Skip to main content

New Publications: With climate change, pests likely to spread to new agricultural areas

Wheat showing the "white head" condition typically produced by stem-boring insects, in this case caused by wheat stem maggot (Meromyza americana). Photo: CIMMYT
Wheat showing the “white head” condition typically produced by stem-boring insects, in this case caused by wheat stem maggot (Meromyza americana). Photo: CIMMYT

EL BATAN, Mexico – Agriculture faces many threats from climate change – drought, heat, irregular weather among other environmental challenges. However, the spread of insects to new regions as the world’s climate changes is an additional threat to farmers globally, especially in Africa where climate-change effects are projected to be some of the most severe in the world.

Most agricultural pests are expected to respond to climate change. To predict what areas will face the greatest threat of the spread of pests, scientists from The International Maize and Wheat Improvement Center (CIMMYT) modeled the current and future habitat suitability under changing climatic conditions for Tuta absolutaCeratitis cosyra and Bactrocera invadens, three important insect pests that are common across some parts of Africa and responsible for immense agricultural losses.

The scientists found that habitat suitability for the three insect pests is partially increasing across the continent, especially in those areas already overlapping with or close to most suitable sites under current climate conditions. The three pests are likely to have an impact on productive agricultural areas under future climatic conditions.

Read the full study “Future risks of pest species under changing climatic conditions,” and check out the other latest publications from CIMMYT scientists, below.

  • Evaluation of grain yield and quality traits of bread wheat genotypes cultivated in Northwest Turkey. 2016. Bilgin, O.; Guzman, C.; Baser, I.; Crossa, J.; Kayıhan Zahit Korkut; Balkan, A. Crop Science 56 (1): 73-84.
  • Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. 2016. Mondal, S.; Rutkoski, J.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzman, C.; Bhavani, S.; Caixia Lan; Xinyao He; Singh, R.P. Frontiers in Plant Science 7 (991):  1-15.
  • Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. 2016. Guzman, C.; Yonggui Xiao; Crossa, J.; González-Santoyo, H.; Huerta-Espino, J.; Singh, R.P.; Dreisigacker, S. Euphytica 209: 689-692.
  • Unlocking the genetic diversity of Creole wheats. 2016. Vikram, P.; Franco-Barrera, J.; Burgueño, J.; Huihui Li; Sehgal, D.; Saint Pierre, C.; Ortiz, C.; Sneller, C.; Tattaris, M.; Guzman, C.; Sansaloni, C.P.; Fuentes Dávila, G.; Reynolds, M.P.; Sonder, K.; Singh, P.K.; Payne, T.S.; Wenzl, P.; Sharma, A.; Bains, N.; Gyanendra Pratap Singh; Crossa, J.; Sukhwinder-Singh. Nature Scientific Reports 6: No. 23092
  • Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. 2016. Guzman, C.; Alvarez, J.B. Theoretical and Applied Genetics 129 (1): 1-16.
  • Climate change impacts and potential benefits of heat-tolerant maize in South Asia. 2016. Kindie Tesfaye Fantaye; Zaidi, P.H.; Gbegbelegbe, S.D.; Bober, C.; Dil Bahadur Rahut; Getaneh, F.; Seetharam, K.; Erenstein, O.; Stirling, C. Theoretical and Applied Climatology. In press.
  • Diversity of phenotypic (plant and grain morphological) and genotypic (glutenin alleles in Glu-1 and Glu-3 loci) traits of wheat landraces (Triticum aestivum) from Andalusia (Southern Spain). 2016. Ayala, M.; Guzman, C.; Peña-Bautista, R.J.; Alvarez, J.B. Genetic Resources and Crop Evolution 63: 465-475.
  • Future risks of pest species under changing climatic conditions. 2016. iber-Freudenberger, L.; Ziemacki, J.; Tonnang, H.; Borgemeister, C. PLoS One 11 (4): e0153237.
  • Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. 2016. Battenfield, S.D.; Guzman, C.; Gaynor, C.; Singh, R.P.; Peña-Bautista, R.J.; Dreisigacker, S.; Fritz, A.K.; Poland, J. The Plant Genome 9 (2): 1-12.
  • Participation in rural land rental markets in Sub-Saharan Africa: who benefits and by how much? evidence from Malawi and Zambia. 2016. Chamberlin, J.; Ricker-Gilbert, J. American Journal of Agricultural Economics 98 (5): 1507-1528.

