In 1970, Norman Borlaug was awarded the Nobel Peace Prize for his important scientific work that saved millions of people from famine. Today, humanity faces an equally complex challenge which requires the commitment of all nations, leaders, investors and strategic partners: avoiding the next food crisis.
The Government of Mexico, the Nobel Peace Center and the International Maize and Wheat Improvement Center (CIMMYT) will celebrate the 50th anniversary of Borlaug’s Nobel Prize with a call to action to develop a transformational response of agriculture for peace, with an emphasis on nutrition, environment and equity.
Join us on December 8, 2020, from 9:00 to 10:30 a.m. (CST, GMT-6).
This special event is part of the run-up to the United Nations Summit of Agrifood Systems of 2021. It will feature international experts in each of the five action tracks of the summit: ensure access to safe and nutritious food for all; shift to sustainable consumption patterns; boost nature-positive production; advance equitable livelihoods; and build resilience to vulnerabilities, shocks and stress.
Guest speakers will include:
Marcelo Ebrard Casaubón – Mexico’s Secretary of Foreign Affairs
Kjersti Fløgstad – Executive Director, Nobel Peace Center
Victor Villalobos – Mexico’s Secretary of Agriculture and Rural Development
Martin Kropff – Director General, CIMMYT
Margaret Bath – Member of CIMMYT’s Board of Trustees
Alison Bentley – Director of CIMMYT’s Global Wheat Program
Robert Bertram – Chief Scientist, USAID’s Bureau for Resilience and Food Security
Nicole Birrell – Chair of CIMMYT’s Board of Trustees
Julie Borlaug – President of the Borlaug Foundation
Gina Casar – Assistant Secretary-General of the World Food Programme
Martha Delgado – Mexico’s Deputy Secretary for Multilateral Affairs and Human Rights
Marco Ferroni – Chair, CGIAR System Board
Federico González Celaya – President of Mexico’s Food Banks Association
Bram Govaerts – Deputy Director General for Research and Collaborations a.i. and Director of the Integrated Development Program, CIMMYT
Juana Hernández – Producer from the community of San Miguel, in Ocosingo, Chiapas, Mexico
Rut Krüger Giverin – Norwegian Ambassador to Mexico
Sylvanus Odjo – Postharvest Specialist, CIMMYT
Lina Pohl – FAO’s Mexico Representative
B.M. Prasanna – Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize
Tatiana Ramos – Executive Director, Conservation International Mexico
Alfonso Romo – Private Sector Liaison, Government of Mexico
Bosco de la Vega – President Mexico’s National Farmer’s Agricultural Council (CNA)
Close up of a durum wheat spike. (Photo: Xochiquetzal Fonseca/CIMMYT)
In a landmark discovery for global wheat production, an international team led by the University of Saskatchewan and including scientists from the International Maize and Wheat Improvement Center (CIMMYT) has sequenced the genomes for 15 wheat varieties representing breeding programs around the world, enabling scientists and breeders to much more quickly identify influential genes for improved yield, pest resistance and other important crop traits.
The research results, just published in Nature, provide the most comprehensive atlas of wheat genome sequences ever reported. The 10+ Genome Project collaboration involved more than 95 scientists from universities and institutes in Australia, Canada, Germany, Israel, Japan, Mexico, Saudi Arabia, Switzerland, the UK and the US.
“It’s like finding the missing pieces for your favorite puzzle that you have been working on for decades,” said project leader Curtis Pozniak, wheat breeder and director of the USask Crop Development Centre (CDC). “By having many complete gene assemblies available, we can now help solve the huge puzzle that is the massive wheat pan-genome and usher in a new era for wheat discovery and breeding.”
“These discoveries pave the way to identifying genes responsible for traits wheat farmers in our partner countries are demanding, such as high yield, tolerance to heat and drought, and resistance to insect pests,” said Ravi Singh, head of global wheat improvement at CIMMYT and a study co-author.
One of the world’s most cultivated cereal crops, wheat plays an important role in global food security, providing about 20 per cent of human caloric intake globally. It’s estimated that wheat production must increase by more than 50% by 2050 to meet an increasing global demand.
The research team was also able to track the unique DNA signatures of genetic material incorporated into modern cultivars from wild wheat relatives over years of breeding.
“With partners at Kansas State University, our CIMMYT team found that a DNA segment in modern wheat derived from a wild wheat relative can improve yields by as much as 10%,” said Philomin Juliana, CIMMYT wheat breeder and study co-author. “We can now work to ensure this gene is included in the next generation of modern wheat cultivars.”
The team also used the genome sequences to isolate an insect-resistant gene called Sm1, that enables wheat plants to withstand the orange wheat blossom midge, a pest which can cause more than $60 million in annual losses to Western Canadian producers.
“Understanding a causal gene like this is a game-changer for breeding because you can select for pest resistance more efficiently by using a simple DNA test than by manual field testing,” explained Pozniak.
The 10+ Genome Project was sanctioned as a top priority by the Wheat Initiative, a coordinating body of international wheat researchers.
“This project is an excellent example of coordination across leading research groups around the globe. Essentially every group working in wheat gene discovery, gene analysis and deployment of molecular breeding technologies will use the resource,” said Wheat Initiative Scientific Coordinator Peter Langridge.
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org
ABOUT CDC:
The Crop Development Centre (CDC) in the USask College of Agriculture and Bioresources is known for research excellence in developing high-performing crop varieties and developing genomic resources and tools to support breeding programs. Its program is unique in that basic research is fully integrated into applied breeding to improve existing crops, create new uses for traditional crops, and develop new crops. The CDC has developed more than 400 commercialized crop varieties.
