One of the world’s largest crop pathogen surveillance systems is set to expand its analytic and knowledge systems capacity to protect wheat productivity in food vulnerable areas of East Africa and South Asia.
Researchers announced the Wheat Disease Early Warning Advisory System (Wheat DEWAS), funded through a $7.3 million grant from the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth & Development Office, to enhance crop resilience to wheat diseases.
The project is led by David Hodson, principal scientist at CIMMYT, and Maricelis Acevedo, research professor of global development and plant pathology at Cornell University’s College of Agriculture and Life Sciences. This initiative brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.
Wheat DEWAS aims to be an open and scalable system capable of tracking important pathogen strains. The system builds on existing capabilities developed by the research team to provide near-real-time model-based risk forecasts and resulting in accurate, timely and actionable advice to farmers. As plant pathogens continue to evolve and threaten global food production, the system strengthens the capacity of countries to respond in a proactive manner to transboundary wheat diseases.
The system focuses on the two major fungal pathogens of wheat known as rust and blast diseases. Rust diseases, named for a rust-like appearance on infected plants, are hyper-variable and can significantly reduce crop yields when they attack. The fungus releases trillions of spores that can ride wind currents across national borders and continents and spread devastating epidemics quickly over vast areas.
Wheat blast, caused by the fungus Magnaporte oryzae Tritici, is an increasing threat to wheat production, following detection in both Bangladesh and Zambia. The fungus spreads over short distances and through the planting of infected seeds. Grains of infected plants shrivel within a week of first symptoms, providing little time for farmers to take preventative actions. Most wheat grown in the world has limited resistance to wheat blast.
“New wheat pathogen variants are constantly evolving and are spreading rapidly on a global scale,” said Hodson, principal investigator for Wheat DEWAS. “Complete crop losses in some of the most food vulnerable areas of the world are possible under favorable epidemiological conditions. Vigilance coupled with pathogen-informed breeding strategies are essential to prevent wheat disease epidemics. Improved monitoring, early warning and advisory approaches are an important component for safeguarding food supplies.”
Previous long-term investments in rust pathogen surveillance, modelling, and diagnostics built one of the largest operational global surveillance and monitoring system for any crop disease. The research permitted the development of functioning prototypes of advanced early warning advisory systems (EWAS) in East Africa and South Asia. Wheat DEWAS seeks to improve on that foundation to build a scalable, integrated, and sustainable solution that can provide improved advanced timely warning of vulnerability to emerging and migrating wheat diseases.
“The impact of these diseases is greatest on small-scale producers, negatively affecting livelihoods, income, and food security,” Acevedo said. “Ultimately, with this project we aim to maximize opportunities for smallholder farmers to benefit from hyper-local analytic and knowledge systems to protect wheat productivity.”
The system has already proven successful, contributing to prevention of a potential rust outbreak in Ethiopia in 2021. At that time, the early warning and global monitoring detected a new yellow rust strain with high epidemic potential. Risk mapping and real-time early forecasting identified the risk and allowed a timely and effective response by farmers and officials. That growing season ended up being a production record-breaker for Ethiopian wheat farmers.
While wheat is the major focus of the system, pathogens with similar biology and dispersal modes exist for all major crops. Discoveries made in the wheat system could provide essential infrastructure, methods for data collection and analysis to aid interventions that will be relevant to other crops.
Are agroecological approaches, based for example on the use of legumes and manure, enough by themselves to ensure a long-term increase in annual crop yields in sub-Saharan Africa (SSA), without using more mineral fertilizer?
The answer is no, according to a team of agronomists who have published an in-depth analysis of 150 scientific articles on annual crops (maize, sorghum, millet, rice, cassava, etc.) and tropical legumes, both annual grain legumes (cowpea, groundnut) and legume trees (acacia, sesbania) in tropical environments.
These publications collate 50 years of knowledge on nutrient balances in sub-Saharan Africa, biological nitrogen fixation by tropical legumes, manure use in smallholder farming systems and the environmental impact of mineral fertilizer.
“When we look at comparable climate conditions and physical soil constraints, yields of maize – the main source of calories for people – in sub-Saharan Africa are three to four times lower than elsewhere in the world. This is largely due to the fact that mineral fertilizer use (nitrogen, potassium) is on average four times lower there”, says Gatien Falconnier, a researcher at CIRAD based in Zimbabwe and lead author of the article. “On average, 13 kg of nitrogen are used per hectare and per year in sub-Saharan Africa, for all crops, bearing in mind that the poorest farmers have no access to nitrogen fertilizers and therefore do not use them. It is mainly agri-business and vegetable farmers that have access to fertilizers”, adds François Affholder, an agronomist at CIRAD based in Mozambique and co-author of the article.
Maize and cowpea intercropping in the Maravire field. (Photo: CIMMYT)
“Our objective is not to produce like Europe or North America, but to produce more and more regularly according to the seasons and the years, and thus to increase the economic sustainability of our farming systems. To do so, we must ensure a minimum level of nutrients for crops, which require essential mineral elements for efficient photosynthesis, and therefore growth. Soils are typically lacking in mineral elements in sub-Saharan Africa, and the largely insufficient organic inputs lead to nutrient deficiencies in crops. This is the main limiting factor for crop yields, excluding drought situations”, says Pauline Chivenge of the African Plant Nutrition Institute (APNI). “The work by Christian Pieri showed as early as 1989 that it is possible to restore high levels of fertility to African soils through a balanced approach to organic and mineral nutrient inputs”, says François Affholder.
The article highlights five reasons why more mineral fertilizer is needed in sub-Saharan Africa:
Farming systems are characterized by very low mineral fertilizer use, widespread mixed crop-livestock systems, and significant crop diversity, including legumes. Inputs of mineral elements to crops by farmers are insufficient, resulting in a widespread decline in soil fertility due to soil nutrient mining.
The nitrogen requirements of crops cannot be met solely through biological nitrogen fixation by legumes and manure recycling. Legumes can only fix atmospheric nitrogen if symbiosis with soil bacteria functions correctly, which requires absorption of different mineral elements by the plant. Ken Giller of Wageningen University highlights that the ability of legumes to capture nitrogen from the air through their symbiosis with rhizobium bacteria is a fantastic opportunity for smallholder farmers, “but the amounts on nitrogen fixed are very small unless other nutrients such as phosphorus are supplied through fertilizers”.
Phosphorus and potassium are often the main limiting factors of the functioning of plants and living organisms, including symbiotic bacteria: if there is not enough phosphorus and potassium in soils, then there is no nitrogen fixation. These nutrient elements, phosphorus, potassium and micro-elements, need to be provided by fertilizers, since they cannot be provided by legumes, which draw these elements directly from the soil. In the case of manure, this is simply a transfer from grazing areas to cultivated areas, which gradually reduces fertility in grazing areas.