New Publications: How to better breed maize for future climates in Latin America

A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center. CIMMYT/Xochiquetzal Fonseca
A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center.
CIMMYT/Xochiquetzal Fonseca

EL BATAN, Mexico (CIMMYT) — A new study from The International Maize and Wheat Improvement Center (CIMMYT) evaluates how elite lines of maize in tropical conditions throughout Latin America perform under abiotic stresses like drought, nitrogen (N) deficiency and combined heat and drought stress.

By 2050, demand for maize is predicted to double in the developing world, and cereal production will need to greatly rise to meet this demand. However, drought and N deficiency are common detrimental factors towards achieving this goal throughout the developing world. The development of new maize germplasm able to tolerate these stresses is crucial if productivity in maize-based farming systems is to be sustained or increased in tropical lowlands in Latin America and elsewhere.

The authors found that only a few lines were tolerant across these conditions, which re-emphasizes the need to separately screen germplasm under each abiotic stress to improve tolerance. Based on high best linear unbiased predicted general combining ability, they found it will be possible to develop hybrids tolerant to multiple abiotic stresses without incurring any yield penalty under non-stressed conditions using these inbred lines. These elite lines can immediately be used in tropical breeding programs in Mexico, Central and South America, and sub-Saharan Africa to improve tolerance to abiotic stress to ensure food security in a changing climate.

Read more about the study “Identification of Tropical Maize Germplasm with Tolerance to Drought, Nitrogen Deficiency, and Combined Heat and Drought Stresses” here and check out other new publications from CIMMYT staff below.

  1. AlphaSim : software for breeding program simulation. 2016. Faux, A.M.; Gorjanc, G.; Gaynor, C.; Battagin, M.; Edwards, S.M.; Wilson, D.L.; Hearne, S.; Gonen, S.; Hickey, J.M. The Plant Genome 9 (3) : 1-14.
  2. Conservation agriculture-based wheat production better copes with extreme climate events than conventional tillage-based systems: a case of untimely excess rainfall in Haryana, India. 2016. Aryal, J.P.; Sapkota, T.B.; Stirling, C.; Jat, M.L.; Jat, H.S.; Munmun Rai; Mittal, S.; Jhabar Mal Sutaliya. Agriculture, Ecosystems and Environment  233 : 325-335.
  3. Grain yield performance and flowering synchrony of CIMMYT’s tropical maize (Zea mays L.) parental inbred lines and single crosses. 2016. Worku, M.; Makumbi, D.; Beyene, Y.; Das, B;. Mugo, S.N.; Pixley, K.V.; Banziger, M.; Owino, F.; Olsen, M.; Asea, G.; Prasanna, B.M. Euphytica 211 (3) : 395-409.
  4. Growing the service economy for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: lessons from custom hiring services for zero-tillage. 2016.  Keil, A.; D’souza, A.; McDonald, A. Food Security 8 (5) : 1011-1028.
  5. Wheat landraces currently grown in Turkey : distribution, diversity, and use. 2016. Morgounov, A.I.; Keser, M.; Kan, M.; Kucukcongar, M.; Ozdemir, F.; Gummadov, N.; Muminjanov, H.; Zuev, E.; Qualset, C. Crop Science 56 (6) : 3112-3124.
  6. First report of sugar beet nematode, Heterodera schachtii Schmidt, 1871 (Nemata: Heteroderidae) in sugar beet growing areas of Sanliurfa, Turkey. 2016. Jiang-Kuan Cui; Erginbas-Orakci, G.; Huan Peng; Wen-Kun Huang; Shiming Liu; Fen Qiao; Elekcioglu, I.H.; Imren, M.; Dababat, A.A.; De-Liang Peng. Turkish Journal of Entomology 40 (3) : 303-314.
  7. Identification of tropical maize germplasm with tolerance to drought, nitrogen deficiency, and combined heat and drought stresses. 2016. Trachsel, S.; Leyva, M.; Lopez, M.; Suarez, E.A.; Mendoza, A.; Gomez, N.; Sierra-Macias, M.; Burgueño, J.; San Vicente, F.M. Crop Science 56 : 1-15.
  8. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. 2016. Corbeels, M.; Chirat, G.; Messad, S.; Thierfelder, C. European Journal of Agronomy 76 : 41-53.
  9. The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from Zimbabwe with contrasting management practices. 2016. Cruz-Barrón, M. de la.; Cruz-Mendoza, A.; Navarro–Noya, Y.E.; Ruiz-Valdiviezo, V.M.; Ortiz-Gutierrez, D.; Ramirez Villanueva, D.A.; Luna Guido, M.; Thierfelder, C.; Wall, P.C.; Verhulst, N.; Govaerts, B.; Dendooven, L. Microbial Ecology. Online First.
  10. Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). 2016. Ayala, M.; Guzman, C.; Peña-Bautista, R.J.; Alvarez, J.B. Journal of Cereal Science 71 : 61-65.

