Skip to main content

In maize research, farmers’ priorities are our priorities

Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.

While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.

Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.

In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.

The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.

The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.

By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.

Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)

Drought and striga tolerance come out top for Kenyan farmers

In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.

The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.

“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.

“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”

The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”

Read the studies:

Maize variety preferences among smallholder farmers in Ethiopia: Implications for demand-led breeding and seed sector development

Building Resilient Maize Production Systems With Stress-Adapted Varieties: Farmers’ Priorities in Western Kenya

Cover photo: Roadside vendor sells roasted maize cobs to a customer in Timau, Kenya. (Photo: Peter Lowe/CIMMYT)

A sustainable solution to micronutrient deficiency

Zinc deficiency affects one third of the global population; vitamin A deficiency is a prevalent public health issue in many parts of sub-Saharan Africa and South Asia. This includes countries like Nepal, where alarming rates of micronutrient deficiency contribute to a host of health problems across different age groups, such as stunting, weakened immune systems, and increased maternal and child mortality.

In the absence of affordable options for dietary diversification, food fortification, or nutrient supplementation, crop biofortification remains one of the most sustainable solutions to reducing micronutrient deficiency in the developing world.

After a 2016 national micronutrient status survey highlighted the prevalence of zinc and vitamin A deficiency among rural communities in Nepal’s mountainous western provinces, a team of researchers from the Nepal Agricultural Research Council and the International Maize and Wheat Improvement Center (CIMMYT) proposed a study to assess the yield performance of zinc and provitamin A enriched maize varieties.

Focusing on the river basin area of Karnali Province — where maize is the staple food crop for most people – they conducted two different field trials using an alpha lattice design to identify zinc and provitamin A biofortified maize genotypes consistent and competitive in performance over the contrasting seasons of February to July and August to February.

The study, recently published in Plants, compared the performance of newly introduced maize genotypes with local varieties, focusing on overall agro-morphology, yield, and micronutrient content. In addition to recording higher levels of kernel zinc and total carotenoid, it found that several of the provitamin A and zinc biofortified genotypes exhibited greater yield consistency across different environments compared to the widely grown normal maize varieties.

The results suggest that these genotypes could be effective tools in combatting micronutrient deficiency in the area, thus reducing hidden hunger, as well as enhancing feed nutrient value for the poultry sector, where micronutrient rich maize is highly desired.

“One in three children under the age of five in Nepal and half of the children in the study area are undernourished. Introduction and dissemination of biofortified maize seeds and varieties will help to mitigate the intricate web of food and nutritional insecurity, especially among women and children,” said AbduRahman Beshir, CIMMYT’s seed systems specialist for Asia and the co-author of the publication. Strengthening such products development initiatives and enhancing quality seed delivery pathways will foster sustainable production and value chains of biofortified crops, added Beshir.

Read the study: Zinc and Provitamin A Biofortified Maize Genotypes Exhibited Potent to Reduce Hidden-Hunger in Nepal

Cover photo: Farm worker Bharat Saud gathers maize as it comes out of a shelling machine powered by 4WT in Rambasti, Kanchanpur, Nepal. (Photo: Peter Lowe/CIMMYT)

Improved nitrogen use can boost tomato yields

Nitrogen use efficiency (NUE) and tomato production in Nepal have both been negatively affected by universal fertilizer recommendations that do not consider the soil type, nutrient status, or climate and crop management practices. Improved use of appropriate levels of nitrogen (N) fertilizer, application time, and application methods could increase yields and reduce environmental impact.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Nepal Agricultural Research Council (NARC), the National Soil Science Research Center (NSSRC), and the International Fertilizer Development Center completed a study to identify the optimum N rate and application method to increase NUE and tomato crop yield as part of the Nepal Seed and Fertilizer (NSAF) project.

Randomized trials with nine treatments across five districts included the omission of N, phosphorus (P) and potassium (K) (N0, P0, K0), variable N rates of 100, 150, 200 and 250 kg ha−1 (N-100, N-150, N-200 and N-250), use of urea briquettes (UB) with deep placement (UBN-150) and a control (CK).