If used appropriately, mineral fertilizers have little impact on the environment. The greenhouse gas emissions linked to nitrogen fertilizer use can be controlled through a balanced and efficient application. In addition, mineral fertilizers can be produced more efficiently in order to reduce the impact of their production on greenhouse gas emissions, keeping in mind that this impact is low, at around 1% of total anthropogenic emissions.
Further reducing mineral fertilizer use in SSA would hamper productivity gains and would contribute directly to increasing food insecurity and indirectly to agricultural expansion and deforestation. Producing for a population that will double by 2050 is likely to require the use of more agricultural land. An extensive strategy thus harms biodiversity and contributes to increasing greenhouse gas emissions, contrary to an agroecological intensification strategy combined with efficient and moderate mineral fertilizer use.
“If we take account of biophysical production factors, such as climate and soil, and shortages of land and agricultural workers, it will be impossible to reach a satisfactory production level by fertilizing soils only with manure and using legumes”, says Leonard Rusinamhodzi, an agricultural researcher at the Ghana International Institute of Tropical Agriculture.
However, “agroecological principles linked directly to improving soil fertility, such as recycling of mineral and organic elements, crop efficiency and diversity, with for example agroforestry practices and cereal-legume intercropping, remain essential to improve soil health. Soil fertility is based on its organic matter content, provided by plant growth that determines the biomass that is returned to the soil in the form of roots and plant residues. Efficient mineral fertilizer use starts a virtuous circle. These nutrients are crucial for the sustainability of agricultural productivity”, says Gatien Falconnier.
The researchers therefore argue for a nuanced position that recognizes the need to increase mineral fertilizer use in sub-Saharan Africa, in a moderate manner based on efficient practices, in conjunction with the use of agroecological practices and appropriate policy support. This balanced approach is aimed at ensuring long-term food security while preserving ecosystems and preventing soil degradation.
Référence Falconnier, G. N., Cardinael, R., Corbeels, M., Baudron, F., Chivenge, P., Couëdel, A., Ripoche, A., Affholder, F., Naudin, K., Benaillon, E., Rusinamhodzi, L., Leroux, L., Vanlauwe, B., & Giller, K. E. (2023).
The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa. Outlook on Agriculture, 0(0). https://doi.org/10.1177/00307270231199795
*CIRAD, CIMMYT, International Institute of Tropical Agriculture (IITA), Wageningen University and the African Plant Nutrition Institute (APNI)
AMES, IOWA—The Council for Agricultural Science and Technology (CAST) has announced the 2023 Borlaug CAST Communication Award goes to Alison Bentley.
While Bentley is known for her global research on wheat genetics, she is also recognized for her proficiency in science communication. Bentley has a passion for delivering practical applications from innovation to farmers, extensive reach through communicating and influencing, and mentoring and support of individuals and community efforts. Bentley’s exceptional work in raising awareness about the importance of wheat as a food crop is also evidenced by her wide-ranging list of communication activities.
In 2022 alone, Bentley delivered 20 scientific presentations—including five international keynote talks and 15 additional invited talks. Bentley focused her communication efforts around two major areas. The first area was her rapid, science-led response to the impact of the Russian/Ukraine war on global wheat production through a communication article in Nature, followed with a social media campaign and numerous presentations and invited policy briefings. Her second area of focus was a major communications campaign by initiating and leading the Women in Crop Science network. This network was developed to address key issues such as the promotion and championing of females throughout their research careers, creating equal opportunities, and increasing visibility of members.
The extensive breadth of Bentley’s outreach ranges from classic science presentations and open access articles to blogs, podcasts, YouTube videos, and Twitter campaigns. All these formats demonstrate her commitment to science communication and reaching as wide an audience as possible in an accessible way to engage with important, current topics regarding wheat supplies and plant breeding.
The official presentation of the award will take place at a special side event during the World Food Prize Borlaug Dialogue event in Des Moines, Iowa, in October. The Borlaug CAST Communication Award honors the legacy of Norman Borlaug, a Nobel Prize winner and author of the first CAST publication, and Dr. Charles A. Black, the first executive vice president of CAST. It is presented annually for outstanding achievement by a scientist, engineer, technologist, or other professional working in the agricultural, environmental, or food sectors for contributing to the advancement of science through communication in the public policy arena.
ABOUT CAST
CAST is an international consortium of scientific and professional societies, universities, companies, nonprofits, libraries, and individuals. CAST convenes and coordinates networks of experts to assemble, interpret, and communicate credible, unbiased, science-based information to policymakers, the media, the private sector, and the public.
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
Like other crops, wheat – which makes up 20 percent of the human diet – is affected by threats to the global food system from persistent population growth and economic and climate pressures. These challenges are further exacerbated by the fallout from the COVID-19 pandemic and the war in Ukraine. There is an urgent need to prioritize climate resilient wheat varieties to protect this food staple.
Some five years after HeDWIC was launched in 2014 to incorporate the most advanced research technologies into improving heat and drought tolerance of wheat, the Intergovernmental Panel on Climate Change reported that climate change was having an impact on food security through increasing temperatures, changing precipitation patterns and greater frequency of extreme weather events in its Special Report on Climate Change and Land.
“While some areas are becoming more conducive to wheat growing, crop yields are suffering in other regions around the world traditionally known as bread baskets,” said wheat physiologist Matthew Reynolds, who leads HeDWIC at the International Maize and Wheat Improvement Center (CIMMYT).
“Wheat is one of our fundamental crops, and we must spare no effort in protecting it from current and future challenges,” said Saharah Moon Chapotin, FFAR executive director. “Global collaborations are necessary to address global concerns, and these grants are bringing together international teams to share and build the science and research that will ensure the stability of this crop.”
To boost new ideas in “climate-proofing” crops, HeDWIC conducts virtual meetings that include all awarded research teams to take advantage of the collective global expertise in heat and drought resilience, leading to cross-pollination of ideas and further leverage of resources and capabilities.
In March, Reynolds led in-person discussions with some of the collaborating researchers at CIMMYT’s experimental research station on the outskirts of Ciudad Obregon, a city in Mexico’s Sonoran Desert, during CIMMYT’s annual Visitors’ Week.
Projects awarded in 2022
Exploring the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat (FluoSense4Wheat)
“The HeDWIC mini proposal allows us to explore the potential of chlorophyll fluorescence for the early detection of drought and heat stress in wheat. The controlled irrigation conditions for wheat grown in Obregon give us the opportunity to quantify photosynthesis by fluorescence while drought develops. Detecting a drought-specific fluorescence response and/or the interaction between active and passive fluorescence is relevant for breeding selecting purposes as well as large spatial scale detection of drought by monitoring the plant.” – Onno Muller, Forschungszentrum Jülich, Institute of Bio- and Geosciences, Germany
Physiological basis of amelioration of heat stress through nitrogen management in wheat
“Heat stress during grain filling can restrict the availability of carbohydrates needed for grain development. India has been experiencing sudden spikes in both minimum and maximum temperatures by 3 to 5 degrees above normal from late-February onwards, which is an important time for wheat grain-filling and has resulted in declining wheat productivity. Our team is examining the ability of pre-flowering nitrogen applications to support biomass accumulation and overcome the grain-filling source (carbohydrate) limitation during heat spikes. If successful, the results could have broad-reaching benefits given that farmers are familiar with and well-skilled in using nitrogen applications regimes in crop management.” – Renu Pandey, Division of Plant Physiology, Indian Agricultural Research Institute
Can reproductive development be protected from heat stress by the trehalose 6-phosphate pathway?