New Publications: New findings on effects of tillage on growth, yield and more

Farmer Chamkaur Singh in his wheat field in Fatehgarh Sahib district, Punjab, India. The field was sown with a zero tillage wheat seeder known as a Happy Seeder, giving an excellent and uniform crop. Photo: P. Kosina/CIMMYT
Farmer Chamkaur Singh in his wheat field in Fatehgarh Sahib district, Punjab, India. The field was sown with a zero tillage wheat seeder known as a Happy Seeder, giving an excellent and uniform crop. Photo: P. Kosina/CIMMYT

EL BATAN, Mexico (CIMMYT) — A study from CIMMYT scientists has revealed new insights on the respective benefits of conventional tillage (CT) and zero tillage (ZT) in north-west India.

Degradation of natural resources, increasing farm labor scarcity, and high production costs are major threats to north-west India’s rice-wheat cropping system.

Sustainable intensification practices, like switching from puddling then transplanting of rice to dry seeding, together with changing from CT to ZT for wheat with surface retention of rice residues, have proven to be very effective in maintaining or even boosting crop yields while preserving environmental resources.

However, whether using ZT for both crops brings additional benefits to either crop is not known. The effects of surface retention of rice residues in wheat on the subsequent DSR crop are also unknown, nor how this is affected by tillage for DSR.

In response, a field study was conducted during 2012-2014 to investigate the interactions between CT and ZT for rice and wheat, and both conventional and sustainable rice residue management, on the performance of a dry seeded rice-wheat system.

Researchers found that while surface retention of rice residues improved the growth of ZT wheat and this effect appeared early during the first crop, rice residue retention in wheat had an adverse effect on growth of the subsequent DSR crop in the first year. In addition, tillage treatment for rice did not affect wheat performance, and vice versa, over the first five crops.

Read more about the study “Effects of tillage and mulch on the growth, yield and irrigation water productivity of a dry seeded rice-wheat cropping system in north-west India” and other recent publications from CIMMYT scientists below:

  1. A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation. 2016. Confalonieri, R.; Bregaglio, S.; Adam, M.; Ruget, F.; Tao Li; Hasegawa, T.; Yin, Y.; Zhu, Y.; Boote, K.; Buis, S.; Fumoto, T.; Gaydon, D.S.; Lafarge, T.; Marcaida III, M.; Nakagawa, H.; Ruane, A.C.; Singh, B.; Singh, U.; Tang, L.; Fulu Tao; Fugice, J.; Yoshida, H.; Zhao Zhang; Wilson, L.T.; Baker, J.; Yubin Yang; Yuji Masutomi; Wallach, D.; Acutis, M.; Bouman, B. Environmental Modelling & Software 85: 332-341.
  2. Effects of tillage and mulch on the growth, yield and irrigation water productivity of a dry seeded rice-wheat cropping system in north-west India. 2016.  Naveen-Gupta.; Sudhir-Yadav; Humphreys, E.; Kukal, S.S.; Singh, B.; Eberbach, P.L. Field Crops Research. 196: 219-236.
  3. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. 2016. Singh, B.; Humphreys, E.; Gaydon, D.S.; Eberbach, P.L. Field Crops Research 197: 83-96.
  4. High-temperature adult-plant resistance to stripe rust in facultative winter wheat. 2016.  Akin, B.; Xianming Chen; Morgounov, A.I.; Zencirci, N.; Anmin Wan; Meinan Wang. Crop and Pasture Science. Online First.
  5. Identification of earliness per se flowering time locus in spring wheat through a genome-wide association study. 2016. Sukumaran, S.; Lopes, M.S.; Dreisigacker, S.; Dixon, L.E.; Meluleki Zikhali; Griffiths, S.; Bangyou Zheng; Chapman, S.; Reynolds, M.P. Crop Science: 56.

receive newsletter

New Publications: Will we be able to do enough to mitigate agriculture’s impact on global warming?