Wheat fields in the Arsi highlands, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)
A state-of-the-art study of plant DNA provides strong evidence that farmers in Ethiopia have widely adopted new, improved rust-resistant bread wheat varieties since 2014.
The results — published in Nature Scientific Reports — show that nearly half (47%) of the 4,000 plots sampled were growing varieties 10 years old or younger, and the majority (61%) of these were released after 2005.
Four of the top varieties sown were recently-released rust-resistant varieties developed through the breeding programs of the Ethiopian Institute for Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT).
Adoption studies provide a fundamental measure of the success and effectiveness of agricultural research and investment. However, obtaining accurate information on the diffusion of crop varieties remains a challenging endeavor.
DNA fingerprinting enables researchers to identify the variety present in samples or plots, based on a comprehensive reference library of the genotypes of known varieties. In Ethiopia, over 94% of plots could be matched with known varieties. This provides data that is vastly more accurate than traditional farmer-recall surveys.
This is the first nationally representative, large-scale wheat DNA fingerprinting study undertaken in Ethiopia. CIMMYT scientists led the study in partnership with EIAR, the Ethiopian Central Statistical Agency (CSA) and Diversity Array Technologies (DArT).
“When we compared DNA fingerprinting results with the results from a survey of farmers’ memory of the same plots, we saw that only 28% of farmers correctly named wheat varieties grown,” explained Dave Hodson, a principal scientist at CIMMYT and lead author of the study.
The resulting data helps national breeding programs adjust their seed production to meet demand, and national extension agents focus on areas that need better access to seed. It also helps scientists, policymakers, donors and organizations such as CIMMYT track their impact and prioritize funding, support, and the direction of future research.
“These results validate years of international investment and national policies that have worked to promote, distribute and fast-track the release of wheat varieties with the traits that farmers have asked for — particularly resistance to crop-destroying wheat rust disease,” said Hodson.
Ethiopia is the largest wheat producer in sub-Saharan Africa. The Ethiopian government recently announced its goal to become self-sufficient in wheat, and increasing domestic wheat production is a national priority.
Widespread adoption of these improved varieties, demonstrated by DNA fingerprinting, has clearly had a positive impact on both economic returns and national wheat production gains. Initial estimates show that farmers gained an additional 225,500 tons of production — valued at $50 million — by using varieties released after 2005.
The study results validate investments in wheat improvement made by international donor agencies, notably the Bill & Melinda Gates Foundation, the Ethiopian government, the UK Foreign, Commonwealth and Development Office (FCDO, formerly DFID), the US Agency for International Development (USAID) and the World Bank. Their success in speeding up variety release and seed multiplication in Ethiopia is considered a model for other countries.
“This is good news for Ethiopian farmers, who are seeing better incomes from higher yielding, disease-resistant wheat, and for the Ethiopian government, which has put a high national priority on increasing domestic wheat production and reducing dependence on imports,” said EIAR Deputy Director General Chilot Yirga.
The study also confirmed CGIAR’s substantial contribution to national breeding efforts, with 90% of the area sampled containing varieties released by Ethiopian wheat breeding programs and derived from CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm. Varieties developed using germplasm received from CIMMYT covered 87% of the wheat area surveyed.
“This research demonstrates that DNA fingerprinting can be applied at scale and is likely to transform future crop varietal adoption studies,” said Kindie Tesfaye, a senior scientist at CIMMYT and co-author of the study. “Additional DNA fingerprinting studies are now also well advanced for maize in Ethiopia.”
This research is supported by the Bill and Melinda Gates Foundation and CGIAR Fund Donors. Financial support was provided through the “Mainstreaming the use and application of DNA Fingerprinting in Ethiopia for tracking crop varieties” project funded by the Bill & Melinda Gates Foundation (Grant number OPP1118996).
Dave Hodson, International Maize and Wheat Improvement Center (CIMMYT), d.hodson@cgiar.org
ABOUT CIMMYT:
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org
The study identified two key explanations for the oversight. The first is that many cereal crops with varying nutritional qualities are indiscriminately grouped under the broad category of “staples.”
A second problem lies in the fact that cereals are usually considered to be a major source of dietary energy alone. However, reducing nutritional attributes to macro- and micro-nutrients misses other beneficial elements of cereals known as “bioactive food components.” These include carotenoids, flavonoids, and polyphenols, and compounds that comprise dietary fiber.
“Most whole grain cereals provide differing amounts of proteins, fats, minerals and vitamins, in addition to being important sources of dietary energy,” said Jason Donovan, a senior economist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the paper published in Food Policy.
“Only relative to other ‘nutrient-rich’ foodstuffs can cereals be described as ‘nutrient-poor’.”
In the paper, entitled Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health, the authors called on researchers and policymakers to embrace the multiple dietary components of cereals in addressing under- and over-nutrition, micronutrient deficiencies and the growing global problem of non-communicable diseases.
“Through increasing the availability of, and access to, healthy foods derived from cereals, we can better address the growing triple burden of malnutrition that many countries are facing,” said Olaf Erenstein, co-author and director of CIMMYT’s Socioeconomics program.
“To feed the world within planetary boundaries, current intakes of whole grain foods should more than double and address tricky issues like the current over-processing, to make the most of the nutrition potential of maize and wheat.”
While some carbohydrates can create a glycemic response that has negative effects on diabetes and obesity, dietary fiber in cereals comprises carbohydrates that are fermented in the large intestine with largely positive metabolic and health effects.
In addition, the naturally-occurring compounds found in maize and wheat can be enhanced through conventional breeding, genomic selection and bio- and industrial-fortification to offer enriched levels of beneficial components.