“The HeDWIC funding provides a unique opportunity to test how the regulatory sugar, trehalose 6-phosphate (T6P) can protect wheat yields against increasingly common chronic and acute heat stress events. We have already shown that T6P spray increases wheat yields significantly in field conditions under a range of rainfall in wet and dry years. With increasing likelihood of heat stress events in the years ahead, in unique facilities at CIMMYT, we will test the potential of T6P to protect reproductive development from catastrophic yield loss due to chronic and acute heat.” – Matthew Paul, Rothamsted Research, UK
Investigating tolerance of heat resilient wheat germplasm to drought
“Over the last decade, we have developed heat tolerant wheat germplasm at the University of Sydney that maintains yield under terminal heat stress. In our new HeDWIC project, this material will be tested under combined drought and heat stress under field conditions. This will provide plant breeders with highly valuable information on field tested germplasm for use in accelerated breeding programs targeting combined heat and drought tolerance. The work is critical for future food security considering the inextricable link between temperature and plant water demand, and the increased frequency and intensity of heat and drought events under projected climate change.” – William Salter, University of Sydney, Australia
Novel wheat architecture alleles to optimize biomass under drought
“Wheat Rht-1 dwarfing genes were an essential component that led to spectacular increases in grain yields during the Green Revolution. Although Rht1 and Rht2 are still used widely in wheat breeding 50 years after they were introduced, they are suboptimal under drought conditions and are often associated with a yield penalty. Using a more extensive range of Rht-1 dwarfing alleles that were developed at Rothamsted, we will introduce them into CIMMYT germplasm to optimize biomass and ultimately increase grain yields under drought stress.” – Steve Thomas, Rothamsted Research, UK
Additional comments from 2021 awardees
“This opportunity has enabled the collection of significant amounts of data that will contribute to the advancement of knowledge in crop physiology and root biology. It has also provided early career researchers with opportunities to gain hands-on experience, develop important skills, and grow their networks. Additionally, this initiative has stimulated further ideas and collaborations among researchers, fostering a culture of innovation and cooperation that is essential for progress.” – Hannah Schneider, Wageningen University & Research, Netherlands
“The project is a unique opportunity for research groups from around the world to coordinate efforts on identifying ways to improve heat tolerance of wheat.” – Owen Atkin, Australian National University, Australia
“It is important to understand how high temperature limits crop growth and yield and to identify genetic variation that can be used for breeding climate resilient crops. This project has already begun to develop new methods for rapidly screening growth and physiological processes in genetically diverse panels which we hope will be invaluable to researchers and breeders.” – Erik Murchie, University of Nottingham, UK
“This project will provide novel phenotyping screens and germplasm to breeders and lay the groundwork for genetic analysis and marker development.” – John Foulkes, University of Nottingham, UK
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
Silvia Chinda an organic soya farmer posing in front of her soya crop. (Photo: Tawanda Hove/CIMMYT)
Leading scientists, practitioners and representatives of development agencies, and international and non-governmental organizations reimagine the path to achieve Zero Hunger at a time when recurring crises driven by food insecurity, climate change and conflict stretch both emergency response and development efforts to the limit.
The exercise aims to trigger disruptive thinking around how long-term development investments can help build more resilient communities. Stronger cooperation mechanisms between the humanitarian and development sectors are necessary to break the cycle of recurrent crises by building local agency and capacities. Aid and development beneficiaries in vulnerable communities must be front and center in every effort seeking to achieve a hunger free and sustainable planet.
The brief has been endorsed by a group of experts who participated in the 2022 Borlaug Dialogue of the World Food Prize in Des Moines, Iowa.
How can we overcome the primary obstacles to a food secure, resilient, and inclusive world?
The first challenge involves addressing fractures between aid and development organizations that work in silos without sharing information, objectives, learnings, and resources. The authors make a strong case for increasing cooperation – rather than competition – to confront the intricate and interconnected challenges of climate change, food insecurity and conflict.
In addition, they advocate for more ambitious and community-centered interventions that prioritize systemic change over emergency responses to food crises. The change of perspective implies shifting the emphasis from addressing immediate humanitarian needs to investing in long-term resilience.
The third recommendation is to phase out outdated top-down planning and policy-making processes that fail to align with community needs, delegate decisions or transfer resources directly to partners on the ground. Listening to the needs of beneficiaries and affected communities from the start of any intervention is considered the most significant step to achieve lasting change.
CIMMYT and partners are leading by example and catalyzing change in sub-Saharan Africa
With funding from the United States Agency for International Development (USAID), CIMMYT and other CGIAR centers, in partnership with innovation generators and organizations on the ground, will develop and scale up solutions for transforming farming systems by implementing the Accelerated Intervention Delivery Initiative (AID-I) in Malawi, Tanzania and Zambia, and the Sustainable Agrifood Systems Approach for Sudan (SASAS). Both initiatives answer the need for stronger cooperation between the humanitarian and development sectors by creating a common space where aid and research organizations work together on the ground to address the urgent and long-term needs of vulnerable communities to their mutual advantage.
These CIMMYT-led projects will establish innovation hubs or networks for developing, testing, and adapting sustainable farming practices and technologies to the needs of local farmers actively engaged in participatory research and extension activities, building cooperative relationships, and leveraging the existing collaboration between One CGIAR research systems. As a result, co-creation between partners and project beneficiaries is at the heart of every research activity, co-development process and scaling endeavor.
AID-I will adopt market-based approaches to provide critical information and innovations to 3 million smallholder farmers, who will maintain or increase local food production and mitigate the impacts of the global food, fuel, and fertilizer crises. Small and medium sized enterprises will be supported to strengthen innovative approaches to agricultural value change development, creating agricultural systems that are built for long-term resilience and success.
Similarly, SASAS will take a multi-crop approach focusing on soil fertility management to achieve productivity gains and inclusive agriculture-led economic growth in the Greater Khartoum, Blue Nile and South Kordofan regions of Sudan. CIMMYT will leverage on-the-ground partnerships to adapt and replicate previously successful Integrated Agrifood Systems Initiatives (IASI) projects, empowering communities to ensure the agricultural transformation works for their needs.
Ultimately, both initiatives shift their focus from crisis response to building long-term resilience and aim to achieve rapid but lasting climate-smart impacts that demonstrate the power of small-scale agriculture as a major driver of transformative change by expanding access to improved technologies, tools, and information in sub-Saharan Africa.
