Skip to main content

Drought and heat tolerance in bread wheat landraces

Climate change is predicted to cause losses of more than 20% in agricultural production by 2050. With a growing global population, crops adapted to the effects of climate change, such as drought and heat, are necessary for the maintenance of productivity levels to meet the demand for food.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with scientists from the Universidad Autónoma Agraria Antonio Narro, set out to analyze bread wheat landrace traits against seven climactic variables: mean temperature, maximum temperature, precipitation, precipitation seasonality, heat index of mean temperature, heat index of maximum temperature, and drought index. The method used genome-environment associations (GEA) and environmental genome-wide association scans (EnvGWAS), which have traditionally been poorly applied in this type of research.

Based on a sample of 990 bread wheat landraces from the CIMMYT genebank, the study discovered proteins associated with tolerance to drought and heat. With these results, new genotypes with resistant alleles can be selected for breeding programs to produce resistant varieties adapted to extreme environments and the effects of climate change.

Read the study: Worldwide Selection Footprints for Drought and Heat in Bread Wheat (Triticum aestivum L.)

This work was implemented by CIMMYT as part of the Seeds of Discovery (SeeD) Initiative in collaboration with Universidad Autónoma Agraria Antonio Narro (UAAAN), made possible by the generous support of the MasAgro project funded by the Government of Mexico’s Secretariat of Agriculture and Rural Development (SADER). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of SADER.

Cover photo: Field hand collecting wheat in Ciudad Obregon, Mexico. (Photo: Peter Lowe/CIMMYT)

Gender-informed policies fundamental for climate change adaptation

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) are working to understand the gender gap in climate change adaptations and the causes behind this disparity.

Using data from 2,279 farm households in Ethiopia, the results show a significant gap due to the observable and unobservable different characteristics of households headed by men and women. For example, women are less likely to adopt climate change adaptation measures due to their workload in household chores. However, evidence suggests that when the gender gap shrinks, climate change adaptation can be improved in female-headed households by almost 19%.

The study determined that policies must tackle unobservable characteristics in order to address the gender gap. Short-term projects and long-term gender-informed policies are essential in creating equitable opportunities for all.

This crucial work will support developing countries to achieve targets set by the United Nations Sustainable Development Goals (SDGs) and farming households’ susceptibility to the risks of climate change.

Read the study: Gender and climate change adaptation: A case of Ethiopian farmers

Cover photo: Female farmer harvests green maize in Ethiopia. Women are essential to the agricultural sector, but the gender gap prevents them from embracing climate change adaptation measures. (Photo: Peter Lowe/CIMMYT)

Because error has a price

A systematic review conducted by a team of scientists from the International Maize and Wheat Improvement Center (CIMMYT) has revealed that many farmers around the world incorrectly identify their crop varieties, with significant impacts on their farming practices, yields, profits, and research.

The review, published this month in Outlook on Agriculture, brings together information from 23 published studies to sketch crop variety misclassification among farmers, its determinants, and the implications of classification errors on the farm and in research.

“We found that seven out of ten farmers incorrectly identified the grown variety when they were asked to identify the variety by its specific name. When farmers were asked if the grown variety was either improved or local, three out of ten farmers made incorrect classifications,” said Michael Euler, first author of the study and agricultural resource economist at CIMMYT.

Whether farmers correctly identify crop varieties has a knock-on effect on their farming practices, which in turn affects their crop yields and income. This can bleed into research, impacting experiments and evaluation studies of agricultural technologies and methods. For example, scientists might assign treatment and control groups based on incorrect farmer variety classification, potentially leading to biased estimates and data discrepancies.

“Varietal misidentification can lead to improper agronomic management, forgone farm revenue, and seed system malfunctioning. From a monitoring and evaluation perspective, the potential presence of bias in estimates due to varietal misclassification is problematic as it may mask the true costs and benefits of seed technologies,” said Euler.

Immature wheat seeds. Ciudad Obregon, Mexico 2017. (Photo: Peter Lowe/CIMMYT)

The study is the first systematic review of the use of DNA fingerprinting – a method that uses molecular markers to identify crop varieties – to assess how accurate farmers are in identifying their varieties and the impacts this has on seed markets, crop performance, farm profits, and research.