Farmer Krishna Chandra Yadav laser levels land for rice planting in Sirkohiya, Bardiya. Laser leveling is one of many climate-friendly tools that conserves water and helps farmers plant their crops more precisely and efficiently. Photo: P.Lowe/CIMMYT
Farmer Krishna Chandra Yadav laser levels land for rice planting in Sirkohiya, Bardiya. Laser leveling is one of many climate-friendly tools that conserves water and helps farmers plant their crops more precisely and efficiently. Photo: P.Lowe/CIMMYT

EL BATAN, Mexico (CIMMYT) – In 2015, more than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions during the Paris Agreement of the United Nations Framework Convention on Climate Change.

However, little technical information about how much mitigation is needed, versus how much we are capable of, is available.

A recent study which CIMMYT scientists and others participated in identifies this gap, stating that plausible agricultural development pathways that mitigate climate change only deliver 21-40% of what we need to limit warming in 2100 to 2 °C, an amount that is already predicted to cause large food security and other risks.

The authors of the study conclude saying that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices if we are to limit our warming below 2°C.  In addition, they call for more comprehensive targets for the 2 °C limit to be developed including soil carbon and agriculture-related mitigation options.

They also say that excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors, or reduce the feasibility of meeting the 2 °C limit.

Read the study “Reducing emissions from agriculture to meet the 2°C target.” here and check out CIMMYT’s other new publications below:

  1. Effects of tillage and mulch on the growth, yield and irrigation waterproductivity of a dry seeded rice-wheat cropping system innorth-west IndiaNaveen. 2016.  Naveen-Gupta; Sudhir-Yadav; Humphreys, E.; Kukal, S.S.; Balwinder-Singh; Eberbach, P.L. Field Crops Research 196 : 219-236.
  2. Evaluation of the effects of mulch on optimum sowing date andirrigation management of zero till wheat in central Punjab, India using APSIM. 2016. Balwinder-Singh; Humphreys, E.; Gaydon, D.S.; Eberbach, P.L. Field Crops Research 197 : 83-96. Griffiths, S.; Bangyou Zheng; Chapman, S.; Reynolds, M.P.  Crop Science 56 : 1-11
  3. High-temperature adult-plant resistance to stripe rust in facultative winter wheat.2016. Akin, B.; Xian Ming Chen; Morgunov, A.; Nusret Zencirci; Anmin WanD; Meinan Wang. Crop and Pasture Science. Online First.
  4. Identification of Earliness Per Se Flowering Time Locus in Spring Wheat through a Genome-Wide Association Study. 2016. Sukumaran, S.; Lopes, M.S.; Dreisigacker, S.; Dixon, L.E.; Meluleki Zikhali.
  5. Reducing emissions from agriculture to meet the 2 °C target. 2016. Wollenberg, E.; Richards, M.; Smith, P.; Havlík, P.; Obersteiner, M.; Tubiello, F.N.; Herold, M.; Gerber, P.; Carter, S.; Reisinger, A.; Vuuren, D.P. van; Dickie, A.; Neufeldt, H.; Sander, B.O.; Wassmann, R.; Sommer, R.; Amonette, J. E.; Falcucci, A.; Herrero, M.; Opio, C.; Roman-Cuesta, R.M.; Stehfest, E.; Westhoek, H.; Ortiz-Monasterio, I.; Sapkota, T.B.; Rufino, M.C.; Thornton, P.; Verchot, L.; West, P.C.; Soussana, J.F.; Baedeker, T.; Sadler, M.; Vermeulen, S.; Campbell, B.M. Global Change Biology. Online First.

New Publications: Research sheds light on climate and yield risk in South Asia

Want to learn more about CIMMYT's activities in Pakistan? Check out our news feed here. Photo: CIMMYT
Want to learn more about CIMMYT’s activities in Pakistan? Check out our news feed here. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) — A new paper by scientists from the International Maize and Wheat Improvement Center (CIMMYT) highlight important risks to farmers’ yields in Pakistan due to climate change and call for current climate adaptation policies across South Asia to be revised in response.