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
The WIT awards are a premier recognition of talent and dedication of early-career women scientists and those who have excelled at mentoring women working in wheat and its nearest cereal relatives. This year’s winners are innovative wheat researchers from Malawi, Morocco, New Zealand, Spain, Tunisia and the United States.
“It is an honor to recognize these incredible scientists for their drive and vision in support of food security,” said Jeanie Borlaug Laube, chair of the BGRI and daughter of Nobel Prize Peace-winner Norman E. Borlaug. “My father believed that generations of hunger fighters would be needed to rid the world of food insecurity, and I’m proud to recognize these 2023 awardees for continuing to carry that mission forward.”
The WIT Early-Career Award provides women working in wheat with the opportunity for additional training, mentorship and leadership opportunities. The WIT Mentor Award recognizes the efforts of men and women who have played a significant role in shaping the careers of women working in wheat and demonstrated a commitment to increasing gender parity in agriculture.
“The WIT Awards have proven to be influential in shifting gender dynamics towards more equity in wheat science. WIT awardees are taking on leadership roles in scientific settings all over the world, and these newest awardees have the potential to continue that trend towards a more inclusive future,” said Maricelis Acevedo, director for science for the BGRI and research professor of global development in Cornell University’s College of Agriculture and Life Sciences.
Since founding the WIT awards in 2010, the BGRI has now recognized 71 early-career award winners from 31 countries and 13 mentors from 9 countries.
From Malawi, Veronica is a Ph.D student, University of Nottingham (UoN)-Rothamsted Research (RRes) in the United Kingdom, and Lilongwe University of Agriculture and Natural Resources (LUANAR) in Malawi. She focuses on exploiting the wider genetic variation among wheat and wild relatives to identify novel sources for increased grain zinc and iron concentration, and transfer these to African varieties.
From Morocco, Hafssa is genomic selection expert for the durum wheat breeding program at International Center for Agricultural Research in the Dry Areas (ICARDA) in Morocco. Her work is aimed at implementing genomic selection and speed breeding tools to deliver superior cultivars to national partners from Central and West Asia, North Africa, and West Africa.
From Spain, Marina is a fourth-year Ph.D. student at the John Innes Centre where she studies the post-anthesis development of the unpollinated wheat carpel under the supervision of Cristóbal Uauy and Scott Boden and in collaboration with KWS and Syngenta. Marina is applying a combination of approaches, including field trials, microscopy work, machine learning, and transcriptomics to better understand the genetic processes regulating different aspects of female fertility in bread wheat.
From New Zealand, Megan is a CERC Postdoctoral Research Fellow at the Commonwealth Scientific and Industrial Research Organisation (CSIRO). She focuses on developing molecular understanding of the interactions between rust fungi and wheat through structural biology and protein biochemistry, and recently adopted new artificial intelligence technologies in her work to facilitate structural analysis on a genome-wide scale for the purpose of exploiting structural conservation to engineer novel, durable genetic resistance in wheat and ensure effective utilization of current resistance.
From the United States, Amanda is a research geneticist at the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) at the Cereal Crops Research Unit in Fargo, North Dakota. Her current research program focuses on pre-breeding and germplasm improvement for both tetraploid and hexaploid wheat, focusing on the Great Plains region.
A dual citizen of Tunisia and the United States, Amor is vice president of the Borlaug Training Foundation. His work has spanned organizations on multiple continents, with positions at the University of Tunis, ICARDA, and CIMMYT. As Wheat Training Officer at CIMMYT from 2012-2018, he enhanced academic and hands-on training on wheat improvement for junior scientists from over 20 countries annually. There he developed a modular advanced wheat improvement course for mid-career scientists. In Tunisia he initiated the CRP-Wheat Septoria Precision Phenotyping Platform in Tunisia, where from 2015 to 2021 he fully involved graduate research as part of platform that led to women researchers earning seven Ph.D. and two MSc degrees in a six-year period.
Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s El Batán headquarters, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)
Fast Tracking Climate Solutions from CGIAR Genebank Collections is expanding CGIAR’s and other organizations’ crop improvement research. This initiative is key to developing new crop varieties adapted to the stresses of climate change, including disruptions caused by drought, heat and flooding. Through this ambitious research program, scientists have already developed critical traits using the genebanks, strengthening the identification of high-value genetic diversity from germplasm collections and more efficiently leveraging this diversity to develop new varieties of climate-resilient crops.
Join virtually to learn more about this program’s pioneering research, the value of collaboration in this research and opportunities to engage further.
WHEN: November 11, 2022, from 11 a.m. to 12 p.m. EST
RSVP: Please register for the webinar to receive call-in information. This event is free and open to the public.
AIM for Climate is a joint initiative by the United States and United Arab Emirates seeking to address climate change and global hunger. The initiative brings together partners to increase investment in climate-smart agriculture and food systems innovation. Specifically, AIM for Climate is advancing research through Innovation Sprints. As an AIM for Climate Knowledge Partner and an Innovation Sprint Partner, FFAR has two other Innovation Sprints in addition to the genebanking project: AgMission and the Greener Cattle Initiative.
For more information, contact Jamie Nickel, communications & legislative affairs associate, at jnickel@foundationfar.org.
About the Foundation for Food & Agriculture Research
The Foundation for Food & Agriculture Research (FFAR) builds public-private partnerships to fund bold research addressing big food and agriculture challenges. FFAR was established in the 2014 Farm Bill to increase public agriculture research investments, fill knowledge gaps and complement USDA’s research agenda. FFAR’s model matches federal funding from Congress with private funding, delivering a powerful return on taxpayer investment. Through collaboration and partnerships, FFAR advances actionable science benefiting farmers, consumers and the environment.
Cover photo: Shelves filled with maize seed samples make up the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center at CIMMYT’s El Batán headquarters, Mexico. (Photo: Xochiquetzal Fonseca/CIMMYT)
Nestlé and CIMMYT executives at CIMMYT HQ. (Photo: Francisco Alarcón/CIMMYT)
In the framework of National Maize Day, Nestlé Mexico, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), strengthens its commitment to support the development of farmers in Mexico, through the Plan Maíz initiative, which aligned with the goals of the Sustainable Development Goals (SDGs), seeks to boost productivity, increase and improve the practices of regenerative agriculture to positively impact food security, environmental impact and social inclusion of the Mexican fields.
In Mexico, maize is not only a staple food, but also a fundamental component of the gastronomic and cultural heritage and identity of Mexicans. For this reason, since 2017, Nestlé Mexico and CIMMYT signed a collaboration agreement to work together and contribute not only to improve the quality of life of farmers, but also to take care of the resources that produce one of the most important grains for our country, for the world and for the agrifood sector.