“The use of DNA fingerprinting to identify crop varieties in farmers’ fields has emerged only recently. The review of existing literature, nonetheless, shows its potential to strengthen the functioning and effectiveness of seed markets, supply chains, and extension services,” said Vijesh Krishna, co-author of the study and senior scientist at CIMMYT.

The results of the review show that cases of farmers misidentifying varieties are widespread, causing problems for farm productivity and profits, as well as research. The authors also found that DNA fingerprinting can shed light on what drives farmers to misidentify varieties and how they can minimize misclassification.

“Varietal misidentification is not only related to farmer and farm characteristics but also depends on the properties of the seed system through which seeds are obtained. We need more comprehensive modeling approaches to improve our understanding of the system-level drivers of farmer varietal misclassification,” said co-author and CIMMYT senior agricultural economist Moti Jaleta.

However, like most technologies, DNA fingerprinting has its limitations. It may not always be feasible in all settings, and the costs may offset the benefits in areas where formal seed markets are already well-functioning.

“DNA fingerprinting is considered a reliable method to accurately identify varieties grown by farmers and is increasingly seen as the ‘gold standard’ for varietal identification. However, it requires a high-quality reference library, a well-designed sampling strategy, and accurate tracking of plant samples from collection sites to the point of analysis,” said CIMMYT senior scientist and co-author David Hodson.

Based on the results of the analysis, the authors recommend integrating DNA fingerprinting into existing national data collection toolboxes to accurately estimate adoption and turnover rates of improved crop varieties and to evaluate existing genetic crop diversity on farms. Understanding and promoting genetic crop diversity are crucial steps for enhancing food security and increasing the climate and pest and disease resilience of crops.

Having accurate estimates of adoption and turnover rates of varieties, combined with seed supply system assessment, can also help researchers and decision-makers pinpoint any bottlenecks or loopholes in the “lab to farm” process, according to the authors.

“The review aims at helping researchers and policymakers strategize to more effectively assess the functioning and effectiveness of seed diffusion systems to deliver modern seeds to smallholders,” concluded Krishna.

Read the full study: Because error has a price: A systematic review of the applications of DNA fingerprinting for crop varietal identification

Cover photo: Farmer examines wheat seed. Ciudad Obregon, Mexico 2017. (Photo: Peter Lowe/CIMMYT)

Quality protein maize: a road ahead

Maize, along with wheat and rice, provides around 30% of food calories to more than 4.5 billion people in 94 developing countries. These statistics declare that maize is an important crop to ensure food and nutritional security for poor communities in Africa, Asia and Latin America.

Limited diversification in dietary food and higher per capita maize consumption indicates that a great proportion of the population in developing countries are lacking in essential nutrients like micronutrients and amino acids.

Rigorous efforts by International Maize and Wheat Improvement Center (CIMMYT) maize breeder Surinder K. Vasal and cereal chemist Evangelina Villegas in the early 1980s led to the development of an improved maize kernel with higher yield and vitreous appearance by combining the opaque-2 and genetic modifier systems by using backcrossing and recurrent selection. These efforts led to development of an improved maize known as quality protein maize (QPM).

QPM ensures the nutritional security of maize dependent communities. It is described as nutritionally superior maize with high lysine, tryptophan and leucine contents along with high biological value and high protein intake. QPM also has higher contents of non-zein protein (albumin, globulin and glutelin fractions), which are rich in lysine and tryptophan.

The development of QPM was comprised of a series of efforts across many decades to develop promising varieties. CIMMYT described the term QPM for maize genotypes with improved lysine and tryptophan contents and hard endosperm texture. Now, QPM is referred to maize genotypes with homozygous o2 alleles, increased lysine and tryptophan contents, and without harboring the negative pleiotropic effects of soft endosperm.

In recent years, CIMMYT has developed several QPM varieties across many countries with different genetic backgrounds. However, to fast track the deployment of QPM at scale, it needs a vibrant seed system in place and a viable business model which ensures an active engagement of seed producers, farmers and consumers.

This review article discusses the importance and timeline of various events in QPM development and dissemination, genetic basis and systems, breeding strategies, challenges and potential opportunities for QPM adoption. “We can consider the article as a compendium of QPM where it addresses historical background and scientific breakthroughs which will be useful to researchers, students and others who are looking for a comprehensive information on QPM,” said AbduRahman Beshir, CIMMYT’s senior scientist and maize seed systems specialist for Asia, who co-authored the publication.