For example, scientists at CIMMYT have worked on new maize and wheat varieties with additional levels of vitamin A and zinc to help address some of the nutritional deficiencies found worldwide. Researchers are also improving how cereals are produced, processed, and stored to increase productivity and improve food safety while maintaining their nutritional benefits.
One of challenges in maximizing the nutritional benefit of cereal-based foods in diets is that the processing of grains often causes substantial losses of essential vitamins and minerals. Meanwhile, manufacturing industries create ultra-processed foods that often contain noxious qualities and components, which contribute directly to the significant and increasing global health and economic costs of non-communicable diseases.
“If we are to end hunger by delivering healthy, diverse and nutritional diets in the next decade, we need a broader and more nuanced understanding of the nutritional and health-promoting value of diverse foods, including cereals,” added Nigel Poole, co-author and Professor of International Development at SOAS University, London.
“Cereals and so-called ‘nutrient-rich’ foods are complementary in agri-nutrition, both of which require additional research, resources and attention so that one does not replace the other.”
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org
Wheat blast, a fast-acting and devastating fungal disease, has been reported for the first time on the African continent. In an article published in the scientific journal PLoS One, a team of scientists confirmed that symptoms of wheat blast first appeared in Zambia during the 2018 rainy season, in experimental plots and small-scale farms in the Mpika district, Muchinga province.
Researchers from the International Maize and Wheat Improvement Center (CIMMYT), the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS) and the Zambian Agricultural Research Institute (ZARI) participated in this study.
Wheat blast poses a serious threat to rain-fed wheat production in Zambia and raises the alarm for surrounding regions and countries on the African continent with similar environmental conditions. Worldwide, 2.5 billion consumers depend on wheat as a staple food and, in recent years, several African countries have been actively working towards reducing dependence on wheat imports.
“This presents yet another challenging biotic constraint to rain-fed wheat production in Zambia,” said Batiseba Tembo, wheat breeder at ZARI and lead scientist on the study.
A difficult diagnosis
Researchers from ZARI check for wheat blast in experimental plots. (Photo: Batiseba Tembo/ZARI)
“The first occurrence of the disease was very distressing. This happened at the spike stage, and caused significant losses,” Tembo said. “Nothing of this nature has happened before in Zambia.”
Researchers were initially confused when symptoms of the disease were first reported in the fields of Mpika. Zambia has unique agro-climatic conditions, particularly in the rainfed wheat production system, and diseases such as spot blotch and Fusarium head blight are common.
“The crop had silvery white spikes and a green canopy, resulting in shriveled grains or no grains at all… Within the span of seven days, a whole field can be attacked,” Tembo explained. Samples were collected and analyzed in the ZARI laboratory, and suspicions grew among researchers that this may be a new disease entirely.
Tembo participated in the Basic Wheat Improvement Course at CIMMYT’s global headquarters in Mexico, where she discussed the new disease with Pawan Singh, head of Wheat Pathology at CIMMYT. Singh worked with Tembo to provide guidance and the molecular markers needed for the sample analysis in Zambia, and coordinated the analysis of the wheat disease samples at the USDA-ARS facility in Fort Detrick, Maryland, United States.
All experiments confirmed the presence of the fungus Magnaporthe oryzae pathotype Triticum (MoT), which causes the disease.
“This is a disaster which needs immediate attention,” Tembo said. “Otherwise, wheat blast has the potential to marginalize the growth of rain-fed wheat production in Zambia and may threaten wheat production in neighboring countries as well.”
Wheat blast spreads through infected seeds and crop residues, as well as by spores that can travel long distances in the air. The spread of blast within Zambia is indicated by both mechanisms of expansion.
Wheat blast has expanded rapidly since it was initially discovered in Brazil in 1985. (Map: Kai Sonder/CIMMYT)
A cause for innovation and collaboration
CIMMYT and the CGIAR Research Program on Wheat (WHEAT) are taking action on several fronts to combat wheat blast. Trainings and international courses invite participants to gain new technical skills and knowledge in blast diagnostics, treatment and mitigation strategies. WHEAT scientists and partners are also studying the genetic factors that increase resistance to the disease and developing early warning systems.
“A set of research outcomes, including the development of resistant varieties, identification of effective fungicides, agronomic measures, and new findings in the epidemiology of disease development will be helpful in mitigating wheat blast in Zambia,” Singh said.
“It is imperative that the regional and global scientific communities join hands to determine effective measures to halt further spread of this worrisome disease in Zambia and beyond,” Tembo expressed.
Financial support for this research was provided by the Zambia Agriculture Research Institute (ZARI), the CGIAR Research Program on Wheat (WHEAT), the Australian Centre for International Agricultural Research (ACIAR), and the US Department of Agriculture’s Agricultural Research Service (USDA-ARS).
The Basic Wheat Training Program and Wheat Blast Training is made possible by support from investors including the Australian Centre for International Agricultural Research (ACIAR), WHEAT, the Indian Council of Agricultural Research (ICAR), Krishi Gobeshona Foundation (KGF), the Swedish Research Council (SRC) and the United States Agency for International Development (USAID).
The Accelerating Genetic Gains in Maize and Wheat (AGG) project is funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).
About CIMMYT
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
The International Institute of Tropical Agriculture (IITA) and the International Maize and Wheat Improvement Center (CIMMYT) recently launched a project that aims to research the drivers and barriers to adoption of conservation agriculture in southern Africa, and to develop strategies for achieving adoption and impact at scale.
The project, Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA), will apply social and scaling science to understand the biophysical, socioeconomic, institutional, and policy drivers and barriers to the adoption of conservation agriculture technologies and practices.