The event, Plan Maíz, commitment to regenerative agriculture and sustainability, was attended by Bram Goavaerts, director general of CIMMYT, and Julieta Loaiza, Vice President of Communication and Corporate Affairs of Nestlé Mexico, as well as representatives and managers of both institutions, in order to present progress and ratify the agreements for the future, with the aim of continuing to combine resources and actions for the development of agriculture in Mexico.
“At Nestlé we are committed to the sustainability and development of the Mexican fields. We have more than 90 years of work, commitment and experience in this beautiful country, so we will expand our support for the development and training of farmers to improve their production processes through regenerative agricultural practices for the care of natural resources and food security in Mexico,” said Loaiza.
Govaerts said, “At CIMMYT we are very committed to maize and wheat producers in Mexico, so this Nestlé-CIMMYT alliance allows us to multiply the impact to protect and conserve Mexico’s agricultural resources and strengthen the food security of Mexicans.”
The results of Plan Maíz obtained to date are significant: 400 farmers have benefited by adopting sustainable practices for the production of both maize and wheat, since they attended training and demonstration events that promoted a more sustainable commercial production model.
Thanks to the agreement’s training, the volume of maize and wheat produced grew to a cumulative total volume of more than 193,000 tons of maize and 21,690 tons of wheat. The project impacted more than 9,000 hectares of maize and wheat. In total, and during eight productive cycles, the accumulated number of hectares impacted amounted to more than 19,000, where there is a record of at least the adoption of sustainable practices such as: integral fertility, integral and responsible management of fertilizers and phytosanitary products, among others.
Nestlé has aimed to achieve zero net emissions in its operations by 2050. In this regard, it focuses its efforts on acting on climate change by supporting and expanding regenerative agriculture. This means refining and growing agricultural sustainability programs in key commodities.
To achieve this, they are intensifying their commitment to farmers so that the solutions they create for and with them achieve a positive and sustainable change both in their agricultural processes and in the main raw materials. Therefore, the goal is for 20% of maize and wheat from Plan Maíz to come from regenerative agriculture practices by 2025 and 50% by 2030, thus continuing to build on the commitment to develop the full power of food to improve the quality of life, today and for future generations.
About Grupo Nestlé Mexico:
Nestlé is the world’s largest food and beverage company. It is present in 187 countries around the world, and its 300,000 employees are committed to Nestlé’s purpose of improving the quality of life and contributing to a healthier future. Nestlé offers a broad portfolio of products and services for people and their pets throughout their lives. Its more than 2,000 brands range from global icons to local favorites. The company’s performance is driven by its nutrition, health and wellness strategy. Nestlé is headquartered in the Swiss city of Vevey, where it was founded more than 150 years ago. With 90 years of presence in Mexico, Nestlé is also the leading Nutrition, Health and Wellness company in the country, with the support of 32 global Research Centers, 17 factories in 7 states and 16 distribution centers, where 13,000 jobs are generated. Visit: www.nestle.com.mx
About the International Maize and Wheat Improvement Center (CIMMYT):
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
As the Russia-Ukraine war continues to degrade global food security, the Australian who leads the global effort on improving wheat production has set out the concrete actions needed by governments and investors to mitigate the food crisis, stabilise supply and transition to greater agrifood system resilience.
Alison Bentley leads the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), the renowned research organisation from which more than 90 per cent of the wheat varieties grown in Australia can be traced. She will be addressing the Crawford Fund’s international conference Celebrating Agriculture for Development – Outcomes, Impacts and the Way Ahead this week in Parliament House, Canberra. The conference will also be addressed by the Minister for Agriculture, Fisheries and Forestry, Senator The Hon, Murray Watt.
“The broad food security impacts of the Russia-Ukraine war highlight the fragility of the global food supply, but the war is only one of a multitude of problems that we’ll be facing for many years to come. Few will remain unaffected,” said Alison Bentley, who was the lead author in a recently published related article in Nature Food.
“More than 2.5 billion people worldwide consume wheat-based foods. We need to move beyond defining the problem to implementing practical actions to ensure stable food supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system, and we will all benefit,” she said.
“The first priority is to mitigate the immediate crisis by boosting wheat production by bundling existing agronomic and breeding improvements and sustainable farming practices, just as Australia and other wealthy countries are doing. This will reduce dependence on imported grain and fertilizer in poorer countries.”
“We have learned since the Green Revolution that this must be done within agro-ecological boundaries, with high-yielding disease-resistant wheat and by mainstreaming capacity for pest and disease monitoring. Importantly, we also need to address climate change, gender disparities, nutrition insufficiency and increase investment in agricultural research,” she concluded.
The Fund’s annual conference will bring together international and Australian specialists to look at the mutual benefit and impacts of investment in global food security and poverty alleviation, and consider the effects of emerging threats including climate change and changing geo-political conditions on agricultural production, food chains and the environment.
Other speakers include international affairs specialist Allan Gyngell, climate change and security specialist Robert Glasser and renowned international economist Phil Pardey.
Elufe Chipande (left), a farmer at Songani in Zomba District, Malawi, is rotating maize (background) and pigeonpea (foreground) under conservation agriculture practices to improve soil fertility and capture and retain more water. Christian Thierfelder (center), a cropping systems agronomist working out of the Zimbabwe office of CIMMYT, advises and supports southern African farmers and researchers to refine and spread diverse yield-enhancing, resource-conserving crop management practices. Photo: Mphatso Gama/CIMMYTSRUC
An international team of scientists has found that eco-friendly practices such as growing a range of crops, including legumes such as beans or pigeonpea, and adding plant residues or manure to soils can raise food crop yields in places such as rural Africa, where small-scale farmers cannot apply much nitrogen fertilizer.
Published in the science journal Nature Sustainability and examining data from 30 long-running field experiments involving staple crops (wheat, maize, oats, barley, sugar beet, or potato) in Europe and Africa, this major study is the first to compare farm practices that work with nature to increase yields and explore how they interact with fertilizer use and tillage.
“Agriculture is a leading cause of global environmental change but is also very vulnerable to that change,” said Chloe MacLaren, a plant ecologist at Rothamsted Research, UK, and lead author of the paper. “Using cutting-edge statistical methods to distill robust conclusions from divergent field experiment data, we found combinations of farming methods that boost harvests while reducing synthetic fertilizer overuse and other environmentally damaging practices.”
Recognizing that humanity must intensify production on current arable land to feed its rising numbers, the paper advances the concept of “ecological intensification,” meaning farming methods that enhance ecosystem services and complement or substitute for human-made inputs, like chemical fertilizer, to maintain or increase yields.
Boosting crop yields and food security for far-flung smallholders
The dataset included results from six long-term field experiments in southern Africa led by the International Maize and Wheat Improvement Center (CIMMYT). Africa’s farming systems receive on average only 17 kilograms of fertilizer per hectare, compared to more than 180 kilograms per hectare in Europe or close to 600 in China, according to Christian Thierfelder, a CIMMYT cropping systems agronomist and study co-author.