Rice and wheat are the principal calorie sources for over a billion people in South Asia. Both of these crops are extremely sensitive to climate and agronomic management conditions under which they are grown.

Which is why climate change – projected to increase heat stress and variability across the region – is a huge threat to farmers growing these crops.

And while the influence of climatic conditions on crop growth have been widely studied, empirical evidence of the link between climate variability and yield risk in farmers’ fields is comparatively scarce.

Using data from 240 farm households, the paper “Climate variability and yield risk in South Asia’s rice–wheat systems: emerging evidence from Pakistan” responds to this gap and isolates the effects of agronomic management from climatic variability on rice and wheat yield risks in eight of Pakistan’s twelve agroecological zones. The authors’ results highlight important risks to farmers’ ability to obtain reliable yield levels for both crops, finding season-long and terminal heat stress have a negative effect on rice and wheat yields, with heat being particularly damaging to wheat.

The study also finds farmers have limited capacity to adapt to respond to climactic changes within a crop season, concluding that current climate change adaptation policies must be reviewed to increase resilience for Pakistan’s and South Asia’s cereal farmers, suggesting avenues for investment in improved crop research and development programs.

Read more about this study and more recent publications from CIMMYT researchers, below:

  1. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. 2016. Tattaris, M.; Reynolds, M.P.; Chapman, S. Frontiers in Plant Science 7: 113
  2. Baseline simulation for global wheat production with CIMMYT mega-environment specific cultivars. 2016. Gbegbelegbe, S.D.; Cammarano, D.; Asseng, S.; Robertson, R.; Chung, U.; Adam, M.; Abdalla, O.; Payne, T.S.; Reynolds, M.P.; Sonder, K.; Shiferaw, B.; Nelson, G. Field Crops Research. Online First.
  3. Climate variability and yield risk in South Asia’s rice–wheat systems: emerging evidence from Pakistan. 2016. Muhammad Arshad; Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Abbas, A.; Kachele, H.; Muller, K. Paddy Water Environment. Online First.
  4. Genome wide association mapping of stripe rust resistance in Afghan wheat landraces. 2016. Manickavelu, A.; Joukhadar, R.; Jighly, A.; Caixia Lan; Huerta-Espino, J.; Ahmad Shah Stanikzai; Kilian, A.; Singh, R.P.; Ban, T. Plant Science 252: 222-229.

New Publications: Study reveals new insights about machinery adoption in Bangladesh

Local service provider Yunus operates various kinds of machinery that he offers to farmers in Barisal district, Bangladesh. Photo: S. Storr/CIMMYT
Local service provider Yunus operates various kinds of machinery that he offers to farmers in Barisal district, Bangladesh. Photo: S. Storr/CIMMYT

El Batan, MEXICO (CIMMYT) – A new study by scientists at The International Wheat and Maize Improvement Center (CIMMYT) looks at large-scale adoption practices of agricultural machinery appropriate for smallholder farmers in Bangladesh, concluding that sustained emphasis on improving infrastructure, services and assuring credit availability is necessary to facilitate adoption.

There is strong advocacy for agricultural machinery appropriate for smallholder farmers in South Asia. Such “scale-appropriate” machinery can increase returns to land and labor, but high capital investment costs make it hard for farmers to own these machines. Increasing machinery demand has resulted in relatively well-developed markets for rental services for tillage, irrigation, and post-harvest operations.

Studying households that own machinery can provide insights into the factors that facilitate or limit adoption, which can help development planners, policy makers and national and international banks to target investments more appropriately. The study “Factors associated with small-scale agricultural machinery adoption in Bangladesh: census findings,” is the first recent study to examine these practices at large scale, using the case of Bangladesh.

The paper examines the adoption information gap in Bangladesh by reviewing the country’s historical policy environment that facilitated the development of agricultural machinery markets. It then uses recent Bangladesh census data from over 800,000 farm households to identify variables associated with the adoption of the most common smallholder agricultural machinery like irrigation pumps, threshers and power tillers.