The ACASA project is supported by the Norwegian Agency for Development Cooperation (Norad) and will be implemented in Malawi, Zambia, and Zimbabwe in collaboration with partners and farmers in the region.
The project was officially launched online on September 16, 2020. Zambia’s Minister of Agriculture, Michael Katambo, noted that it is a timely intervention, as the livelihoods and food security of smallholder farmers in southern Africa are increasingly being threatened by climate change and variability, which have led to a steady decline in the production of food staples and an increase in the number of food and nutrition-insecure people.
“It is now clear that current productivity and production levels cannot be expected to meet our requirements for food and nutrition security,” Katambo said in a speech read on his behalf by Moses Mwale, Director of the Department of Agriculture. “Conservation agriculture has a proven potential to increase and stabilize crop yields, and to support sustainable and resilient production systems and rural livelihoods.”
Proven benefits
Conservation agriculture — a farming system that promotes minimum soil disturbance, permanent soil cover and diversification of plant species — can efficiently increase agricultural productivity while reducing land degradation and improving soil health for more productive, profitable, and sustainable farming.
Substantial on-farm evidence has been generated on the agronomic and economic benefits of conservation agriculture, first introduced in the 1970s in South Africa. Consequently, donors and governments have made a lot of investments to promote and scale conservation agriculture technologies and practices among smallholder farmers in the region. Despite all these efforts, however, the adoption rate among smallholder farmers remains low.
“We should not let the low adoption of conservation agriculture discourage us. Let us use this opportunity to reflect and identify the missing link and come up with more sustainable solutions to the problem,” said the IITA Director for Southern Africa, David Chikoye.
“Although adoption of improved practices by most resource-poor farmers is primarily determined by the potential immediate benefits on crop yields, profits, risk, and livelihoods, there are a number of biophysical, socioeconomic, institutional, and policy factors that promote or hinder adoption of conservation agriculture. The project, therefore, aims to identify the adoption drivers and barriers, and to develop pathways and strategies for inclusive scaling of conservation agriculture practices,” said Arega Alene, Agricultural Economist at IITA and leader of the ACASA project.
Christian Thierfelder, Principal Cropping Systems Agronomist at CIMMYT, highlighted some of the bottlenecks for conservation agriculture adoption, noting they were linked more to socioeconomic and cultural factors rather than biophysical. “Conservation agriculture is a viable and proven climate-smart farming system. Future research efforts should go towards understanding farmers’ decision-making and behavioral change, as well as profitability,” Thierfelder said.
Other key partners include the Food and Agriculture Organization of the United Nations (FAO), the African Conservation Tillage Network (ACT) and Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA).
The project launch was attended by policymakers, donors, members of national and regional conservation agriculture taskforces, national and international research institutions, universities, international development institutions, private seed companies, non-governmental organizations, and farmer organizations.
Interview opportunities:
Arega Alene, Agricultural Economist, IITA.
Christian Thierfelder, Principal Cropping Systems Agronomist, CIMMYT
For more information, or to arrange interviews, contact the media team:
Genevieve Renard, Director of Communications, CIMMYT. g.renard@cgiar.org
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.
About IITA:
The International Institute of Tropical Agriculture (IITA) is a not-for-profit institution that generates agricultural innovations to meet Africa’s most pressing challenges of hunger, malnutrition, poverty, and natural resource degradation. Working with various partners across sub-Saharan Africa, we improve livelihoods, enhance food and nutrition security, increase employment, and preserve natural resource integrity. IITA is a member of CGIAR, a global agriculture research partnership for a food-secure future.
A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Keith Ewing)
Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).
The findings of the study published today in Nature Communications are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally — bread and pasta wheat — and of 27 known wild species.
Wheat is the most widely grown crop globally, with an annual production exceeding 600 million tons. Approximately 95% of the grain produced corresponds to bread wheat and the remaining 5% to durum or pasta wheat.
The main objective of the study was to characterize the genetic diversity of CIMMYT and ICARDA’s internationally available collections, which are considered the largest in the world. The researchers aimed to understand this diversity by mapping genetic variants to identify useful genes for wheat breeding.
From germplasm bank to breadbasket
The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.
“The analysis of the bread wheat accessions reveals that relatively little of the diversity available in the landraces has been used in modern breeding, and this offers an opportunity to find untapped valuable variation for the development of new varieties from these landraces”, said Carolina Sansaloni, high-throughput genotyping and sequencing specialist at CIMMYT, who led the research team.
The study also found that the genetic diversity of pasta wheat is better represented in the modern varieties, with the exception of a subgroup of samples from Ethiopia.
The researchers mapped the genomic data obtained from the genotyping of the wheat samples to pinpoint the physical and genetic positions of molecular markers associated with characteristics that are present in both types of wheat and in the crop’s wild relatives.
According to Sansaloni, on average, 72% of the markers obtained are uniquely placed on three molecular reference maps and around half of these are in interesting regions with genes that control specific characteristics of value to breeders, farmers and consumers, such as heat and drought tolerance, yield potential and protein content.
Open access
The data, analysis and visualization tools of the study are freely available to the scientific community for advancing wheat research and breeding worldwide.
“These resources should be useful in gene discovery, cloning, marker development, genomic prediction or selection, marker-assisted selection, genome wide association studies and other applications,” Sansaloni said.
The study was part of the SeeD and MasAgro projects and the CGIAR Research Program on Wheat (WHEAT), with the support of Mexico’s Secretariat of Agriculture and Rural Development (SADER), the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors. Research and analysis was conducted in collaboration with the National Institute of Agricultural Botany (NIAB) and the James Hutton Institute (JHI).