Read the full study: Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption

Cover photo: Scientists have discovered that Quality Protein Maize (QPM) can mitigate the protein deficiency found in regular maize. (Credit: CIMMYT)

Special issue on gender research in agriculture highlights CIMMYT’s work on gender inclusivity

A new special issue on gender research in agriculture highlights nine influential papers published in the past three years on gender research on crop systems including maize.

The virtual special issue, published earlier this month in Outlook on Agriculture, features work by International Maize and Wheat Improvement Center (CIMMYT) scientists on gender inclusivity in maize systems in Africa and South Asia.

In the Global South, women contribute substantial labor to agriculture but continue to face barriers in accessing agricultural resources, tools and technologies and making decisions on farms.

Combatting gender inequality is crucial for increasing agricultural productivity and reducing global hunger and poverty and should be a goal in and of itself. Evidence suggests that if women in the Global South had access to the same productive resources as men, farm yields could rise by up to 30 percent, increasing total agricultural output by up to 4 percent and decreasing the number of hungry people around the world by up to 17 percent.

The latest virtual special issue includes a review of existing research by CIMMYT gender experts, exploring issues and options in supporting gender inclusivity through maize breeding and the current evidence of differences in male and female farmers’ preferences for maize traits and varieties. The team also identified key research priorities to encourage more gender-intentional maize breeding, including innovative methods to assess farmer preferences and increased focus in intrahousehold decision-making dynamics.

The issue also features a study by CIMMYT and Rothamsted Research researchers on differences in preferred maize traits and farming practices among female and male farmers in southern Africa. The team found that female plot managers and household heads were more likely to use different maize varieties and several different farming practices to male plot managers and household heads. Incorporating farming practices used by female farmers into selection by maize breeding teams would provide an immediate entry point for gender-intentionality.

Also included is a recent paper by CIMMYT gender researchers which outlines the evidence base for wheat trait preferences and uptake of new farming technologies among male and female smallholder farmers in Ethiopia and India. The team highlight the need for wheat improvement programs in Ethiopia and India to include more gender-sensitive technology development, evaluation and dissemination, covering gender differences in wheat trait preferences, technology adoption and associated decision-making and land-use changes, as well as economic and nutritional benefits.

In a study carried out in the Eastern Gangetic Plains of South Asia, CIMMYT scientists investigated how changes in weed management practices to zero tillage – a method which minimizes soil disturbance – affect gender roles. The team found that switching to zero tillage did not increase the burden of roles and responsibilities to women and saved households valuable time on the farm. The scientists also found that both women and men’s knowledge of weed management practices were balanced, showing that zero tillage has potential as a gender inclusive farming practice for agricultural development.

Also featured in the special issue is a study by CIMMYT experts investigating gender relations across the maize value chain in rural Mozambique. The team found that men were mostly responsible for marketing maize and making decisions at both the farm level and higher levels of the value chain. The researchers also found that cultural restrictions and gender differences in accessing transport excluded women from participating in markets.

Finally, the collection features a study authored by researchers from Tribhuvan University, Nepal and CIMMYT exploring the interaction between labour outmigration, changing gender roles and their effects on maize systems in rural Nepal. The scientists found that the remittance incomes sent home by migrants and raising farm animals increased maize yields. They further found that when women spent more time doing household chores, rearing farm animals and engaging in community activities, maize yields suffered, although any losses were offset by remittance incomes.

Read the study: Virtual Special Issue: Importance of a gender focus in agricultural research for development

Cover photo: Women make up a substantial part of the global agriculture workforce, but their role is often limited. (Credit: Apollo Habtamu/ILRI)

Weather data and crop disease simulations can power predictions of wheat blast outbreaks, new study shows

Cutting-edge models for crops and crop diseases, boosted by high-resolution climate datasets, could propel the development of early warning systems for wheat blast in Asia, helping to safeguard farmers’ grain supplies and livelihoods from this deadly and mysterious crop disease, according to a recent study by scientists at the International Maize and Wheat Improvement Center (CIMMYT).

Originally from the Americas, wheat blast shocked farmers and experts in 2016 by striking 15,000 hectares of Bangladesh wheat fields, laying waste to a third of the crops. The complex interactions of wheat and the fungus, Magnaporthe oryzae pathotype Triticum (MoT), which causes blast, are not fully understood. Few current wheat varieties carry genetic resistance to it and fungicides only partly control it. Warm temperatures and high humidity favor MoT spore production and spores can fly far on winds and high-altitude currents.