Considering its anticipated higher NUE, N input in UB was reduced from the recommend N rate of 200 kg ha−1 by a quarter. N was revealed as the most limiting plant nutrient based on yield responses from an NPK omission plot.

Tomato yield was increased by 27 percent, 35 percent, 43 percent, and 27 percent over N0 with respective applications of fertilizer at N-100, N-150, N-200 and N-250. Yields responded quadratically to the added N fertilizers, with optimum rates ranging from 150 to 200 kg ha−1.

UBN-150 produced a similar yield to the recommended rate of N-200 and significantly increased tomato yield by 12% over N-150.

At N-100, scientists observed the highest partial factor productivity of N (PFPN), while at N-200, the highest agronomic efficiency of N (AEN) was recorded.

Results suggest that there is opportunity to develop more efficient N fertilization strategies for Nepal, leading to benefits of higher yields and less environmental damage.

Read the study: Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal

Cover photo: Generic, non-specific recommendations for fertilizer use in Nepal have affected the production of tomato crops. (Photo: Dilli Prasad Chalise/CIMMYT)

Sustainability of rice production in the Northwestern Indo-Gangetic Plains

Rice is a vital crop for India, contributing around 30 percent of calories consumed in the country and providing a crucial source of income from exports. However, due to climate change and conversion of land for other uses, rice growing area in India is projected to decline by 6-7 million hectares (ha) by 2050, while production must increase by 1.1% annually over the next four decades to achieve rice self-sufficiency for the country.

As there is limited opportunity to horizontal expansion of cultivable land, the predicted increase in demand must be met through increasing rice yields in regions with low yields and maintaining existing yields in high-yielding areas. This must be achieved using sustainable farming practices: currently, 90 percent of total greenhouse gas (GHG) emissions of monsoon season cropped cereals in India is caused by rice cultivation, as is 80 percent of the energy and water used in agriculture.

Scientists found that in the Northwestern Indo-Gangetic Plains (IGP) of India, yield gaps were small (ca. 2.7 t ha−1, or 20% of potential yield) mainly because of intensive production system with high input use. Using management data from 4,107 individual farmer fields, the study highlighted scope to reduce nitrogen (N) inputs without compromising yields in this intensive production system.

Findings show evidence of and methodology for the quantification of yield gaps and approaches that can improve resource-use efficiency, providing a possible alternative approach that could be reproduced elsewhere for other crops and contexts. It is recommended that future research focuses on ways to reduce other production inputs without compromising the yields in such intensive production systems.

This paper is the result of Harishankar Nayak’s PhD training in collaboration with the Indian Council of Agricultural Research (ICAR) jointly supervised by the researchers at the Indian Agricultural Research Institute (IARI) and International Maize and Wheat Improvement Center (CIMMYT).

Read the study: Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers’ practices

Cover photo: A farmer stands in his rice field at a Climate-Smart Village in the Vaishali district of Bihar, India, as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). (Photo: DK Singh/CIMMYT)

How does physical disturbance of soil impact carbon mineralization?

Higher levels of potential carbon mineralization (Cmin) in soil indicate that the soil is healthier. Many reports indicate that Cmin in agricultural soils increases with reductions in soil disturbance through tillage, but the mechanisms driving these increases are not well understood.

The International Maize and Wheat Improvement Center (CIMMYT) has established a network of research platforms in Mexico, where collaborating scientists evaluate conservation agriculture and other sustainable technologies to generate data on how to improve local production systems. This network of research trials, many of which have over five years in operation, allowed us to participate with Mexican sites in the North American Project to Evaluate Soil Health Measurements (NAPESHM). This project aimed to identify widely applicable soil health indicators and evaluate the effects of sustainable practices on soil health in 124 long-term experiments across Canada, the United States of America, and Mexico.

Experienced field teams from CIMMYT sampled the soils from 16 experiments in Mexico, which were then analyzed by the Soil Health Institute for this study. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected, with results demonstrating that microbial (archaeal and bacterial) sensitivity to physical disturbance is influenced by cropping system, the intensity of the disturbance, and soil pH.