About CIMMYT:
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.
Nine CGIAR centers, supported by the Big Data Platform, will launch the Excellence in Agronomy 2030 initiative on September 7, 2020, during this year’s African Green Revolution Forum (AGRF) online summit.
The Excellence in Agronomy 2030 (EiA 2030) initiative will assist millions of smallholder farmers to intensify their production systems while preserving key ecosystem services under the threat of climate change. This initiative, co-created with various scaling partners, represents the collective resolve of CGIAR’s agronomy programs to transform the world’s food systems through demand- and data-driven agronomy research for development.
EiA 2030 will combine big data analytics, new sensing technologies, geospatial decision tools and farming systems research to improve spatially explicit agronomic recommendations in response to demand from scaling partners. Our science will integrate the principles of Sustainable Intensification and be informed by climate change considerations, behavioral economics, and scaling pathways at the national and regional levels.
A two-year Incubation Phase of EiA 2030 is funded by the Bill & Melinda Gates Foundation. The project will demonstrate the added value of demand-driven R&D, supported by novel data and analytics and increased cooperation among centers, in support of a One CGIAR agronomy initiative aiming at the sustainable intensification of farming systems.
Speaking on the upcoming launch, the IITA R4D Director for Natural Resource Management, Bernard Vanlauwe, who facilitates the implementation of the Incubation Phase, said that “EiA 2030 is premised on demand-driven agronomic solutions to develop recommendations that match the needs and objectives of the end users.”
Christian Witt, Senior Program Officer from the Bill & Melinda Gates Foundation, lauded the initiative as a cornerstone for One CGIAR. “It is ingenious to have a platform like EiA 2030 that looks at solutions that have worked in different settings on other crops and whether they can be applied in a different setting and on different crops,” Witt said.
Martin Kropff, Director General of the International Maize and Wheat Improvement Center (CIMMYT), spoke about the initiative’s goals of becoming the leading platform for next-generation agronomy in the Global South, not only responding to the demand of the public and private sectors, but also increasing efficiencies in the development and delivery of solutions through increased collaboration, cooperation and cross-learning between CGIAR centers and within the broader agronomy R&D ecosystem, including agroecological approaches.
At the EiA 2030 launch, representatives from partner organizations and CGIAR centers will give presentations on different aspects of the project.
CGIAR centers that are involved in EiA include AfricaRice, the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Center for Agricultural Research in the Dry Areas (ICARDA), World Agroforestry Center (ICRAF), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the International Institute of Tropical Agriculture (IITA), and the International Rice Research Institute (IRRI).
Developed by CABI in partnership with leading researchers and institutions, the portal is a free-to-access platform that enables the sharing of research data, insights and outputs, and includes a range of key features such as posting research updates, identifying collaborators, and posting questions to the community.
The Research Collaboration Portal is the official platform for the Fall Armyworm R4D International Consortium. B. M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE) and co-chair of the portal steering committee commented, “The fall armyworm research collaboration portal will serve as an effective platform for communicating on research actions of the Fall Armyworm R4D International Consortium, led by CIMMYT and IITA. We encourage all the members of the Fall Armyworm R4D International Consortium to actively contribute to the portal.”
Fall armyworm (Spodoptera frugiperda) is an invasive insect pest that feeds on more than 80 plant species, causing major damage to maize, rice, sorghum, sugarcane but also other vegetable crops and cotton.
The pest is native to tropical and subtropical regions of the Americas. However, in 2016 it was reported for the first time in Africa, where it is causing significant damage to maize crops and has great potential for further spread and economic damage.
Fall armyworm has since spread to the Near East and Asia and, according to the Food and Agriculture Organization of the United Nations (FAO), it will likely soon be present in southern Europe. The FAO says that once fall armyworm is a resident pest in a country, it is there to stay and farmers need significant support to manage it sustainably in their cropping systems through integrated pest management activities.
The Fall Armyworm Research Collaboration Portal, funded by the UK Department for International Development (DFID) and the Directorate-General for International Cooperation (DGIS) of the Netherlands under the Action on Invasives program, will also encourage researchers to post preprints of research articles to the new agriRxiv, which offers researchers and students access to preprints across agriculture and allied sciences.
The portal will help reduce the duplication of research into fall armyworm prevention and management, provide a route for the rapid sharing of results and highlight opportunities for collaboration – encouraging rapid, iterative experimentation and global teamwork to address the spread and impact of fall armyworm.
The critical global challenge of significantly increasing food production by 2050 is exacerbated by water limitations. Droughts and water scarcity affect crop production across the world and global climate warming is aggravating this effect. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production in drier environments.
The Interdrought 2020 congress presents the latest developments to address this global challenge.
Interdrought 2020 was scheduled to be held in Mexico City in March 2020. As it was not possible to proceed with the congress as a face-to-face meeting due to the travel restrictions associated with the COVID-19 pandemic, the organizing committee has delivered the scientific program of the congress online. Congress proceedings are available at interdrought2020.cimmyt.org.
Today the organizing committee extended the reach of the congress proceedings to the global community by providing free online access to 43 presentations, 75 abstracts and 35 posters. The complete book of abstracts can also be downloaded. To date over 10,000 members of the scientific community have been invited to watch presentations and read the proceedings online.
Internationally recognized keynote speakers participated in the seven main sessions, supported by nine symposia convened by global experts, on topics ranging from breeding and management approaches to the basic science of plant–water relations.
State-of-the-art research and technology
Interdrought 2020 is an opportunity for scientific leaders from across the world to share the latest research and technology developments to advance plant production in water-limited situations. Interdrought 2020 embraces the philosophy of presenting and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.