Mean potential wheat blast disease infections (NPI) across Asia, based on disease and crop infection model simulations using air temperature and humidity data from 1980-2019. Black dots represent wheat growing areas with presumably unsuitable climates for wheat blast. The x and y axes indicate longitude and latitude.

“Using a wheat blast infection model with data for Asia air temperatures and humidity during 1980-2019, we found high potential for blast on wheat crops in Bangladesh, Myanmar, and areas of India, whereas the cooler and drier weather in countries such as Afghanistan and Pakistan appear to render their wheat crops as unlikely for MoT establishment,” said Carlo Montes, a CIMMYT agricultural climatologist and first author of the paper, published in the International Journal of Biometeorology. “Our findings and approach are directly relevant for work to strengthen monitoring and forecasting tools for wheat blast and other crop diseases, as well as building farmers’ and agronomists’ disease control capacity.”

Montes emphasized the urgency of those efforts, noting that some 13 million hectares in South Asia are sown to wheat in rotation with rice and nearly all the region’s wheat varieties are susceptible to wheat blast.

Read the full study: Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: Results from a continental‑scale modeling approach

Cover photo: Researchers take part in a wheat blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)

After the flood

Heavy summer rains have led to severe floods in Pakistan, affecting over 800,000 hectares of land. Rural areas in the southern coastal provinces have been hardest hit with water levels remaining high throughout the Indus River system. This compounds the existing inequalities in livelihoods and represents significant humanitarian as well as agricultural impacts.

Due to flood damage, the estimated direct crop loss by economists stands at around $2.3 billion. Reports indicate that over 32 million people have been displaced by the flooding and urgent humanitarian needs include access to food, water, shelter, and public health.

The International Maize and Wheat Improvement Center (CIMMYT) strongly encourages enhanced investment in ensuring that our agricultural systems can adapt to as well as mitigate climate change impacts. In the current context, the development and distribution of improved wheat seed must be seen as a central pillar of flood response to secure wheat-dependent livelihoods.

No single drop, be it geo-political or climatic, will tip the balance on our global food system. But we must be increasingly aware of the compounding and amplifying effects of each crisis and develop strategies towards more sustainable agri-food systems.

Read the full study: One drop at a time: recent heavy rain has led to flooding in Pakistan, devastating agricultural land, and rural communities

Cover photo: Current areas of cropland and flood-affected crop land in Pakistan. This highlights the significant impacts of the flood waters, particularly on cropland in southern parts of the country. The boundaries shown on this map do not imply official endorsement or acceptance.

CIMMYT is prominent in global climate-food systems conversations, new study shows

Published in Nature Scientific Reports, a new study describes an innovative method to assess the reach and impacts of knowledge and partnerships created as part of the work of research-for-development organizations.

It uses text mining and the analysis of social networks and hyperlinks to draw inferences from publicly available digital sources, including institutional repositories, scientific databases, and social media.

“The method can uncover narratives, dynamics, and relationships that are hidden from traditional bibliometric analyses,” said Tek Sapkota, a cropping systems and climate change specialist at the International Maize and Wheat improvement Center (CIMMYT) and co-author or the study, which also involved the University of Coimbra, Portugal, and the University of Molise, Italy.

“Nearly 90 percent of CIMMYT’s research is related to climate change and its impact on food systems and vice-versa, so we assessed that to illustrate our new, web-based analytical framework. This novel approach can help research-for-development organizations to leverage online data and measure their impact.”

Read the full study: Digital artifacts reveal development and diffusion of climate research

Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)

Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Among the inputs needed for a healthy soil, nitrogen is unique because it originates from the atmosphere. How it moves from the air to the ground is governed in part by a process called biological nitrogen fixation (BNF), which is catalyzed by specific types of bacteria.

Nitrogen supply is frequently the second most limiting factor after water availability constraining crop growth and so there is great farmer demand for accessible sources of nitrogen, such as synthetic nitrogen in fertilizer. This increasing demand has continued as new cereal varieties with higher genetic yield potential are being released in efforts to feed the world’s growing population.