A subset of 28 percent of amplicon sequence variants were enriched in soils managed with minimal disturbance. These enriched sequences, which were important in modeling Cmin, were connected to organisms that produce extracellular polymeric substances and contain metabolic strategies suited for tolerating environmental stressors.

The unique sampling design of this study – analyzing across a variety of agricultural soils and climate – allows to evaluate management impacts on standardized measures of soil microbial activity. Additionally, understanding the microbial drivers of soil health indicators like Cmin can help with the interpretation of those indicators and ultimately the understanding of how to better manage soils.

Read the study: Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

Cover photo: Soil sampling in the Tlaltizapan station, Mexico in March 2019. (Photo: Simon Fonteyne/CIMMYT)

Using ENM principles to preserve soil health

In a new Frontiers publication, scientists from the International Maize and Wheat Improvement Center (CIMMYT) outline how to achieve an ecologically based approach to sustainable management of soil fertility, particularly for smallholders.

What is ecological nutrient management (ENM)?

Across the globe, smallholder farming communities only have limited resources to improve their financial and food security, and soil degradation is common. Ecological nutrient management (ENM), an agroecological approach to managing the biogeochemical cycles that regulate soil ecosystem services and soil fertility, can prevent degradation and preserve soil health.

Five principles guide ENM strategies:

  • Building soil organic matter and other nutrient reserves.
  • Minimizing the size of nitrogen (N) and phosphorus (P) pools that are most vulnerable to loss.
  • Maximize agroecosystem capacity to use soluble, inorganic N and P.
  • Use functional biodiversity to maximize presence of growing plants, biologically fix nitrogen and access sparingly soluble phosphorus.
  • Construct agroecosystem and field scale mass balances to track net nutrient flows over multiple growing seasons.
At the ICRISAT headquarters in Patencheru, India, M.L. Jat and Sieg Snapp stand in front on pigeonpea (Cajanus cajan) varieties, a semi-perennial legume that fixes nitrogen and solubilizes phosphorus for greater nutrient efficiency while building soil health. (Photo: Alison Laing/CSIRO)

Using functionally designed polycultures, diversified rotations, reduced fallow periods, increased reliance on legumes, integrated crop-livestock production, and use of a variety of soil amendments exemplify how ENM works in practice. A key principle is to underpin agroecosystem resilience through the promotion of soil organic matter accrual and restoration of soil function.

Strategic increases of spatial and temporal plant species diversity are used, that meet farmer requirements. This often involves perennial or semi-perennial bushes and vines that provide food, fuel and fodder while restoring soil fertility. ENM long-term management systems can increase yields, yield stability, profitability, and food security, thus addressing a range of smallholder needs.

Read the study: Advancing the science and practice of ecological nutrient management for smallholder farmers

Cover photo: A maize-bean intercrop that exemplifies the ENM approach, taken at CIMMYT’s Chiapas Hub, a long-term field experiment. (Photo: Sieg Snapp/CIMMYT)

Participatory action research identifies solutions for improved seed storage in Bangladesh

Traditional and alternative seed storage methods have been compared in a participatory household trial co-designed by the International Maize and Wheat Improvement Center (CIMMYT) and smallholder farmers in Bangladesh, demonstrating how farmers can be involved in agricultural research.

In the summer monsoon season preceding planting in the winter, farmers typically use low-density polyethylene (LDPE) bags contained within woven polypropylene bags to store their wheat seed. Seed quality typically deteriorates over the monsoon as a result of increased seed moisture and pests that are associated with high humidity and temperature.

After initially being consulted by survey and detailed focus group interactions on the design of the trial, 80 wheat farming households participated in a 30-week action research process by conducting trials to compare seed storage methods. This included comparing hermetic SuperGrainbags® (Premium RZ) against LDPE bags, both with and without the addition of dried neem tree leaves (Azadirachta indica), the latter representing a common method used by farmers in Bangladesh to improved stored seed.