Interdrought 2020, also known as Interdrought VI (IDVI) is the sixth congress in the series. It builds on the success of previous congresses held in Montpellier in 1995, Rome in 2005, Shanghai in 2009, Perth in 2013, and Hyderabad in 2017.
The congress was organized by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Queensland. The organizers share a strong history of collaboration in crop research and agronomy that seeks to increase wheat’s tolerance to drought and its yield potential in hot conditions, such as those seen in Queensland, Australia, and Sonora, Mexico.
The organizers and the congress committee would like to thank major sponsors Corteva, the Grains Research and Development Corporation (GRDC), the University of Queensland, and supporting sponsors in silico Plants, the Journal of Experimental Botany, Illumina, Analitek, and LI-COR. Our sponsors’ belief in the value of the scientific content enabled us to deliver congress proceedings to not only delegates but the broader scientific community.
For more information, please contact
Professor Graeme Hammer
Chair of the Interdrought 2020 congress committee g.hammer@uq.edu.au
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
QAAFI at the University of Queensland
The Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of the University of Queensland supported by the Queensland Government via the Department of Agriculture and Fisheries. QAAFI is comprised of four inter-related research centres working across crops, horticulture, animals, and nutrition and food sciences, with a focus on addressing challenges in the tropical and subtropical systems. For more information visit www.qaafi.uq.edu.au/about.
Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)
High-yielding, disease-resistant wheat varieties used by Ethiopian wheat farmers between 2015 and 2018 gave them at least 20% more grain than conventional varieties, profits of nearly $1,000 per hectare when they grew and sold seed, and generally improved food security in participating rural households.
These are the result of a project to rapidly multiply and disperse high-quality seed of new improved varieties, and the work of leading Ethiopian and international research organizations. The outcomes of this project have benefitted nearly 1.6 million people, according to a comprehensive new publication.
“Grown chiefly by smallholders in Ethiopia, wheat supports the livelihoods of 5 million farmers and their families, both as a household food crop and a source of income,” said Bekele Abeyo, wheat scientist of the International Maize and Wheat Improvement Center (CIMMYT), leader of the project, and chief author of the new report. “Improving wheat productivity and production can generate significant income for farmers, as well as helping to reduce poverty and improve the country’s food and nutrition security.”
Wheat production in Ethiopia is continually threatened by virulent and rapidly evolving fungal pathogens that cause “wheat rusts,” age-old and devastating diseases of the crop. Periodic, unpredictable outbreaks of stem and stripe rust have overcome the resistance of popular wheat varieties in recent years, rendering the varieties obsolete and in urgent need of replacement, according to Abeyo.
“The eastern African highlands are a hot spot for rusts’ spread and evolution,” Abeyo explained. “A country-wide stripe rust epidemic in 2010 completely ruined some susceptible wheat crops in Oromia and Amhara regions, leaving small-scale, resource-poor farmers without food or income.”
The Wheat Seed Scaling project identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of their seed, and used field demonstrations and strategic marketing to reach thousands of farmers in 54 districts of Ethiopia’s major wheat growing regions, according to Abeyo. The United States Agency for International Development (USAID) funded the project and the Ethiopian Institute of Agricultural Research (EIAR) was a key partner.
Using parental seed produced by 8 research centers, a total of 27 private farms, farmer cooperative unions, model farmers and farmer seed producer associations — including several women farmer associations — grew 1,728 tons of seed of the new varieties for sale or distribution to farmers. As part of the work, 10 national research centers took part in fast-track variety testing, seed multiplication, demonstrations and training. The USDA Cereal Disease Lab at the University of Minnesota conducted seedling tests, molecular studies and rust race analyses.
A critical innovation has been to link farmer seed producers directly to state and federal researchers who supply the parental seed — known as “early-generation seed”— according to Ayele Badebo, a CIMMYT wheat pathologist and co-author of the new publication. “The project has also involved laboratories that monitor seed production and that test harvested seed, certifying it for marketing,” Badebo said, citing those accomplishments as lasting legacies of the project.
Abeyo said the project built on prior USAID-funded efforts, as well as the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) initiatives, led by Cornell University and supported by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID).
Protecting crops of wheat, a vital food in eastern Africa, requires the collaboration of farmers, governments and researchers, according to Mandefro Nigussie, Director General of EIAR.
“More than 131,000 rural households directly benefited from this work,” he said. “The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of a genetically diverse mix of varieties, and link farmers to better and profitable markets.”
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
During a conservation agriculture course, a young trainee operates a Happy Seeder mounted on a two-wheel tractor, for direct seeding of wheat in smallholder systems. (Photo: CIMMYT)
An international team of scientists has provided a sweeping new analysis of the benefits of conservation agriculture for crop performance, water use efficiency, farmers’ incomes and climate action across a variety of cropping systems and environments in South Asia.
The analysis, published today in Nature Sustainability, is the first of its kind to synthesize existing studies on conservation agriculture in South Asia and allows policy makers to prioritize where and which cropping systems to deploy conservation agriculture techniques. The study uses data from over 9,500 site-year comparisons across South Asia.
According to M.L. Jat, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study, conservation agriculture also offers positive contributions to the Sustainable Development Goals of no poverty, zero hunger, good health and wellbeing, climate action and clean water.
“Conservation agriculture is going to be key to meet the United Nations Sustainable Development Goals,” echoed JK Ladha, adjunct professor at the University of California, Davis, and co-author of the study.
