Skip to main content

The keys to make seeder calibration easy

DHAKA, Bangladesh (CIMMYT) – The Cereal Systems Initiative for South Asia (CSISA) is helping farmers in Bangladesh save money and time with the implementation of simple calibration keys.

Calibration keys. Photo: Khan, S.M.H./CIMMYT.
Calibration keys. Photo: Khan, S.M.H./CIMMYT.

CSISA’s Mechanization and Irrigation project (CSISA-MI) has introduced keys to replace the tedious task of calibrating seeding rate of power tiller operated seeders (PTOS). This new, easy-to-use tool, allows farmers to save time and money with the fast and accurate adjustment of the seed distribution rate without additional resources (e.g. two-wheel tractor, land space, seeds, weighing scale, mathematical calculations, calculator etc.).

Previously, local machinery service providers (LSPs) needed to go through a time-consuming and resource-demanding calibration process so that the correct number of seeds per hectare are distributed. Potential LSPs who received training on calibration had difficulty remembering how to do the procedure due to its complexity, reducing their willingness to provide their services. Initial calibration is usually conducted on a road or farmers’ yard, rarely would an LSP or farmer confirm the calibrated seed rate under actual field operating conditions as is recommended.

Key being used to calibrate machine. Photo: Khan, S.M.H./CIMMYT.
Key being used to calibrate machine. Photo: Belal Siddiqui, Md./CIMMYT.

Using the key, crop specific seed meter calibration can be completed in the field in under ten minutes and LPSs can quickly re-adjust the machine to sow multiple crops in a single day.

Currently, the calibration keys are only for the common crops in Bangladesh – wheat, mung bean, lentil, sesame, and jute. However, more keys can be added for other crops or different sizes of seed meter.

The keys are commercially produced by a local service provider, Alam Engineering Works, using metal cutting dies for precision with technical support from the project. A set of high-quality stainless steel keys costs about $2.

CSISA-MI is led by the International Maize and Wheat Improvement Center (CIMMYT) and is a United States Agency for International Development (USAID) funded project that has been running successfully in the Feed the Future (FtF) zone in Bangladesh in partnership with International Development Enterprises (iDE). CSISA-MI has developed local service providers (LSPs), transformed the agricultural mechanization value chain and scaled-out key agricultural machinery services in the FtF zone to the individual farmers at low cost for higher yields, through agronomic and technical training. It has introduced Axial Flow Pump (AFP) for water conveyance, power tiller operated seeders for mechanized land preparation and seeding and Reapers for mechanized harvesting.

Local businesses boost farmer access to quality seed in Nepal

NSAF field research technician showing a demonstration variety of maize to farmers in Kailali, Nepal. Photo: D. Joshi/CIMMYT
NSAF field research technician showing a demonstration variety of maize to farmers in Kailali, Nepal. Photo: D. Joshi/CIMMYT

KHATMANDHU, Nepal (CIMMYT) — In Nepal, nearly 20 local seed companies are involved in producing and marketing seed, contributing to about 50 percent of the country’s formal seed supply system.

Maximizing crop yields requires quality seed production and the development of new varieties locally. Adopting improved quality seed alone has shown to increase crop production up to 30 percent.

However, seed production practices are currently not standardized in Nepal and seeds of inconsistent quality are produced by various sources. To ensure farmers adopt new varieties, the Nepal Seed and Fertilizer project (NSAF) is working with seed companies to build their capacity for both seed production and distribution by providing technical guidance and resources to strengthen local seed production, seed producers’ network and market linkages by adopting new technology and business approaches.

NSAF also helps seed companies hold seed production demonstrations for newly released crop varieties to test, analyze and promote the best agronomic practices for achieving high yield. As a result, several farmers have shown interest in adopting improved practices in seed production.

A NSAF seed partner company was recently presented an award from Nepal’s Ministry of Agricultural Development and the Food and Agriculture Organization of the United Nations for World Food Day 2017. Global Agri-Tech Nepal Private Limited (GATE Nepal), the awardee, was recognized for their excellent contribution in seed production and distribution network for seed supply.