Results of the trials demonstrated that seed germination and seedling coleoptile length were greater, and that seed moisture was maintained at levels close to before storage in SuperGrainbags® compared to LDPE bags. The use of neem however had no effect on these factors.

Furthermore, hermetic bags were more effective in lessening seed damage caused during the storage process, but neem slightly reduced damage rates for seeds stored using traditional methods compared to SuperGrainbags®.

In relation to diseases and pests, SuperGrainbags® suppressed Coleopteran pests and blackspot, while storing neem alongside the seeds in LDPE bags had a slight additional pest suppressive effect.

Scoring by both men and women farmers revealed their preference for SuperGrainbags® hermetic storage. The study recommends actions for value chain development to increase farmers’ access to improved hermetic storage options at low cost.

Read the study: Performance of a hermetic device and neem (Azadirachta indica) in storing wheat seed: Evidence from participatory household trials in central Bangladesh

Cover photo: A female farmer in a field of wheat in Bangladesh, where participatory research is helping farmers adapt to better ways of storing seeds. (Photo: Ranak Martin/CIMMYT)

Plant breeding must adapt to climate change, finds study

Breeding is a vital part of the global agrifood system, enabling scientists to adapt crops to developing environmental factors, support improved crop management, and inform policy interventions on global food production. The challenge to crop breeding increases every year, as farmers experience more of the effects of climate change, while the population and food demand continue to rise.

Research by the International Maize and Wheat Improvement Center (CIMMYT) has determined that climate change is affecting the objectives, efficiency, and genetic gains of current plant breeding, causing limitations to the breeding approach of the next generation.

The study found that climate change necessitates a faster breeding cycle and must drive changes in breeding objectives by putting climate resilience as the top priority.

“The risk of multiple crop failure due to climate change is very real. Breeding must become more deterministic in terms of adaption if we are to avert food price-hikes, hunger, and social unrest,” said Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at CIMMYT.

Challenges in developing climate-ready crops originate from the paradox between urgent breeding requirements prompted by climate change and the limited understanding of how different genotypes interact with the climates. Integrating multiple disciplines and technologies including genotyping, phenotyping, and envirotyping can contribute to the development and delivery of climate-adapted crops in a shorter timeframe.

Read the study: Climate change challenges plant breeding

Cover photo: Wheat growing at the Xuchang Henan experimental station, China. (Photo: Zhiqiang He/CIMMYT)

Partnership approach to maize development praised in new study

Using data from 1995-2015, an empirical study from the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), led by Vijesh Krishna, CIMMYT Lead Adoption – Impact Economist, has estimated the economic benefits of new varieties in 18 major maize-producing countries in sub-Saharan Africa.

Kevin Pixley, Deputy Director General for Research (Breeding and Genetics), a.i., and Director of the Genetic Resources Program, said, “This was not easy due to the challenges of gathering and analyzing complex data, but it’s a very important milestone for CIMMYT. Peer review in a highly respected journal is a gold standard that gives external critique and endorsement to the impact assessment methods used and estimates reported for CIMMYT and IITA’s work with partners in Africa.”

Around 60 percent of the 1,345 maize varieties released in this twenty-year period had a known CGIAR parentage.

Approximately 34 percent of the total maize area in 2015 was cultivated with CGIAR-related maize varieties from 1995 onwards, equivalent to 9.5 million hectares (ha); 13 percent of the maize area was under CGIAR-related varieties released before 1995.

The new maize varieties hold an economic benefit for the region, with an estimated value of US $1.1-1.6 billion in 2015 equally attributed to CGIAR, public-sector national research and extension programs, and private sector partners. With maximum annual investment in CGIAR maize breeding sitting at US $30 million, the estimated benefit-cost ratio for investment was between 12:1-17:1, depending on the underlying assumptions.

“This paper is a valuable contribution to literature on impact assessment, highlighting the real challenges and approaches to quantify impact of work that is a collaboration among many,” continued Pixley. “Both the methodologies and impact estimates will be valuable to researchers and funders of plant breeding programs.”