Currently, the primary source for nitrogen is synthetic, delivered through fertilizers. Synthetic nitrogen revolutionized cereal crop (e.g., wheat, maize, and rice) production by enhancing growth and grain yield as it eliminated the need to specifically allocate land for soil fertility rejuvenation during crop rotation. However, synthetic nitrogen is not very efficient, often causing excess application, which leads to deleterious forms, including ammonia, nitrate, and nitrogen oxides escaping into the surrounding ecosystem, resulting in a myriad of negative impacts on the environment and human health. Nitrogen loss from fertilizer is responsible for a nearly 20% increase in atmospheric nitrous oxide since the industrial revolution. Notably, more nitrogen from human activities, including agriculture, has been released to the environment than carbon dioxide during recent decades, leading climate scientists to consider the possibility that nitrogen might replace carbon as a prime driver of climate change.

New research co-authored by International Maize and Wheat Improvement Center (CIMMYT) scientists, published in Field Crops Research, posits that facilitating natural methods of gathering useable nitrogen in BNF can reduce the amount of synthetic nitrogen being used in global agriculture.

As agricultural systems become more intensive regarding inputs and outputs, synthetic nitrogen has become increasingly crucial, but there are still extensive areas in the world that cannot achieve food and nutrition security because of a lack of nitrogen.

“This, together with increasing and changing dietary demands, shows that the future demand for nitrogen will substantially grow to meet the anticipated population of 9.7 billion people by the middle of the century,” said J.K. Ladha, adjunct professor in the Department of Plant Sciences at University of California, Davis, and lead author of the study.

Before the synthetic nitrogen, the primary source of agricultural nitrogen was gathered through BNF as bacteria living underground that convert atmospheric nitrogen into nitrogen that can be utilized by crops. Therefore, legumes are often employed as a cover crop in rotating fields to replenish nitrogen stocks; their root systems are hospitable for these nitrogen producing bacteria to thrive.

“There are ways in which BNF could be a core component of efforts to build more sustainable and regenerative agroecosystems to meet nitrogen demand with lower environmental footprints,” said Timothy Krupnik, Senior System Agronomist at CIMMYT in Dhaka, Bangladesh.

Plant scientists have often hypothesized that the ultimate solution for solving the ever-growing nitrogen supply challenge is to confer cereals like wheat, maize, rice, with their own capacity for BNF. Recent breakthroughs in the genomics of BNF, as well as improvements in the understanding how legumes and nitrogen bacteria interact, have opened new avenues to tackle this problem much more systematically.

“Enabling cereal crops to capture their own nitrogen is a long-standing goal of plant biologists and is referred to as the holy grail of BNF research,” said P.M. Reddy, Senior Fellow at The Energy Research Institute, New Delhi. “The theory is that if cereal crops can assemble their own BNF system, the crop’s internal nitrogen supply and demand can be tightly regulated and synchronized.”

The study examined four methods currently being employed to establish systems within cereal crops to capture and use their own nitrogen, each with their advantages and limitations. One promising method involves identifying critical plant genes that perceive and transmit nitrogen-inducing signals in legumes. Integrating these signal genes into cereal crops might allow them to construct their own systems for BNF.

“Our research highlights how BNF will need to be a core component of efforts to build more sustainable agroecosystems,” said Mark Peoples, Honorary Fellow at The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia. “To be both productive and sustainable, future cereal cropping systems will need to better incorporate and leverage natural processes like BNF to mitigate the corrosive environmental effects of excess nitrogen leaking into our ecosystems.”

Besides the efforts to bring BNF to cereals, there are basic agronomic management tools that can shift focus from synthetic to BNF nitrogen.

“Encouraging more frequent use of legumes in crop rotation will increase diversification and the flow of key ecosystem services, and would also assist the long-term sustainability of cereal-based farming systems­,” said Krupnik.

Read the study: Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

Cover photo: A farmer in the Ara district, in India’s Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

The potential of conservation agriculture in increasing yield and tackling climate change

A multitude of research on the benefits of conservation agriculture in South Asia has predominantly focused on favorable environments where farmers have reliable access to energy supporting irrigation and inputs.

In this new publication, scientists from the International Maize and Wheat Improvement Center (CIMMYT) explore the performance of conservation agriculture in under-developed coastal environments in southern coastal Bangladesh over a period of three consecutive years, including under rainfed conditions and/or with limited application of irrigation.

Farmers calibrate their machines for strip tillage in communities participating in experiments. (Credit: Ranik Martin)

Responding to the identified research gap, this research tests the hypothesis that seasonally alternating tillage (SAT) practices that alternate between strip-tillage in the winter season for maize and conventional tillage (CT) prior to rice can reduce energy use, increase energy productivity, and reduce yield-scaled emissions while increasing or maintaining yield and profit, even under these challenging conditions.

