontiers in Plant Science v. 9, art. 1971.
  3. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. 2019. Yibing Yuan, Cairns, J.E., Babu, R., Gowda, M., Makumbi, D., Magorokosho, C., Ao Zhang, Yubo Liu, Nan Wang, Zhuanfang Hao, San Vicente, F.M., Olsen, M., Prasanna, B.M., Yanli Lu, Zhang, X. In: Plant Breeding v. 9, art. 1919.
  4. Diversifying conservation agriculture and conventional tillage cropping systems to improve the wellbeing of smallholder farmers in Malawi. 2019. TerAvest, D., Wandschneider, P.R., Thierfelder, C., Reganold, J.P. In: Agricultural Systems v. 171, p. 23-35.
  5. Biofortified maize can improve quality protein intakes among young children in southern Ethiopia. 2019. Gunaratna, N.S., Moges, D., De Groote, H. Nutrients v. 11, no. 1, art. 192.

New publications: Shifting the mindset from “reaching many” to sustainable change

Over the last few years, the research and development communities have deemed “scaling” a priority in order to help contribute to and achieve the Sustainable Development Goals (SDGs). On smaller scales, there has been great success in reducing hunger and poverty, but it has rarely expanded to regional or national levels.

The International Maize and Wheat Improvement Center (CIMMYT) scaling head Lennart Woltering, in collaboration with colleagues Kate Fehlenberg and Bruno Gerard, as well as with international development experts Jan Ubels of SNV and Larry Cooley of Management Systems International, have been studying the process of scaling to understand why successful pilot projects are no guarantee for success at scale.

In a new paper published in Agricultural Systems, they argue that pilot projects are usually set up and managed in heavily controlled environments that do not reflect the reality at scale. Furthermore, confusion of what scaling is and how it can be executed often results in a narrow focus on solely reaching numbers.

“Counting household adoption of a practice at the end of a project is a poor metric of whether these people can and will sustain adoption after the project ends, let alone if adoption will reach others and actually contributes to improved livelihoods,” Woltering states.

According to Woltering, “This paper is a call for a new scaling narrative, from one that is short-term and piecemeal, to one that recognizes the systemic nature of problems and solutions to achieve sustainable change at scale.”

This requires a change in mindset, skills and ways of collaborating than what we currently consider normal. “Meaningful impact at scale hardly occurs within a project context, but when new ways of working are becoming ‘the new normal’ by a critical mass of actors ‘in the real world’,” Woltering explained.

The authors present a number of frameworks that help to assess the scalability of innovations and the design of scaling strategies from the onset of projects and how to systematically think through key elements needed for scaling success. This includes CIMMYT’s very own Scaling Scan. Reaching the SDGs requires scaling interventions to be seen as building blocks within a system of other initiatives with the same goals.

Read the full study:
Scaling – from “reaching many” to sustainable systems change at scale: A critical shift in mindset

Lennart Woltering discusses scaling strategies. (Photo: Maria Boa Alvarado /CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. 2019. Hassan, M.A., Mengjiao Yang, Rasheed, A., Guijun Yang, Reynolds, M.P., Xianchun Xia, Yonggui Xiao, He Zhonghu. In: Plant Science v. 282, p. 95-103.
  2. Characterization of TaCOMT genes associated with stem lignin content in common wheat and development of a gene-specific marker. 2019. Luping Fu, Yonggui Xiao, Yan Jun, Jindong Liu, Weie Wen, Yong Zhang, Xia Xian-Chun, He Zhonghu. In: Journal of Intregative Agriculture v. 18, no. 5, p. 939-947.
  3. Dissecting conserved cis-regulatory modules of Glu-1 promoters which confer the highly active endosperm-specific expression via stable wheat transformation. 2019. Jihu Li, Ke Wang, Genying Li, Yulian Li, Yong Zhang, Zhiyong Liu, Xingguo Ye, Xianchun Xia, He Zhonghu, Shuanghe Cao. In: The Crop Journal v. 2, no.1, p. 8-18.
  4. Effects of bran hydration and autoclaving on processing quality of Chinese steamed bread and noodles produced from whole grain wheat flour. 2019. Zhang Yan, Fengmei Gao, He Zhonghu. In: Cereal Chemistry v. 96, no. 1, p. 104-114.
  5. Occurrence and seasonal variation of the root lesion nematode Pratylenchus neglectus on cereals in Bolu, Turkey. 2019. Dababat, A.A., Senol Yildiz, Duman, N., Ciftci, V., Imren, M. In: Turkish Journal of Agriculture and Forestry v. 43, p. 21-27.