Results of the study indicate that machinery ownership is positively associated with household assets, credit availability, electrification, and road density. These findings suggest that donors and policy makers should focus not only on short-term projects to boost machinery adoption, but also emphasize improving physical and civil infrastructure and services, as well as assuring credit availability to facilitate the adoption of scale-appropriate farm machinery.

Check out this study and other recent publications from CIMMYT researchers, below:

 

  1. 13C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils. 2016. Gannon, B.; Pungarcher, I.; Mourao, L.; Davis, C.R.; Simon, P.; Pixley, K.V.; Tanumihardjo, S.A. The Journal of Nutrition 146 : 1290-1297.
  2. Does closing knowledge gaps close yield gaps? On-farm conservation agriculture trials and adoption dynamics in three smallholder farming areas in Zimbabwe. 2016. Cheesman, S.; Andersson, J.A.; Frossard, E. Journal of Agricultural Science. Online First.
  3. Factors associated with small-scale agricultural machinery adoption in Bangladesh : census findings. 2016. Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Journal of Rural Studies 46 : 155-168.
  4. Fertilization strategies in Conservation Agriculture systems with Maize-Legume cover crops rotations in Southern Africa. 2016. Mupangwa, W.; Thierfelder, C.; Ngwira, A. Experimental Agriculture. Online First.
  5. High temperatures around flowering in maize: effects on photosynthesis and grain yield in three genotypes. 2016. Neiff, N.;Trachsel, S.; Valentinuz, O.R.; Balbi, C.N.; Andrade, H.F. Crop Science 56 : 1-11.
  6. Kenyan Isolates of Puccinia graminis f. sp. tritici from 2008 to 2014 : virulence to SrTmp in the Ug99 race group and implications for breeding programs. 2016. Newcomb, M.; Olivera Firpo, P.D.; Rouse, M.N.; Szabo, L.J.; Johnson, J.; Gale, S.; Luster, D.G.; Wanyera, R.; Macharia, G.; Bhavani, S.; Hodson, D.P.; Patpour, M.; Hovmoller, M.S.; Fetch, T.G.; Yue Jin. Phytopathology 106 (7) : 729-736.
  7. Targeting drought-tolerant maize varieties in Southern Africa : a geospatial crop modeling approach using big data. 2016. Kindie Tesfaye Fantaye; Sonder, K.; Cairns, J.E.; Magorokosho, C.; Amsal Tesfaye Tarekegne; Kassie, G.; Getaneh, F.; Abdoulaye, T.; Tsedeke Abate; Erenstein, O. The International Food and Agribusiness Management Review 19 : 75-92.
  8. The adoption problem; or why we still understand so little about technological change in African agriculture. 2016. Glover, D.; Sumberg, J.; Andersson, J.A. Outlook on Agriculture 45 (1): 3-6.
  9. The effect of major income sources on rural household food (in)security : evidence from Swaziland and implications for policy. 2016. Mabuza, M.L.; Ortmann, G.F.; Wale, E.; Mutenje, M. Ecology of Food and Nutrition 55 (2) : 209-230.
  10. Weed management in maize using crop competition: a review. 2016. Mhlanga, B.; Chauhan, B.S.; Thierfelder, C. Crop Protection 88: 28-36.

New Publications: Land availability and smallholder development in Zambia

Farmers Ngunya Phiri and husband Daniel heads for home with a full load of cobs on their ox cart after harvesting maize cultivated under conservation agriculture in their field in Chipata district, Zambia. Photo: P.Lowe/CIMMYT
Farmers Ngunya Phiri and husband Daniel heads for home with a full load of cobs on their ox cart after harvesting maize cultivated under conservation agriculture in their field in Chipata district, Zambia. Photo: P.Lowe/CIMMYT

EL BATAN, Mexico — Large surface area and low population density make Zambia one of the most land abundant countries in the world.

However, despite this abundancy new data shows that land access is of mounting concern for smallholders. 54 percent of Zambia’s land is under customary tenure, far less than the 94 percent often utilized in land policy documents, according to a new studyCustomary land tenure refers to the systems that most rural African communities operate to express and order ownership, possession, and access, and to regulate use and transfer. Unlike introduced landholding regimes, the norms of customary tenure derive from and are sustained by the community itself rather than the state or state law.