“In places where farmers’ access to fertilizer is limited, such as sub-Saharan Africa or the Central American Highlands, ecological intensification can complement scarce fertilizer resources to increase crop yields, boosting households’ incomes and food security,” Thierfelder explained. “We believe these practices act to increase the supply of nitrogen to crops, which explains their value in low-input agriculture.”
The CIMMYT long-term experiments were carried out under “climate-smart” conservation agriculture practices, which include reduced or no tillage, keeping some crop residues on the soil, and (again) growing a range of crops.
“These maize-based cropping systems showed considerable resilience against climate effects that increasingly threaten smallholders in the Global South,” Thierfelder added.
Benefits beyond yield
Besides boosting crop yields, ecological intensification can cut the environmental and economic costs of productive farming, according to MacLaren.
“Diversifying cropping with legumes can increase profits and decrease nitrogen pollution by reducing the fertilizer requirements of an entire crop rotation, while providing additional high-value food, such as beans,” MacLaren explained. “Crop diversity can also confer resilience to weather variability, increase biodiversity, and suppress weeds, crop pests and pathogens; it’s essential, if farmers are to improve maize production in places like Africa.”
Thierfelder cautioned that widespread adoption of ecological intensification will require strong support from policymakers and society, including establishing functional markets for legume seed and for marketing farmers’ produce, among other policy improvements.
“Dire and worsening global challenges — climate change, soil degradation and fertility declines, and scarcening fresh water — threaten the very survival of humanity,” said Thierfelder. “It is of utmost importance to renovate farming systems and bring us back into a safe operating space.”
Click here to read the paper, Long-term evidence for ecological intensification as a pathway to sustainable agriculture.
Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)
As the Russia-Ukraine war continues to degrade global food security, a new analysis lays out concrete actions that governments and investors must do now to mitigate near-term food security risks and stabilize wheat supplies, while transitioning toward long-term resilience.
“The Russia-Ukraine war will impact global food security over months — if not years,” said CIMMYT Global Wheat Program Director and lead author Alison Bentley. “We now need to move beyond defining the problem to implementing practical actions to ensure stable supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system.”
The war in Ukraine and trade sanctions against Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. More than 2.5 billion people worldwide consume wheat-based foods; those in lower- to middle-income countries dependent on imports from Russia and Ukraine are particularly affected. Some of the world’s poorest countries, such as Bangladesh, Sudan and Yemen, rely heavily on Russian and Ukrainian wheat. Given the highly interconnected nature of contemporary agrifood systems, few will remain unaffected by this new global food shock.
Mitigate the immediate crisis
The first priority, according to the authors, is to mitigate the immediate crisis by boosting wheat production in existing high- and low-productivity areas, ensuring grain access and blending wheat flour with other low-cost cereals. Bundled agronomic and breeding improvements and sustainable farming practices can reduce dependence on imported grain and fertilizer, while coordinated, multilateral policies can help conserve grain stocks for human consumption and avert trade restrictions.
Increase the resilience of wheat supply
In the medium term, the authors emphasized the need to increase the local, regional, and global resilience of the wheat supply. This can be done by expanding production within agro-ecological boundaries, supporting national wheat self-sufficiency and providing technical assistance, to increase the production of high-yielding disease-resistant wheat and to mainstream capacity for pest and disease monitoring.
Transition to system-level resilience
Finally, to reach crucially needed resilience in the world’s agrifood system, long-term measures must be taken that encompass agroecosystem diversity, address gender disparities in agriculture and rural communities and sustain increased investment in a holistic, agrifood transition.
“The current global food crisis underscores and compounds existing inequalities in our global food system,” Bentley said. “A transition to agrifood system resilience requires us to urgently balance global food supply needs with the multi-layered challenges of climate change, achieving gender equity, nutritional sufficiency and livelihood security.”
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.
Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agrifood systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
Representatives from CGIAR leadership, CGIAR Centers, government and other stakeholders stand for a group photo during the launch of the AgriLAC Resiliente Initiative in Guatemala City. (Photo: CGIAR)
Latin America and the Caribbean possess the largest reserve of arable land on the planet, 30% of renewable water, 46% of tropical forests and 30% of biodiversity. These resources represent an important contribution to the world’s food supply and other ecosystem services. However, climate change and natural disasters, exacerbated by COVID-19, have deteriorated economic and food security, destabilizing communities and causing unprecedented migration, impacting not only the region but the entire world.
Against this regional backdrop, AgriLAC Resiliente was created. This CGIAR Initiative seeks to increase the resilience, sustainability and competitiveness of the region’s agrifood systems and actors. It aims to equip them to meet urgent food security needs, mitigate climate hazards, stabilize communities vulnerable to conflict and reduce forced migration.
Guatemala was selected to present this Initiative, which will also impact farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua and Peru, and will be supported by national governments, the private sector, civil society, and regional and global donors and partners.
At a workshop on June 27–28, 2022, in Guatemala City, partners consolidated their collaboration by presenting the Initiative and developing a regional roadmap. Workshop participants included representatives from the government of Guatemala, NGOs, international cooperation programs, the private sector, producer associations, and other key stakeholders from the host country. Also at the workshop were the leaders from CGIAR research Centers involved in the Initiative, such as the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP) and the International Food Policy Research Institute (IFPRI).
Joaquín Lozano, CGIAR Regional Director for Latin America and the Caribbean, presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
Impact through partnerships
“Partnerships are the basis for a future of food security for all through the transformation of food systems in the context of a climate crisis. AgriLAC’s goal of a coordinated strategy and regional presence will facilitate strong joint action with partners, donors, and producers, and ensure that CGIAR science continues to be leveraged so that it has the greatest possible impact,” said Joaquín Lozano, CGIAR Regional Director for Latin America and the Caribbean.
This Initiative is one of many CGIAR Initiatives in Latin America and consists of five research components: Climate and nutrition that seeks to use collaborative innovations for climate resilient and nutritious agrifood systems; Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge; Low-emission competitiveness focused on agroecosystems, landscapes and value chains that are low in sustainable emissions; Innovation and scaling with the Innova-Hubs network for agrifood innovations and scaling; and finally, Science for timely decision making and establishment of policies, institutions, and investments for resilient, competitive and low-emission agrifood systems.
“We know the important role that smallholder farmers, both women and men, will play in the appropriation of the support tools that the Initiative will offer, which will allow them to make better decisions for the benefit of their communities. That is why one of the greatest impacts we expect from the project will be the contribution to gender equality, the creation of opportunities for youth, and the promotion of social inclusion,” said Carolina González, leader of the Initiative, from the Alliance of Bioversity International and CIAT.
Bram Govaerts, Director General of CIMMYT, said: “In Guatemala, we have had the opportunity to work side by side with farmers who today, more than ever, face the vicious circle of conflict, poverty and climate change. Through this Initiative, we hope to continue making progress in the transformation of agrifood systems in Central America, helping to make agriculture a dignified and satisfying job and a source of prosperity for the region’s producers.”