New publications: Agro-ecological options for fall armyworm management

Fall armyworm, a voracious pest now present in both Africa and Asia, has been predicted to cause up to $13 billion per year in crop losses in sub-Saharan Africa, threatening the livelihoods of millions of farmers throughout the region.

“In their haste to limit the damage caused by the pest, governments in affected regions may promote indiscriminate use of chemical pesticides,” say the authors of a recent study on fall armyworm management. “Aside from human health and environmental risks,” they explain, “these could undermine smallholder pest management strategies that depend largely on natural enemies.”

Agro-ecological approaches offer culturally appropriate, low-cost pest control strategies that can be easily integrated into existing efforts to improve smallholder incomes and resilience through sustainable intensification. Researchers suggest these should be promoted as a core component of integrated pest management programs in combination with crop breeding for pest resistance, classical biological control and selective use of safe pesticides.

However, the suitability of agro-ecological measures for reducing fall armyworm densities and impact must be carefully assessed across varied environmental and socioeconomic conditions before they can be proposed for wide-scale implementation.

To support this process, researchers at the International Maize and Wheat Improvement Center (CIMMYT) reviewed evidence for the efficacy of potential agro-ecological measures for controlling fall armyworm and other pests, consider the associated risks and draw attention to critical knowledge gaps. Findings from the Africa-wide study indicate that several measures can be adopted immediately, such as sustainable soil management, intercropping with appropriately selected companion plants and the diversification of farm environments through management of habitats at multiple spatial scales.

Read the full article “Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest” in the Journal of Environmental Management, Volume 243, 1 August 2019, pages 318-330.

Intercropping options for mitigating fall armyworm damage. (Photo: C. Thierfelder/CIMMYT)
Intercropping options for mitigating fall armyworm damage. (Photo: C. Thierfelder/CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. 2019. Rajiv Nandan, Vikram Singh, Sati Shankar Singh, Kumar, V., Kali Krishna Hazra, Chaitanya Prasad Nath, Poonia, S. P., Malik, R.K., Ranjan Bhattacharyya, McDonald, A. In: Geoderma v. 340, p. 104-114.
  2. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. 2019. Juliana, P., Montesinos-Lopez, O.A., Crossa, J., Mondal, S., Gonzalez-Perez, L., Poland, J., Huerta-Espino, J., Crespo-Herrera, L.A., Velu, G., Dreisigacker, S., Shrestha, S., Perez-Rodriguez, P., Pinto Espinosa, F., Singh, R.P. In: Theoretical and Applied Genetics v. 132, no. 1, p. 177-194.
  3. Modeling copy number variation in the genomic prediction of maize hybrids. 2019. Hottis Lyra, D., Galli, G., Couto Alves, F., Granato, I.S.C., Vidotti, M.S., Bandeira e Sousa, M., Morosini, J.S., Crossa, J., Fritsche-Neto, R. In: Theoretical and Applied Genetics v. 132, no. 1, p. 273-288.
  4. Soil dwelling beetle community response to tillage, fertilizer and weeding intensity in a sub-humid environment in Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Nhamo, N., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Applied Soil Ecology v. 135, p. 120-128.
  5. Two main stripe rust resistance genes identified in synthetic-derived wheat line soru#1. 2019. Ruiqi Zhang, Singh, R.P., Lillemo, M., Xinyao He., Randhawa, M.S., Huerta-Espino, J., Singh, P.K., Zhikang Li, Caixia Lan. In: Phytopathology v. 109, no. 1, p. 120-126.

New publications: Small businesses, potentially large impacts

A recent study by socioeconomists at the International Maize and Wheat Improvement Center (CIMMYT) in Bangladesh examined the role of fertilizer traders in influencing farmer decision-making on which fertilizer to apply and at what rate.