Of this available land, most populations are clustered in just 5 percent that has reasonably good market access conditions. These areas are often located in regions with high levels of rainfall variability due to historical infrastructure investments. In addition, these regions are witnessing a rapid increase in land commodification, land alienation and declining fallow rates.

The study concludes that land policy alone is not sufficient to cope with the mounting land constraints experienced by the majority of rural people in Zambia. Investments in infrastructure and services to improve market access conditions and climate change adaption capacity in Zambia’s remaining customary land is a necessity. Land and economic development policies must be attentive to changing dynamics in customary land areas in order to ensure the future viability of the smallholder farming sector.

Read more about the study “The geography of Zambia’s customary land: Assessing the prospects for smallholder development” and other new publications from CIMMYT staff below:

  1. Effects of relay cover crop planting date on their biomass and maize productivity in a sub-humid region of Zimbabwe under conservation agriculture. 2016. Mhlanga, B.; Cheesman, S.; Maasdorp, B.; Mupangwa, W.; Munyoro, C.; Sithole, C.; Thierfelder, C. NJAS Wageningen Journal of Life Sciences. Online First.
  2. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora. 2016. Randhawa, M.S.; Bansal, U.; Lillemo, M.; Miah, H.; Bariana, H.S.; Erenstein, O. Journal of Applied Genetics. Online First.
  3. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. 2016. Crespo-Herrera, L.A.; Singh, R.P.; Velu, G. Annals of Applied Biology. 169 (1) : 27-35.
  4. The geography of Zambia’s customary land : assessing the prospects for smallholder development. 2016. Sitko, N.J.; Chamberlin, J. Land Use Policy 55 : 49-60.
  5. Wheat landraces production on farm level in Turkey; Who is growing in where?. 2016. Kan, M.; Ortiz-Ferrara, G.; Kucukcongar, M.; Keser, M.; Ozdemir, F.; Muminjanov, H.; Qualset, C.; Morgounov, A.I. Pakistan Journal of Agricultural Sciences 53(1) : 159-169.

New Publications: Advances in breeding for future climates

Farmer-surrounded-by-wheat
Photo: Ranak Martin/CIMMYT

CIMMYT scientists have made progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia according to a recently published study. Maintaining wheat productivity under increasing temperatures and decreasing water availability in South Asia is a challenge. Warmer temperatures have already been determined to be one of the major factors in slowing the wheat productivity growth in South Asia, with estimated grain yield losses at 6 to 10% per ◦C rise in temperature.

In response, CIMMYT researchers focused on developing early maturing wheat lines as an adaptive mechanism in regions suffering from terminal heat stress and those areas that require wheat adapted to shorter cycles under continual high temperature stress. Each year from 2009 to 2014, 28 newly developed early-maturing high-yielding CIMMYT wheat lines were evaluated across locations in South Asia. A positive trend was observed while estimating the breeding progress across five years for high-yielding early-maturing heat tolerant wheat compared to the local checks in South Asia, suggesting early maturity has the potential to improve adaptation and maintenance of genetic gains in South Asia. Read the full study “Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia” here.

Another recently released study on physiological breeding reveal opportunities for more precise breeding strategies and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Among other findings, the study concludes that new crop designs capitalize on over half a century of physiological research, remote sensing allows evaluation of genetic resources for complex trait expression, and genetic and physiological dissection of complex traits enables better crosses. Read the full study “Physiological breeding” here.

New Publications: Maize Lethal Necrosis survey reveals farmer impact, future needs

NAIROBI, Kenya (CIMMYT) – When a strange maize disease suddenly appeared in 2011 in Bomet, a small town 230 kilometers (143 miles) west of Kenya’s capital city, Nairobi, scientists from CIMMYT and Kenya Agricultural Livestock and Research Organization were thrown into disarray. The disease, later identified as Maize Lethal Necrosis (MLN), became a nightmare for maize scientists leading many to work around the clock to find a solution to stop its rapid spread. As intensive research and screening work started, it became apparent that there was a dire need to fill a glaring information gap on the disease, particularly regarding MLN’s geographic distribution, the number of farmers affected, the levels of yield loss and the impact of those losses.