“I realize the importance of implementing strategic actions designed to improve the livelihoods of farmers. The environmental impact of development without sustainable planning puts at risk the wellbeing of humanity. The Initiatives of this workshop contribute to reducing the vulnerability of both productive systems and farmers and their families. This is an ideal scenario to strengthen alliances that allow for greater impact and respond to the needs of the country and the region,” said Jose Angel Lopez, Guatemala’s Minister of Agriculture, Livestock and Food.
Bram Govaerts, Director General of CIMMYT (right), presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
National and regional strategies
AgriLAC Resiliente will also be presented in Honduras, where national partners will learn more about the Initiative and its role in achieving a resilient, sustainable, and competitive Latin America and the Caribbean, that will enable it to achieve the Sustainable Development Goals.
Under the general coordination of CGIAR, other Initiatives are also underway in Guatemala that will synergize with the global research themes toward the transformation of more resilient agrifood systems.
“We are committed to providing a structure that responds to national and regional priorities, needs, and demands. The support of partners, donors and producers will be key to building sustainable and more efficient agrifood systems,” Lozano said.
About CGIAR
CGIAR is a global research partnership for a food-secure future, dedicated to transforming food, land, and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org
We would like to thank all Funders who support this research through their contributions to the CGIAR Trust Fund.
About the Alliance of Bioversity International and CIAT
The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) delivers research-based solutions that address the global crises of malnutrition, climate change, biodiversity loss, and environmental degradation. The Alliance focuses on the nexus of agriculture, nutrition and environment. We work with local, national, and multinational partners across Africa, Asia, and Latin America and the Caribbean, and with the public and private sectors and civil society. With novel partnerships, the Alliance generates evidence and mainstreams innovations to transform food systems and landscapes so that they sustain the planet, drive prosperity, and nourish people in a climate crisis.
The International Maize and Wheat Improvement Center (CIMMYT) is an international nonprofit agricultural research and training organization that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works toward a world with healthier, more prosperous people, freedom from global food crises, and more resilient agrifood systems. CIMMYT’s research brings higher productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweetpotato and andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agrifood systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia, and Latin America.
The International Food Policy Research Institute (IFPRI) provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition in developing countries. IFPRI currently has more than 600 employees working in over 50 countries. Global, regional, and national food systems face major challenges and require fundamental transformations. IFPRI is focused on responding to these challenges through a multidisciplinary approach to reshape food systems so they work for all people sustainably.
A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.
As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging. Traditionally, scientists have worked on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable and connect the expression of both. Although the original source-and-sink model remains valid, it must embrace more complexity, as scientific understanding improves.
A group of international researchers are proposing a new wiring diagram to show the interrelationships of the physiological traits that impact wheat yield potential, published on Nature Food. By illustrating these linkages, it shows connections among traits that may not have been apparent, which could serve as a decision support tool for crop scientists. The wiring diagram can inform new research hypotheses and breeding decisions, as well as research investment areas.
The diagram can also serve as a platform onto which new empirical data are routinely mapped and new concepts added, thereby creating an ever-richer common point of reference for refining models in the future.
“If routinely updated, the wiring diagram could lead to a paradigm change in the way we approach breeding for yield and targeting translational research,” said Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. “While focused on yield potential, the tool can be readily adapted to address climate resilience in a range of crops besides wheat.”
Breeding milestone
The new wiring diagram represents a milestone in deterministic plant breeding. It dovetails simpler models with crop simulation models.
This diagram can be used to illustrate the relative importance of specific connections among traits in their appropriate phenological context and to highlight major gaps in knowledge. This graphical representation can also serve as a roadmap to prioritize research at other levels of integration, such as metabolomic or gene expression studies. The wiring diagram can be deployed to identify ways for improving elite breeding material and to explore untapped genetic resources for unique traits and alleles.
Yield for climate resilience
The wheat scientific community is hard at work seeking new ways to get higher yields more quickly to help the world cope with population growth, climate change, wars and stable supplies of calories and protein.
“To ensure food and nutritional security in the future, raising yields must be an integral component of making crops more climate-resilient. This new tool can serve as a roadmap to design the necessary strategies to achieve these goals,” said Jeff Gwyn, Program Director of the International Wheat Yield Partnership (IWYP).
Matthew Reynolds – Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT)
Gustavo Ariel Slafer – Research Professor at the Catalonian Institution for Research and Advanced Studies (ICREA) and Associate Professor of the University of Lleida
For more information or to arrange interviews, please contact the CIMMYT media team:
The study is an international collaboration of scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Catalonian Institution for Research and Advanced Studies (ICREA), the Center for Research in Agrotechnology (AGROTECNIO), the University of Lleida, the University of Nottingham, the John Innes Centre, Lancaster University, Technische Universität München, CSIRO Agriculture & Food, and the International Wheat Yield Partnership (IWYP).
ABOUT CIMMYT:
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.
Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food-secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
The International Wheat Yield Partnership (IWYP) represents a long-term global endeavor that utilizes a collaborative approach to bring together funding from public and private research organizations from a large number of countries. Over the first five years, the growing list of partners aims to invest up to US$100 million.
Representatives of the Government of Mexico, the Embassy of India, the National Agricultural Council, the CGIAR and the International Maize and Wheat Improvement Center (CIMMYT) at the Sanjaya Rajaram Experimental Station in Toluca, State of Mexico. (Photo: Alfonso Cortés Arredondo/CIMMYT)
Collaboration between food security institutions and research organizations has contributed to improvements in global grain production that have benefitted millions of farmers around the world – and must continue today. This message was highlighted during a ceremony hosted by the International Maize and Wheat Improvement Center (CIMMYT) to recognize the legacy of World Food Laureate and former CIMMYT Wheat Program Director Sanjaya Rajaram.
The ceremony, held at the CIMMYT Experimental Station in Toluca, State of Mexico, officially dedicated the Station in honor of Sanjaya Rajaram, honoring his memory as an “enemy of world hunger” and one of the scientists who has most contributed to global food security.
The Indian-born naturalized Mexican researcher, who was the third person from CIMMYT to receive the World Food Prize, was recognized for having developed more than 480 high-yielding and adaptable wheat varieties that have been planted on approximately 58 million hectares around the world.
“For this impressive achievement, which seems easy to summarize in one sentence, Raj became a giant of the ‘right to food’ and one of the fiercest enemies of hunger in the world,” said CIMMYT Director General Bram Govaerts.
“Building on the work of Dr. Norman Borlaug, Dr. Sanjaya Rajaram was a driving force in making CIMMYT into the extraordinary institution that it is today,” said Claudia Sadoff, Managing Director, Research Delivery and Impact of CGIAR, a global research partnership of which CIMMYT is a member.