In developing countries, the emerging private sector is gradually filling the gap between supply and demand of agricultural extension services. In Bangladesh, most farmers still rely on either their own experience or that of their peers, but increasingly seek suggestions from traders when deciding on the amount and dose of fertilizer to be applied, due to the constraints associated with public agricultural extension services. These private fertilizer traders are increasingly prominent as information sources in the more accessible, intensive and commercially-oriented boro rice production systems.

Using primary data collected from 556 randomly selected farm households in Bangladesh, the study examined farmers’ chemical fertilizer use and the associated rice production efficiency based on different information sources that farmers rely on, such as fertilizer traders, government extension agents, and personal experience.

The research show that farmers who relied on traders statistically had a higher production efficiency than those who did not. These results suggest that fertilizer traders are in fact supplementing government agricultural extension activities by providing useful information which supports resource-poor farmers to mitigate market failures and achieve higher production efficiency.

Read the full article “Small businesses, potentially large impacts: the role of fertilizer traders as agricultural extension agents in Bangladesh” in the Journal of Agribusiness in Developing and Emerging Economies.

This study was supported by USAID through the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project, as well as USAID and Bill & Melinda Gates Foundation through the second phase of the CSISA project.

Farmers in Bangladesh practice traditional puddling of the soil before transplanting rice. (Photo: P. Wall/CIMMYT)
Farmers in Bangladesh practice traditional puddling of the soil before transplanting rice. (Photo: P. Wall/CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. Ten years of conservation agriculture in a rice–maize rotation of Eastern Gangetic Plains of India: yield trends, water productivity and economic profitability. 2019. Jat, R.K., Ravi Gopal Singh, Kumar, M., Jat, M.L., Parihar, C.M., Bijarniya, D., Sutaliya, J.M., Jat, M.K., Parihar M.D., Kakraliya Suresh Kumar, Gupta, R.K. In: Field Crops Research v. 232, p. 1-10.
  2. Exploiting genotype x environment x management interactions to enhance maize productivity in Ethiopia. 2019. Seyoum, S., Rachaputi, R., Fekybelu, S., Chauhan, Y., Prasanna, B.M. In: European Journal of Agronomy v. 103, p. 165-174.
  3. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: an update. 2019. Fischer, R.A., Moreno Ramos, O.H., Ortiz-Monasterio, I., Sayre, K.D. In: Field Crops Research v. 232, p. 95-105.

New publications: Biofortification of maize with provitamin A can reduce aflatoxin load

Maize infected with the fungus Aspergillus flavus, causing ear rot and producing aflatoxins. (Photo: George Mahuku/CIMMYT)
Maize infected with the fungus Aspergillus flavus, causing ear rot and producing aflatoxins. (Photo: George Mahuku/CIMMYT)

New research evidence could have significant implications for breeding approaches to combat harmful aflatoxin contamination in maize while simultaneously contributing to alleviate vitamin A deficiency. The study “Provitamin A Carotenoids in Grain Reduce Aflatoxin Contamination of Maize While Combating Vitamin A Deficiency” is the first published report to document how biofortification with provitamin A can contribute to reduce aflatoxin contamination in maize.

Aflatoxins are harmful compounds that are produced by the fungus Aspergillus flavus, which can be found in the soil, plants and grain of a variety of legumes and cereals including maize. Toxic to humans and animals, aflatoxins are associated with liver and other types of cancer, as well as with weakened immune systems that result in increased burden of disease, micronutrient deficiencies, and stunting or underweight development in children.

Efforts to breed maize varieties with resistance to aflatoxin contamination have proven difficult and elusive. Contamination of maize grain and products with aflatoxin is especially prevalent in low- and middle-income countries where monitoring and safety standards are inconsistently implemented.

Biofortification also serves to address “hidden hunger,” or micronutrient deficiency. Over two billion people are affected globally — they consume a sufficient amount of calories but lack essential micronutrients such as vitamins and minerals. Vitamin A deficiency specifically compromises the health of millions of maize consumers around the world, including large parts of sub-Saharan Africa.