Read the study: Impact of CGIAR maize germplasm in Sub-Saharan Africa

Cover photo: Farmer Chana Filimoni harvesting maize in his field in Chakwawa village, Salima District, Malawi. (Photo: Peter Lowe/CIMMYT)

Study explores how to reduce GHG emissions while supporting food security through nitrogen management

Use of fertilizer nitrogen (N) in farming is essential for food production but also contributes to climate crisis through GHG emissions. Synthetic nitrogen fertilizer accounts for 2.4 percent of global emissions, while its supply chain accounts for 21.5% of the annual direct emissions from agriculture.

One potential solution for developing appropriate N management strategies is yield-scaled nitrous oxide (N₂O) emission (YSNE), which has been recognized for its potential to balance food security and mitigate emissions. Improving understanding and use of YSNE under various field conditions is an essential part of widespread adoption of this approach.

Scientist working in the Sustainable Agrifood Systems (SAS) program at the International Maize and Wheat Improvement Center (CIMMYT) together with Hawassa University, Ethiopia and Landcare Research, New Zealand  assessed the relationship between N inputs and YSNE with published results and identified response patterns of YSNE to N inputs based on 1,800 observations from maize, rice and wheat crops at global scale.

Type 1 measures: increasing yields without changing N₂O emissions. Type 2 measures: reducing N₂O emissions without changing yields. Type 3 measures: both increasing yields and reducing N₂O emissions. (Photo: CIMMYT)

A positive relationship between N inputs and YSNE was evidenced in more than 60% of the dataset across all three crops, while a small proportion had an optimum N rate that minimized YSNE. Type of crop, annual mean temperature and soil N content affected the background yield-scale N₂O emission with higher soil temperature and N content leading to higher BYSNE. The analyses suggest that YSNE can be reduced by increasing yields, by reducing N₂O emissions and both by increasing yields and reducing N₂O emissions. The results of this study suggest appropriate N management strategies, yields, and N2O emissions.

Read the full article: Understanding response of yield-scaled N₂O emissions to nitrogen input: Data synthesis and introducing new concepts of background yield-scaled N₂O emissions and N₂O emission-yield curve

Cover photo: Woman using spreader for fertilizer application in India. (Photo: Wasim Iftikar/CSISA)

Analyzing 25 years of maize supply and demand in the Global South

Over the next 10 years, maize is due to become the most widely grown and traded crop globally and is already the cereal with the highest production volume. Its versatility offers multiple purposes – as a livestock feed in both developed and developing economies, as a key component of human diets in several low- and middle-income countries in sub-Saharan Africa, Latin America and Asia, and for an array of non-food uses worldwide.

To analyze the changes in the supply and demand for maize in the last 25 years, scientists at the International Maize and Wheat Improvement Center (CIMMYT) conducted a review of maize production, consumption, and international trade.

The study primarily focused on the Global South, where intensive work is being done to transform the agrifood systems in which maize plays a key role. Through scientific advancements over time, maize yields have increased, although heterogeneously, while the area under cultivation of maize has also expanded due to sharply growing demand.

Research determined that this transformation offers opportunities for investment in maize research and development (R&D) to determine ways that production and productivity can be significantly improved without expanding maize area or creating negative impacts on the environment.

Read the study: Global maize production, consumption and trade: trends and R&D implications

Cover photo: Maize diversity in Tlaxcala, Mexico. (Photo: Thomas Lumpkin/CIMMYT)

Research shows impact of root and crown rot in wheat

Kazakhstan is the ninth largest country in the world and the fourteenth largest producer of wheat; in 2021 alone, the country produced 14.3 million tons (t) of wheat on 12.1 million hectares (ha). Despite this impressive figure, wheat yield in the country falls below average at 1172.5 t/ha compared to 3474.4 t/ha globally.

Research into wheat diseases in Kazakhstan has primarily revolved around airborne fungal foliar diseases, such as stem rust, leaf rust and stripe rust, which can be devastating for farmers and their crops. However, the effects of fungi relating to wheat root and crown root were yet to be examined – these diseases affect yields, stands and grain quality due to infections that cause damping-off, blight, necrosis, and dry rotting.