Scientists from CIMMYT, the Indian Council of Agricultural Research (ICAR), the University of California, Davis, the International Rice Research Institute (IRRI) and Cornell University looked at a variety of agricultural, economic and environmental performance indicators — including crop yields, water use efficiency, economic return, greenhouse gas emissions and global warming potential — and compared how they correlated with conservation agriculture conditions in smallholder farms and field stations across South Asia.
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
Results and impact on policy
Researchers found that many conservation agriculture practices had significant benefits for agricultural, economic and environmental performance indicators, whether implemented separately or together. Zero tillage with residue retention, for example, had a mean yield advantage of around 6%, provided farmers almost 25% more income, and increased water use efficiency by about 13% compared to conventional agricultural practices. This combination of practices also was shown to cut global warming potential by up to 33%.
This comes as good news for national governments in South Asia, which have been actively promoting conservation agriculture to increase crop productivity while conserving natural resources. South Asian agriculture is known as a global “hotspot” for climate vulnerability.
“Smallholder farmers in South Asia will be impacted most by climate change and natural resource degradation,” said Trilochan Mohapatra, Director General of ICAR and Secretary of India’s Department of Agricultural Research and Education (DARE). “Protecting our natural resources for future generations while producing enough quality food to feed everyone is our top priority.”
“ICAR, in collaboration with CIMMYT and other stakeholders, has been working intensively over the past decades to develop and deploy conservation agriculture in India. The country has been very successful in addressing residue burning and air pollution issues using conservation agriculture principles,” he added.
With the region’s population expected to rise to 2.4 billion, demand for cereals is expected to grow by about 43% between 2010 and 2050. This presents a major challenge for food producers who need to produce more while minimizing greenhouse gas emissions and damage to the environment and other natural resources.
“The collaborative effort behind this study epitomizes how researchers, policy-makers, and development practitioners can and should work together to find solutions to the many challenges facing agricultural development, not only in South Asia but worldwide,” said Jon Hellin, leader of the Sustainable Impact Platform at IRRI.
Funders of this work include the Indian Council of Agricultural Research (ICAR), the Government of India and the CGIAR Research Programs on Wheat Agri-Food Systems (CRP WHEAT) and Climate Change, Agriculture and Food Security (CCAFS).
About CIMMYT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
Maize-bean intercrop in the milpa system of the western highlands of Guatemala. (Photo: Carlos Gonzalez Esquivel)
Researchers from the Department of Energy’s Oak Ridge National Laboratory (ORNL) in Tennessee, United States, and the International Maize and Wheat Improvement Center (CIMMYT) in Texcoco, Mexico, describe why it is important for technical assistance to build upon indigenous farming knowledge and include women if programs are to succeed in tackling poverty and hunger in rural, Mesoamerican communities. Their findings, describing recent work in the Guatemalan Highlands, are recently published in Nature Sustainability.
According to government figures, 59% of Guatemalans live in poverty, concentrated in indigenous rural areas, such as the Western Highlands. Many factors contribute to pervasive malnutrition and a lack of employment opportunities for people in the Highlands. Recent crop failures associated with atypical weather events have exacerbated food shortages for Highland farm communities.
In early 2019, 90% of recent migrants to the southern border of the United States were from Guatemala, a majority of those from regions such as the Western Highlands. When they are unable to produce or purchase enough food to feed their families, people seek opportunities elsewhere. Historically, sugar cane and coffee industries offered employment but as prices for these commodities fall, fewer options for work are available within the region.
Indigenous peoples in the Highlands have been using a traditional agricultural production system called milpa for thousands of years. The milpa system involves growing maize together with climbing beans, squash, and other crops on a small plot of land. The maize plants support the growth of the climbing beans; the beans enrich soil through biological nitrogen fixation; and squash and other crops protect the soil from erosion, retain water, and prevent weeds.
However, frequent crop failures, declining farm sizes, and other factors result in low household production, forcing families to turn to non-agricultural sources of income or assistance from a family member working abroad. Studies have shown that as household income declines, dietary diversity decreases, which exacerbates undernutrition.
In prior decades, technical assistance for agriculture in Central America focused on larger farms and non-traditional export crops. The researchers recommend inclusion of indigenous communities to enhance milpa systems. Nutrition and employment options can be improved by increasing crop diversity and adopting improved seed varieties that are adapted to the needs of the local communities. This approach requires investments that recognize and advance ancestral knowledge and the role of indigenous women in milpa systems. The Nature Sustainability commentary highlights that technical assistance needs to include women and youth and should increase resilience in production systems to climate change, related weather events, pests, and disease.
“Improving linkages among local farmers, extensionists, students, and researchers is critical to identify and implement opportunities that result in more sustainable agricultural landscapes,” said Keith Kline, senior researcher at Oak Ridge National Laboratory. “For example, improved bean varieties have been developed that provide high-yields and disease resistance, but if they grow too aggressively, they choke out other milpa crops. And successful adoption of improved varieties also depends on whether flavor and texture meet local preferences.”
Strengthening institutions to improve agricultural development, health care, security, education can help create stronger livelihoods and provide the Western Highlands community with a foundation for healthier families and economic stability. As more reliable options become available to feed one’s family, fewer Guatemalans will feel pressured to leave home.
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.
The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agriculture in the Dry Areas (ICARDA), recently announced a partnership with the Jiangsu Academy of Agricultural Sciences (JAAS) in China to open a new screening facility for the deadly and fast-spreading fungal wheat disease Fusarium head blight, or FHB.
The new facility, based near the JAAS headquarters in Nanjing, aims to capitalize on CIMMYT’s world-class collection of disease-resistant wheat materials and the diversity of the more than 150,000 wheat germplasm in its Wheat Germplasm Bank to identify and characterize genetics of sources of resistance to FHB and, ultimately, develop new FHB-resistant wheat varieties that can be sown in vulnerable areas around the world.