To address this gap, surveys were conducted with groups of male and female farmers in over 120 sub-locations of Kenya’s maize production zones in a recent study “Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya.”  The results estimate maize losses from MLN at half a million tons per year with the highest losses reported in western Kenya.  The study identified an urgent need to develop improved maize varieties resistant to MLN and emphasized the need for farmers to be informed and adapt appropriate agronomic practices to cope with the disease.

Read more about this research and other related studies on MLN from CIMMYT Scientists.

  • Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. 2016. Hugo De Groote, Francis Oloo, Songporne Tongruksawattana, Biswanath Das. Crop Protection Volume 82, April 2016, Pages 30–35
  • MLN pathogen diagnosis, MLN-free seed production and safe exchange to non-endemic countries. 2015. Monica Mezzalama, Biswanath Das, B. M. Prasanna
  • Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. 2015. Manje Gowda, Biswanath Das, Dan Makumbi, Raman Babu, Kassa Semagn, George Mahuku, Michael S. Olsen, Jumbo M. Bright, Yoseph Beyene, B. M. Prasanna. Theoretical and Applied Genetics

New Publications: Red root marker improves double haploid maize breeding

Purple maize varieties with high anthocyanin accumulation can have significant nutritional and economic value, but cannot be identified using the R1-nj marker. Photo: MAIZE
Purple maize varieties with high anthocyanin accumulation can have significant nutritional and economic value, but cannot be identified using the R1-nj marker. CIMMYT/MAIZE CRP handout

EL BATAN, Mexico (CIMMYT) — Doubled haploid (DH) technology provides important benefits to maize breeding programs by enhancing genetic gains, improving breeding efficiency and offering significant economic advantages.

Unfortunately, this technology is limited by the fact that the R1-nj (Navajo) anthocyanin color marker cannot effectively identify haploids in many crosses where inhibitor genes prevent color expression in the seed. A new study from the MAIZE CGIAR Research Program titled “Development and validation of red root marker-based haploid inducers that effectively complement R1-nj (Navajo) marker-based in vivo haploid identification in maize” states that the Navajo marker caused a high percentage of false positives, especially in varieties with natural purple coloring, due to high anthocyanin content.

To combat this issue, the study recommends the use of triple anthocyanin color markers, in which the red/purple coloration is expressed in seedling roots and leaf sheaths in addition to the Navajo marker on the seed. Researchers found that use of the red root marker improved the accurate identification of haploids, especially in seeds that already have a natural purple color due to high anthocyanin content.

Read more about this research and other recent studies from CIMMYT scientists below.

Anti-wheat fad diets undermine global food security efforts

Anti-Wheat-Fad-Brochure-coverA recent review paper released by Britain’s University of Warwick (Lillywhite and Sarrouy 2014) addresses two fundamental questions regarding wheat: “Are whole grain products good for health?”; and “What is behind the rise in popularity of gluten and wheat-free diets?”

The paper was commissioned by cereal-maker Weetabix to address reports in the news media that wheat products are the cause of health problems, resulting in an increasing number of consumers switching to low-carbohydrate grain- and wheat- free diets. For many health professionals this is a worrying trend because wheat not only supplies 20 percent of the world’s food calories and protein, but has important benefits beyond nutrition, the authors state.

The Warwick paper provides a scientific assessment of the benefits of whole grain consumption, information that the authors note seems to have been lost in media headlines and the reporting of “pseudo-science.”

The paper concludes that whole grain products are good for human health, apart from the 1 percent of the population who suffer from celiac disease and another 1 percent who suffer from sensitivity to wheat (Lillywhite and Sarrouy 2014). Eating wholegrain wheat products is positive, improves health and can help maintain a healthy body weight, the authors report.

Scientific evidence regarding wheat- and carbohydrate-free diets is thin and selectively used, they state, and a low cereal and carbohydrate diet “may cost more but deliver less.”

Additionally, an economically viable industry has developed around so-called “free-from” diets and may be persuading consumers to switch from staple foods to specialist foods created especially for those who need to avoid gluten, a protein found in wheat and other grains, they add.

This Wheat Discussion Paper serves as a foundation upon which the authors hope further discussion will develop. It aims to highlight unsubstantiated nutritional claims about wheat and shine a spotlight on the important role of wheat and fiber in human diets. It also seeks to encourage conversation about how non-scientific claims about wheat could affect poor consumers and global food security.

Read Wheat Discussion Paper (463KB)