Using plant samples taken during the 2019 growing season, scientists from the International Maize and Wheat Improvement Center (CIMMYT) conducted a quantitative survey to determine the distribution of this fungi. Using morphological and molecular tools on 1,221 samples from 65 sites across the central, eastern, and southeastern region, scientists found that Bipolaris sorokiniana and Fusarium acuminatum were the most predominant fungal species isolated.

In total, 74 isolates from 16 species were tested, revealing that F. culmorum and F. pseudograminearum, B. sorokinaiana, Fusarium sp., R. solani, F. redolens, C. spicifera, C. inaequalis, and N. orvzae were virulent fungi.

Results show the diverse spectrum of pathogenic fungal species linked to wheat crown and root rot in Kazakhstan and is highly likely to be the first report from the country on the presence of F. seudograminearumFusarium sp., Cspicifera, and Cinaequalis.

With this new data, scientists can develop mitigations to prevent crop loss and improve wheat yield across Kazakhstan.

Read the study: Fungal Pathogens Associated with Crown and Root Rot of Wheat in Central, Eastern, and Southeastern Kazakhstan

Cover photo: The scientists from Turkey researching root and crown rot in Kazakhstani wheat: Abdelfattah A. Dababat (CIMMYT), Mustafa Imren (Bolu Abant Izzet Baysal University), Göksel Özer (Bolu Abant Izzet Baysal University) and Rauan Zhapayev. (Photo: Abdelfattah A. Dababat/CIMMYT)

Tackling wheat price rises instigated by conflict

The conflict between Russia and Ukraine undoubtedly impacts food security, as these two countries are responsible for more than a quarter of wheat traded globally. Developing countries that rely heavily on wheat imports are most at risk from this supply disruption.

Set against an existing backdrop of food insecurity and increasing poverty, the conflict exacerbates present challenges. The United Nations Food and Agriculture Organization (FAO) predicts that a further 11 to 19 million people will be experiencing chronic hunger by 2023, on top of the existing 193 million people facing food insecurity, and at least 47 countries are expected to fall short of the Zero Hunger target, one of the UN Sustainable Development Goals (SDGs).

In a study at the International Maize and Wheat Improvement Center (CIMMYT), scientists theorized that the domestic price of wheat is determined by the international price. Their hypothesis also supposed that wheat production is constant and that no significant change in wheat consumption habits is expected in the foreseeable future.

Schematic diagram on the relationship between export-import price, producer price, and wheat consumption.

Scientists discovered that a 1 percent decrease in the global wheat trade could increase the producers’ price by 1.1 percent in the countries sampled. Furthermore, a 1 percent increase in the producers’ price could reduce annual per capita wheat consumption by 0.59 percent, daily calorie intake by 0.54 percent and protein intake by 0.64 percent. A 50% reduction in Russian and Ukrainian wheat exports could increase prices by 15 percent, leading to an 8% reduction in wheat consumption and dietary energy intake.

Rising costs of staple foods such as wheat can lead to violence and social unrest, as witnessed in 2007-11. It is therefore vital to ensure that import-dependent, resource-poor countries are supported to address their precarious food security. Steady public funding, investment in research, and enhanced production in wheat-growing nations can play an integral role in achieving a solution. In the long-term, closing the yield gap through research and investment, particularly in Africa, will lead towards self-sufficiency in wheat in Africa, contributing towards overall food security across the continent.

Read the study: Potential impacts of Ukraine-Russia armed conflict on global wheat food security: A quantitative exploration

This study was financially supported by the CGIAR Initiative on Foresight and Metrics for the Transformation of Food, Land and Water Systems (FMI). We would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund.

Cover photo: Scientists from CIMMYT’s Sustainable Agrifood Systems (SAS) program in wheat fields, Ethiopia. (Photo: Rabe Yahaya/CIMMYT)

Increasing yield gain in Afghanistan

Faced with climate change and having to keep pace in the race to feed the world’s growing population, farmers of staple crops like wheat are under pressure to constantly increase yield per hectare.