Working with 35 farmers who managed experiments in partially irrigated and rainfed environments in southern coastal Bangladesh, researchers teamed up with farming communities to compare the full suite of conservation agriculture to SAT practices against CT and farmer’s own practices.

The research found that in these coastal environments, both conservation agriculture and SAT practices have the potential to increase cereal yields and energy productivity while reducing yield-scaled emissions, thereby enabling farmers even in challenging coastal environments to produce more while reducing energy use and mitigating greenhouse gas emissions.

However, in consideration of farmers’ aversion to the elimination of tillage in rice, the research suggests that adaptations in CA practices and seasonal tillage prior to rice may be a more practical fit for rice-maize systems managed by smallholders reluctant to eliminate tillage for rice in coastal Bangladesh.

This research gives implications for future research and development efforts to take into consideration farmers’ preferences or the trade-offs resulting from significant change to conservation agriculture management in otherwise fully tilled systems. It is also vital to integrate development efforts that focus not only on agronomic management, but also on building supportive value chains to improve availability and affordability of the inputs and farm machinery required to successfully establish crops with such practices.

Read the full study: Adapted Conservation Agriculture Practices Can Increase Energy Productivity and Lower Yield-Scaled Greenhouse Gas Emissions in Coastal Bangladesh

Cover photo: Long-term conservation agriculture in Rajshahi, Bangladesh. (Credit: CIMMYT/Sam Storr)

The power of data in improving conditions for female farmers

Despite women’s essential role in agrifood systems, their contribution can be overlooked, with resources instead targeted towards their male counterparts.

However, advancements in technology now allow scientists to generate rich datasets that can aid analysis of the situational factors impacting women farmers’ participation in extension training services.

These developments have enabled scientists from the International Maize and Wheat Improvement Center (CIMMYT), Michigan State University, and Agricultural Advisory Society, a local NGO, to understand barriers to access and recommend improvements that will benefit women in Bangladesh.

Using a large dataset of 131,073 farmers in Bangladesh, researchers worked to identify ways to tackle gender exclusion in extension training. Scientists used machine learning to understand preferences according to gender and applied optimization theory and identified actionable ways to increase the number of farmers participating in video- and multi-media mediated trainings, while simultaneously improving gender inclusivity in public training events.

The study discovered strong gender specific considerations, such as the training session’s day of the week and time and the gender of the trainer, which prevented women from or encouraged them to take part in educational events.

It also demonstrates the potential for big data to transform our understanding of unstructured and semi-structured data into statistically verifiable insights that can genuinely impact farmer’s lives. Optimizing women’s involvement in agrifood systems can additionally play an important part in efforts to enhance farm productivity, gender and social inclusion, and nutrition in Bangladesh and beyond.

Read the full study: Large-scale rollout of extension training in Bangladesh: Challenges and opportunities for gender-inclusive participation

Cover photo: Women in Bangladesh can benefit from improved inclusivity in extension training. (Credit: Sam Storr/CIMMYT)

Conservation agriculture practices revive saline and sodic soils

In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.

Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.

Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.

Read the full publication: Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems

Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)

Afghan wheat landrace shows promise for rust resistance

Rust pathogens are the most ubiquitous fungal pathogens that continue to pose a serious threat to wheat production. The preferred strategy to combat these diseases is through breeding wheat varieties with genetic resistance.

Landraces are a treasure trove of trait diversity, offer an excellent choice for the incorporation of new traits into breeding germplasm, and serve as a reservoir of genetic variations that can be used to mitigate current and future food challenges. Improving selection efficiency can be achieved through broadening the genetic base through using germplasm pool with trait diversity derived from landraces.

In a recent study, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used Afghan landrace KU3067 to unravel the genetic basis of resistance against Mexican races of leaf rust and stripe rust. The findings of this study not only showcase new genomic regions for rust resistance, but also are the first report of Lr67/Yr46 in landraces. This adult plant resistance (APR) gene confirms multi-pathogenic resistance to three rust diseases and to powdery mildew.

Using genotype sequencing and phenotyping, the authors also report an all-stage resistance gene for stripe rust on chromosome 7BL, temporarily designated as YrKU. The genetic dissection identified a total of six quantitative trait locus (QTL) conferring APR to leaf rust, and a further four QTL for stripe rust resistance.