Provitamin A-enriched maize is developed by increasing the concentration of carotenoids — the precursors of vitamin A — and powerful antioxidants that play important roles in reducing the production of aflatoxin by the fungus Aspergillus flavus. The relative ease of breeding for increased concentrations of carotenoids as compared to breeding for aflatoxin resistance in maize make this finding especially significant as part of a solution to aflatoxin contamination problems.

Breeding of provitamin A-enriched maize varieties is ongoing at the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), with the support of HarvestPlus. Several varieties trialed in sub-Saharan Africa have demonstrated their potential to benefit vitamin-deficient maize consumers.

The researchers highlight the potential in breeding maize with enhanced levels of carotenoids to yield the dual health benefits of reduced aflatoxin concentration in maize and reduced rates of vitamin A deficiency. This result is especially significant for countries where the health burdens of exposure to aflatoxin and prevalence of vitamin A deficiency converge with high rates of maize consumption.

Read the full study here: https://www.frontiersin.org/articles/10.3389/fpls.2019.00030/full

Financial support for this study was partially provided by HarvestPlus, a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. The CGIAR Research Program on Maize (MAIZE) also supported this research.

This research builds on the Ph.D. dissertation of Dr. Pattama Hannok at University of Wisconsin, Madison, WI, United States (Hannok, 2015).

New publications: Identifying common genetic bases for yield, biomass and radiation use efficiency in spring wheat

UAV_HiBAP2017

For plant scientists, increasing wheat yield potential is one of the most prevalent challenges of their work. One key strategy for increasing yield is to improve the plant’s ability to produce biomass through optimizing the conversion of solar radiation into plant structures and grain, called radiation use efficiency (RUE). Currently, the process is 30-50% less efficient in wheat than in maize.

International Maize and Wheat Improvement Center (CIMMYT) wheat physiologist Gemma Molero, in collaboration with Ryan Joynson and Anthony Hall of the Earlham Institute, has been studying the association of RUE related traits with molecular markers to identify specific genes associated with this trait.

In December 2018, her team published their results in the article “Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential,” shedding light on some of the genetic bases of biomass accumulation and RUE in a specially designed panel of lines that included material with diverse expression of RUE over the wheat crop cycle.

Over the course of two years, Molero and fellow researchers evaluated a panel of 150 elite spring wheat genotypes for 31 traits, looking for marker traits associated with yield and other “sink”-related traits, such as, grain number, grain weight and harvest index, along with ‘’source’’-related traits, such as RUE and biomass at various growth stages.  Many of the elite wheat lines that were tested encompass “exotic” material in their pedigree such as ancient wheat landraces and wheat wild relatives.

The scientists found that increases in both net rate of photosynthesis and RUE have the potential to make a large impact on wheat biomass, demonstrating that the use of exotic material is a valuable resource to help increase yield potential. This is the first time that a panel of elite wheat lines has been assembled using different sources of yield potential traits, and an important output from a large global endeavor to increase wheat yield, the International Wheat Yield Partnership (IWYP).

“We identified common genetic bases for yield, biomass and RUE for the first time. This has important implications for wheat researchers, breeders, geneticists, plant scientists and biologists,” says Molero.

The identification of molecular markers associated with the studied traits is a valuable tool for wheat improvement. Broadly speaking, the study opens the door for a series of important biological questions about the role of RUE in yield potential and in the ability to increase grain biomass.

In order to accommodate worldwide population increases and shifts in diet, wheat yield needs to double by 2050 — and genetic gains in wheat, specifically, must increase at a rate of 2.4 percent annually. Increasing biomass through the optimization of RUE along the wheat crop cycle can be an important piece in the puzzle to help meet this demand.

Read the full study here.

Check out other recent publications by CIMMYT researchers below:

  1. A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of toxigenic Fusarium temperatum in maize stalks and kernels. 2019. Liuying Shan, Hafiz Abdul Haseeb, Jun Zhang, Dandan Zhang, Jeffers, D.P., Xiaofeng Dai, Wei Guo. In: International Journal of Food Microbiology v. 291, p. 72-78.
  2. Adoption of drought tolerant maize varieties under rainfall stress in Malawi. 2019. Katengeza, S.P., Holden, S.T., Lunduka, R. In: Journal of Agricultural Economics v. 70, no. 1, p. 198-214.
  3. Alternative use of wheat land to implement a potential wheat holiday as wheat blast control : in search of feasible crops in Bangladesh. 2019. Mottaleb, K.A., Singh, P.K., Xinyao He, Akbar Hossain, Kruseman, G., Erenstein, O. In: Land Use Policy v. 82, p. 1-12.
  4. Business models of SMEs as a mechanism for scaling climate smart technologies : the case of Punjab, India. 2019. Groot, A.E., Bolt, J.S., Jat, H.S., Jat, M.L., Kumar, M., Agarwal, T., Blok, V. In: Journal of Cleaner Production v. 210, p. 1109-1119.
  5. Climate change impact and adaptation for wheat protein. 2019. Asseng, S., Martre, P., Maiorano, A., Rotter, R., O’Leary, G.J., Fitzgerald, G., Girousse, C., Motzo, R., Giunta, F., M. Ali Babar, Reynolds, M.P., Kheir, A.M.S., Thorburn, P.J., Waha, K., Ruane, A.C., Aggarwal, P.K., Mukhtar Ahmed, Balkovic, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., Challinor, A.J., De Sanctis, G., Dumont, B., Eyshi Rezaei, E., Fereres, E., Ferrise, R., Garcia-Vila, M., Gayler, S., Yujing Gao, Horan, H., Hoogenboom, G., Izaurralde, R.C., Jabloun, M., Jones, C.D., Kassie, B.T., Kersebaum, K.C., Klein, C., Koehler, A.K., Bing Liu, Minoli, S., Montesino San Martin, M., Muller, C., Soora Naresh Kumar, Nendel, C., Olesen, J.E., Palosuo, T., Porter, J.R., Priesack, E., Ripoche, D., Semenov, M.A., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Fulu Tao, Van der Velde, M., Wallach, D., Wang, E., Webber, H., Wolf, J., Liujun Xiao, Zhao Zhang, Zhigan Zhao, Yan Zhu, Ewert, F. In: Global Change Biology v. 25, no. 1, p. 155-173.
  6. Corrigendum to “greenhouse gas emissions from agricultural food production to supply Indian diets : implications for climate change mitigation” [agric. ecosyst. environ. 237 (2017) 234–241]. 2019. Vetter, S.H., Sapkota, T.B., Hillier, J., Stirling, C., Macdiarmid, J.I., Aleksandrowicz, L., Green, R., Joy, E.J.M., Dangour, A.D., Smith, P. In: Agriculture, Ecosystems and Environment v. 272, p. 83-85.
  7. Cost-effective opportunities for climate change mitigation in Indian agriculture. 2019. Sapkota, T.B., Vetter, S.H., Jat, M.L., Smita P.S. Sirohi, Shirsath, P.B., Singh, R., Jat, H.S., Smith, P., Hillier, J., Stirling, C. In: Science of the Total Environment v. 655, p. 1342-1354.
  8. Crop season planning tool : adjusting sowing decisions to reduce the risk of extreme weather events. 2019. Perondi, D., Fraisse, C.W., Staub, C.G., Cerbaro, V.A., Barreto, D.D., Pequeño, D.N.L., Mulvaney, M.J., Troy, P., Pavan, W.O. In: Computers and Electronics in Agriculture v. 156, p. 62-70.
  9. Microsatellite analysis and urediniospore dispersal simulations support the movement of Puccinia graminis f. sp. tritici from Southern Africa to Australia. 2019. Visser, B., Meyer, M., Park, R.F., Gilligan, C.A., Burgin, L., Hort, M.C., Hodson, D.P., Pretorius, Z.A. In: Phytopathology v. 109, no. 1, p. 133-144.
  10. Opportunities for wheat cultivars with superior straw quality traits targeting the semi-arid tropics. 2019. Joshi, A.K., Barma, N.C.D., Abdul Hakim, M., Kalappanavar, I.K., Vaishali Rudra Naik, Suma S. Biradar., Prasad, S.V.S., Singh, R.P., Blummel, M. Field Crops Research v. 231, p. 51-56.
  11. Spider community shift in response to farming practices in a sub-humid agroecosystem of southern Africa. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Nhamo, N., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Agriculture, Ecosystems and Environment v. 272, p. 237-245.