Increasing yield gains is especially important in Afghanistan, where per capita consumption of wheat is nearly three times more than the global average and wheat accounts for up to 60% of daily caloric intake of the average Afghan citizen.

The International Maize and Wheat Improvement Center (CIMMYT) develops and distributes improved seed targeted toward diverse wheat growing regions in the developing world, including Afghanistan, a net importer of wheat. A study by CIMMYT scientists, published in Crop Science, measured yield gain and improvement in a variety of traits of CIMMYT developed varieties compared against local wheat, over a 14-year period. The results showed the CIMMYT varieties confer yield gains, contributing to an increase in Afghanistan’s wheat productivity.

In terms of yield, the CIMMYT varieties showed an increase of 123 kilograms per hectare (kg/ha) over the time interval studied, compared to 107 kg/ha for local varieties.

“This study shows continual increases in yield from CIMMYT varieties across Afghanistan,” said lead author Rajiv Sharma. “This shows the potential of genetically improved germplasm to increase yields, strengthen resistance to diseases and improve other important traits.”

Researchers also examined specific traits, like days to heading and overall plant height. Days to heading refers to the number of days from planting to when the plant is ready to be harvested and overall plant height is the highest measurement a plant reaches. This is important because if a wheat plant grows too high, it will lodge (fall over) under its own weight, rendering it non-harvestable.

Across the CIMMYT varieties there was a 1.8 day per year reduction in days to heading. This is a positive sign for Afghan wheat production as research has shown that crop durations will be reduced because of climate-associated stresses. Shorter crop duration also reduces the cost of crop production, since shorter crop duration reduces the requirements for water, labor, fertilizer, and other resources.

In terms of plant height, the CIMMTY varieties showed a gain of 0.77 cm per year. Although a negative correlation between plant height and grain yield has been reported in other studies, this is not the case in Afghanistan. Increased plant height is often an indicator of higher biomass (the amount of aboveground volume including leaves and stems which might fall to the ground) which drives higher yield, provided the plant does not lodge. Higher biomass is also required in many developing countries, including Afghanistan, to produce straw that is used dry fodder feed for livestock. This appears to result from selections to increase overall production, mitigate negative impacts and fulfil the changing preference of farmers.

“This kind of evaluation is important in determining the efficacy of CIMMYT’s efforts to provide  improved wheat varieties tailored to diverse production environments around the world,” said Alison Bentley, co-author of the study and director of CIMMYT’s Global Wheat Program. “It also makes a strong case for continued investment in plant breeding and for the collaboration between Afghanistan and CIMMYT.”

Read the study: Plant breeding increases spring wheat yield potential in Afghanistan

Cover photo: Farmers working in a field in the Shibar Valley in Bamian province, Afghanistan. (Adam Ferguson/The New York Times)

Technology addresses gender inequality in wheat farming

Despite the development of improved wheat varieties with increased productivity, farming systems in the Global South are still marred by inequitable access based on gender and other social characteristics.

At the International Maize and Wheat Improvement Center (CIMMYT), scientists present a case for wheat varietal improvement programs to include gender-sensitive technology development, dissemination and evaluation in order to remove barriers for women, poor and marginalized farmers.

Focusing on Ethiopia and India due to their large wheat economies and challenges with inequality, researchers assessed the barriers preventing male and female smallholders from using modern wheat varieties. Issues covered through evaluation could include wheat varietal trait preferences, adoption of technology, and decision-making and labor-use changes associated with new varieties.

Concluding the paper is the argument that institutional arrangements in research and development (R&D) programs must transform to address gender equity and inclusivity in wheat improvement.

Read the study: Gender, wheat trait preferences, and innovation uptake: Lessons from Ethiopia and India

Cover photo: Rural farmers associated with JEEViKa-Bihar attend a public wheat harvest activity organized by the Cereal Systems in South Asia (CSISA) project in Nagwa village, India, to encourage conservation agriculture practices in the region. (Photo: Nima Chodon/CIMMYT)