“The participation of JAAS in the global FHB breeding network will significantly contribute to the development of elite germplasm with good FHB resistance,” said Pawan Singh, head of wheat pathology for CIMMYT.
“We expect that in 5 to 7 years, promising lines with FHB resistance will be available for deployment by both CIMMYT and China to vulnerable farmers, thanks to this new station.”
Fusarium head blight is one of the most dangerous wheat diseases. It can cause up to 50% yield loss and produce severe mycotoxin contamination in food and feed, which affects farmers in the form of increased health care and veterinary care costs, and reduced livestock production.
Even consuming low to moderate amounts of Fusarium mycotoxins may impair intestinal health, immune function and fitness. Deoxynivalenol (DON), a mycotoxin the fungus inducing FHB produces, has been linked to symptoms including nausea, vomiting, and diarrhea. In livestock, Fusarium mycotoxin consumption exacerbates infections with parasites, bacteria and viruses — such as occidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry and swine respiratory disease.
In China, the world’s largest wheat producer, Fusarium head blight is the most important biotic constraint to production.
The disease is extending quickly beyond its traditionally vulnerable wheat growing areas in East Asia, North America, the southern cone of South America, Europe and South Africa — partly as a result of global warming, and partly due to otherwise beneficial, soil-conserving farming practices such as wheat-maize rotation and reduced tillage.
“Through CIMMYT’s connections with national agricultural research systems in developing countries, we can create a global impact for JAAS research, reaching the countries that are expected to be affected the expansion of FHB epidemic area,” said Xu Zhang, head of Triticeae crops research group at the Institute of Food Crops of the Jiangsu Academy of Agricultural Sciences.
The new collaborative effort will target Fusarium head blight research but could potentially expand to research on other wheat diseases as well. Wheat blast, for example, is a devastating disease that spread from South America to Bangladesh in 2016. Considering the geographical closeness of Bangladesh and China, a collaboration with CIMMYT, as one of the leading institutes working on wheat blast, could have a strong impact.
Although the platform is new, the two institutions have a longstanding relationship. The bilateral collaboration between JAAS and CIMMYT began in early 1980s with a shuttle breeding program between China and Mexico to speed up breeding for Fusarium head blight resistance. The two institutions also conducted extensive germplasm exchanges in the 1980s and 1990s, which helped CIMMYT improve resistance to Fusarium head blight, and helped JAAS improve wheat rust resistance.
Currently, JAAS and CIMMYT are working on Fusarium head blight under a project funded by the National Natural Science Foundation of China called “Elite and Durable Resistance to Wheat Fusarium Head Blight” that aims to deploy resistance genes/QTL in Chinese and CIMMYT germplasm and for use in wheat breeding.
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
ABOUT JAAS:
Jiangsu Academy of Agricultural Sciences (JAAS), a comprehensive agricultural research institution since 1931, strives to make agriculture more productive and sustainable through technology innovation. JAAS endeavors to carry out the Plan for Rural Vitalization Strategy and our innovation serves agriculture, farmers and the rural areas. JAAS provide more than 80% of new varieties, products and techniques in Jiangsu Province, teach farmers not only to increase yield and quality, but also to challenge conventional practices in pursuit of original ideas in agro-environment protection. For more information, visit home.jaas.ac.cn/.
The study, co-authored by Julie Miller Jones of St. Catherine University, Carlos Guzman of the Universidad de Córdoba and Hans-Joachim Braun of the International Maize and Wheat Improvement Center (CIMMYT), reviewed findings of more than 100 research papers from nutrition and medical journals as well as national health recommendations. It presents evidence for positive health impacts from diverse diets that include not more than 50% carbohydrates and the right mix of grain-based foods.
“Epidemiological studies consistently show that eating three 30-gram portions of whole-grain foods — say, half a cup of oats — per day is associated with reduced chronic disease risk,” said Miller Jones, Professor Emerita at St. Catherine University and first author of the study. “But refined-grain foods — especially staple, enriched or fortified ones of the ‘non-indulgent’ type — also provide key vitamins and minerals that are otherwise lacking in people’s diets.”
“Cereal grains help feed the world by providing millions of calories per hectare and large amounts of plant-based protein,” said Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat. “They are affordable, shelf stable, portable, versatile, and popular, and will play a key role as the world transitions to plant-based diets to meet future food needs.”
Folate fortification of refined grains has helped reduce the incidence of spina bifida, anencephaly, and other birth defects, according to Miller Jones. “And despite contributing to high sugar intake, ready-to-eat breakfast cereals are typically consumed with nutritious foods such as milk, yogurt, and fruit,” she added.
All grain-based foods, refined and whole, are good sources of dietary fiber, which is essential for sound health but critically lacking in modern diets. “Only 4 percent of the U.S. population, for example, eats recommended levels of dietary fiber,” she said.
Obesity, Type 2 diabetes, high blood pressure, and other illnesses from unbalanced diets and unhealthy habits are on the rise in countries such as the U.S., driving up health care expenditures. The annual medical costs of obesity alone there have been estimated at nearly $150 billion.
“Dietary choices are determined partly by lifestyle but also co-vary with daily habits and personal traits,” Miller Jones explained. “People who eat more whole-grain foods are more likely to exercise, not smoke, and have normal body weights, as well as attaining higher levels of education and socioeconomic status.”
According to the study, recommendations for grain-based foods need to encourage a healthy number of servings and replacing half of refined-grain foods with whole-grain products, as well as providing clearer and unbiased definitions of both types of grain-based foods.
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.