“The challenges of today compel us to redouble our efforts to breed more resilient and more nutritious crops, as Dr. Sanjaya Rajaram did, Sadoff added. “This ceremony reminds us that Dr Rajaram’s legacy and the ongoing efforts of CIMMYT and CGIAR scientists must answer that.”
Awards for international cooperation in food security
At the event, CIMMYT presented awards to the Secretary of Foreign Affairs of Mexico, Marcelo Ebrard Casaubón, and of Secretary of Agriculture and Rural Development (SADER), Víctor Villalobos Arámbula, for their promotion of food security and social inclusion in Mexico and Latin America.
The Secretary of Foreign Affairs of Mexico expressed his gratitude for the Norman E. Borlaug and reaffirmed his commitment to “work in the international arena as we have done, but now we will have to work harder, with greater intensity.”
Bram Govaerts, Director General of CIMMYT, presents the Norman E. Borlaug award to Marcelo Ebrard Casaubón, Secretary of Foreign Affairs of Mexico. (Photo: Alfonso Cortés Arredondo/CIMMYT)
The Secretary of Agriculture and Rural Development of Mexico, Víctor Villalobos Arámbula, emphasized that Mexico, Latin America and CIMMYT play an important role in the struggle to improve the conditions of small-scale farmers and the resilience of agri-food systems, noting that more than 300,000 farmers grow maize, wheat and associated crops on over one million hectares in Mexico using sustainable technologies from the CIMMYT-led MasAgro project, now called Crops for Mexico.
“Throughout this administration,” he said, “we have designed, implemented and refined, through collaboration between SADER and CIMMYT, sustainable development strategies with a systemic approach that facilitates the participation of producers in more integrated and efficient value chains both in Mexico and in other countries.”
India’s Ambassador to Mexico, Pankaj Sharma, highlighted that his nation owes a large part of its Green Revolution to the “Sonora” wheat variety, which was developed in Mexico, a country that is considered one of the cradles of agriculture at a global level, with arable land accounting for 15 percent of the total land dedicated to agriculture in the world.
Ravi Singh, Distinguished Scientist and Head of Global Wheat Breeding at CIMMYT, receives an award. (Photo: Alfonso Cortés Arredondo/CIMMYT)
Report on the results of the Crops for Mexico initiative
CIMMYT’s Wheat Germplasm Bank Curator and Genotyping Specialist Carolina Sansaloni presented highlighted impacts from Crops for Mexico, the main cooperative project between the Government of Mexico — through the Secretary of Agriculture and Rural Development — and CIMMYT, and a flagship initiative in the application of technologies in sustainable agriculture.
The project has been in operation for more than a decade in 28 states in Mexico, with the collaboration of more than 100 national and international partners and private and public sector agencies in 12 regions, offering research infrastructure and training development for sustainable agronomic practices, she explained.
She reported that the results of 40 platforms, 500 demonstration modules and two thousand extension areas have an impact on more than one million hectares and benefit 300,000 maize, wheat and bean producers, with the use of high-yield varieties.
Rosalinda Muñoz Tafolla, a maize farmer in Amacuzac, in the Mexican state of Morelos, explained that her drive to produce healthy food led her to participate in Crops for Mexico, where CIMMYT’s support and advice has enabled her to dramatically increase her farm’s productivity while protecting the soil and conserving natural resources.
She explained that with the conservation agriculture system she learned to improve soil conditions, planted a new maize variety, and was supported in marketing her harvest at a good price and selling 2,000 maize ears (mostly weighing 200 grams each).
CIMMYT’s Wheat Germplasm Bank Curator and Genotyping Specialist Carolina Sansaloni at the Crops for Mexico presentation. (Photo: Alfonso Cortés Arredondo/CIMMYT)
Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)
A new $25.7 million project, led by the International Maize and Wheat Improvement Center (CIMMYT), a Research Center part of CGIAR, the world’s largest public sector agriculture research partnership, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.
As climate change accelerates, agriculture will be increasingly affected by high temperatures, erratic rainfall, drought, flooding and sea-level rise. Looking to the trove of genetic material in genebanks, scientists believe they can enhance the resilience of food production by incorporating this diversity into new crop varieties — overcoming many of the barriers to fighting malnutrition and hunger around the world.
“Better crops can help small-scale farmers produce more food despite the challenges of climate change. Drought-resistant staple crops, such as maize and wheat, that ensure food amid water scarcity, and faster-growing, early-maturing varieties that produce good harvests in erratic growing seasons can make a world of difference for those who depend on agriculture. This is the potential for climate-adaptive breeding that lies untapped in CGIAR’s genebanks,” said Claudia Sadoff, Managing Director, Research Delivery and Impact, and Executive Management Team Convener, CGIAR.
Over five years, the project, supported by the Bill & Melinda Gates Foundation, aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Entitled Mining useful alleles for climate change adaptation from CGIAR genebanks, the project will enable breeders to more effectively and efficiently use genebank materials to develop climate-smart versions of important food crops, including cassava, maize, sorghum, cowpea and rice.
Wild rice. (Photo: IRRI)
The project is a key component of a broader initiative focused on increasing the value and use of CGIAR genebanks for climate resilience. It is one of a series of Innovation Sprints coordinated by the Agriculture Innovation Mission for Climate (AIM4C) initiative, which is led by the United Arab Emirates and the United States.
“Breeding new resilient crop varieties quickly, economically and with greater precision will be critical to ensure small-scale farmers can adapt to climate change,” said Enock Chikava, interim Director of Agricultural Development at the Bill & Melinda Gates Foundation. “This initiative will contribute to a more promising and sustainable future for the hundreds of millions of Africans who depend on farming to support their families.”
Over the past 40 years, CGIAR Centers have built up the largest and most frequently accessed network of genebanks in the world. The network conserves and makes nearly three-quarters of a million crop accessions available to scientists and governments. CGIAR genebanks hold around 10% of the world’s plant germplasm in trust for humanity, but account for about 94% of the germplasm distributed under the International Treaty on Plant Genetic Resources for Food and Agriculture, which ensures crop breeders globally have access to the fundamental building blocks of new varieties.
“This research to develop climate-smart crop varieties, when scaled, is key to ensuring that those hardest hit by climate shocks have access to affordable staple foods,” said Jeffrey Rosichan, Director of the Crops of the Future Collaborative of the Foundation for Food & Agriculture Research (FFAR). “Further, this initiative benefits US and world agriculture by increasing genetic diversity and providing tools for growers to more rapidly adapt to climate change.”
“We will implement, for the first time, a scalable strategy to identify valuable variations hidden in our genebanks, and through breeding, deploy these to farmers who urgently need solutions to address the threat of climate change,” said Sarah Hearne, CIMMYT principal scientist and leader of the project.
Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors and the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), the project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods, to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.
INTERVIEW OPPORTUNITIES:
Sarah Hearne – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:
Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2070.