Although use of landraces in wheat breeding has been practiced for a long time, it has been on a limited scale. This study represents a significant impact in breeding for biotic stresses, particularly in pest and disease resistance.

Read the full study here: Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace “KU3067”

Cover photo: Yellow rust screening takes place at a CIMMYT experimental station in Mexico. (Credit: Sridhar Bhavani/CIMMYT)

Farmers’ views on app usage for information sharing

Mobile phones are increasingly shaping the ways information is shared across industries, including in agriculture. The digitization of agricultural systems expedited by substantial efforts to narrow the digital divide and include smallholders means that data ownership and privacy issues are more relevant than ever.

The use of smartphone-based apps to improve accessibility to information for smallholder farmers has previously been under researched. In this publication, scientists from Ghent University and the International Maize and Wheat Improvement Center (CIMMYT) investigate incentives for smallholder farmers to use an agricultural advisory app in which data is shared using a designed discrete choice experiment.

Leveraging survey data from 392 farmers in Mexico, a conditional logit (CL) model was used to gain deeper insights into the preferences for attributes related to its usage. Groups and profiles were explored through a latent class (LC) model to investigate heterogeneity.

Farmers across ages were found to support the use of technology-based, site-specific extension services. The CL model results revealed farmers’ positive preference to receive support at first use and access to training, while they felt negatively towards sharing data with private actors. Meanwhile, the LC model demonstrates differences in preferences when farmers’ connectedness to the CIMMYT innovation hub and mastery approach goals variables are considered as a grouping variable. These variables also affect farmer preferences towards data sharing.

This study’s main contribution is in demonstrating the importance of nonfinancial incentives and influence of data sharing on farmer preferences. Through this improved understanding, the potential of technology in improving farmers’ welfare can be further realized.

Read the study here: How to Make a Smartphone-Based App for Agricultural Advice Attractive: Insights from a Choice Experiment in Mexico

Cover photo: María del Refugio Galván, a producer of barley from Irapuato, Guanajuato, Mexico, has been involved in the smartphone-app project. (Credit: Francisco Alarcón/CIMMYT)

Achieving sixty years of wheat yield increase

Achieving greater food security requires a continued increase in global wheat yields, which the developing world plays a central role in meeting. Newly published research covering 60 years of wheat yield trends in the Yaqui Valley, Mexico, provides insights into how farmers can increase yields to address this need.

By dividing the 60-year interval into three 20-year periods between 1960-2019 and correcting farm yield for the strong influence of inter-annual variation in January to March minimum temperature, scientists from Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the International Maize and Wheat Improvement Center (CIMMYT) have taken steps towards advancing the sustainability of the Valley’s wheat cropping system by studying farm yield for the irrigated spring wheat production environment.

Total yield increase, corrected for temperature and CO2 rise, relative to average yield in each period, was 4.17%, 0.47%, and 1.59% p.a. for 1960–79, 1980–99, and 2000–19, respectively. The breeding component, estimated by the increase in the Varietal Yield Index in farmers’ fields, rose at 0.97%, 0.49%, and 0.71% p.a., respectively. The remaining yield change (3.16, -0.02%, and 0.87% p.a., respectively) comprised the net effect of improved crop management (agronomic progress), plus that of off-farm changes.

In the first period, off-farm developments were bolstered by strong government financial support whereas developments in the second period were hindered by the breakdown of the traditional smallholder land system and withdrawal of government support. The final period experienced better prices and improved access to technical advice.

Wheat is likely to continue playing a dominant role in the Yaqui Valley for the next 20-year period, especially from potential yield increase through breeding. However, closing the yield gap is becoming more challenging due to fluctuations in energy price, goals to achieve net zero CO2 and environmental signals. The biophysical sustainability of the Valley’s wheat cropping system requires urgent actions through better fertilizer management, greater cropping diversity, integrated management of biotic threats, acceptance of no-till, residue retention and controlled traffic.

Lessons from the Yaqui Valley bear importance for global wheat security given that without area increase and new technologies, food security will increasingly depend on developing countries.

Read the full publication here: Sixty years of irrigated wheat yield increase in the Yaqui Valley of Mexico: Past drivers, prospects and sustainability

Cover photo: Workers sowing wheat into sorghum residue. (Credit: CIMMYT)