“Over the span of seven years, the company’s yearly portfolio of seed trading has increased from 40 tons to 800 tons by 2017,” said Tikaram Rijal, Managing Director of GATE Nepal.

GATE Nepal has been engaged in the production, processing and marketing of government-registered high quality improved cereal, legume, oil and vegetable seeds. NSAF is supporting the company by training and providing newly released seed varieties to growers, which have resulted in 20 percent production growth by participating farmers.

Learn more about the Nepal Seed and Fertilizer project (NSAF) through this infographic and fact sheet from the U.S. government’s Feed the Future initiative.

Facing the fall armyworm threat

MEXICO CITY, Mexico (CIMMYT) – In a new blog published by Farming First, B.M. Prasanna, Director of the Global Maize Program and the CGIAR Research Program on Maize at the International Maize and Wheat Improvement Center (CIMMYT) discusses overcoming a pest that has been ravaging fields in Africa.

“Fall armyworm is one of the most destructive insect pests worldwide…In just under two years, the pest has devastated almost 1.5 million hectares of maize crops in 6 countries in Africa,” he said.

Prasanna advises that without proper management, over the next two years, “fall armyworm is expected to cause up to six billion dollars of damage across affected maize growing regions.”

With the rapid rise of this pest, some countries purchased highly toxic pesticides and started distributing these pesticides to people without proper personal protective equipment or an understanding of the potential danger.

“We must raise awareness among farming communities on how to make wise decisions on application of the right kind of pesticides at the right stage.”

In terms of immediate solutions, “There are many pesticides derived from naturally occurring bacteria and viruses that could be helpful. The capacity to quickly validate these options, scale them up and release them is extremely important”, he said.

“We are running a marathon here, not a 100-meter race. “

In terms of long-term solutions, “we are extensively testing maize and wheat varieties against the fall armyworm populations in Africa and we have some very promising sources of resistance which we will be validating very soon.”

“CIMMYT, in partnership with USAID and other collaborators, is working to produce a comprehensive manual on fall armyworm pest management in Africa which will be available in January.”

Prasanna emphasized, “there is a tremendous coordination effort that is required in the years to come in order to make these things happen,” but said that CIMMYT is ready to stand with others to beat this pest. With a unified and systematic approach, it can be done.

Read the entire blog “How Fall Armyworm Can Be Beaten in Africa” on the Farming First website.

Fall armyworm found on crops in Zimbabwe. Photo credit: CIMMYT/M. Shindler
Fall armyworm found on crops in Zimbabwe. Photo credit: CIMMYT/M. Shindler

CIMMYTNEWSlayer1

Ethiopian farmers profit from scaled-up, fast-track production of disease resistant wheat seed

A sunny November day brings hundreds of farmer seed producers to Doyogena, a scenic highland village in Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). The visitors form a bustling line to collect more than $90 each – on average – in profits from representatives of the Zereta Kembata Seed Multiplication and Marketing Union.

Farmers in line at Doyogena. Photo: CIMMYT/A. Habtamu
Ethiopian farmer seed producers collect payment at the Zereta Kembata Seed Multiplication and Marketing Union facility, in  Doyogena. Photo: CIMMYT/A. Habtamu

“The union receives seed grown by more than 1,100 farmers, several hundred of whom are women, belonging to 8 farmer cooperatives,” said Yosief Balewold, general manager of the union.

With help from Ethiopia’s Agricultural Transformation Agency, Zereta Kembata began in 2016 to collect, clean, pack, and sell seed of wheat, potato, sorghum, and faba bean. “This year we marketed nearly 27 tons of the new, disease resistant wheat seed; that’s enough to sow around 270 hectares of the crop.”

Pitted against a yearly onslaught of fast-evolving fungal diseases that can infect as much as $200 million worth of the crops they are growing, more than 75,000 small-scale wheat farmers in Ethiopia’s 4 major wheat-growing regions will have gained access by late 2017 to a vital asset—over 400 tons of new, disease resistant wheat varieties of wheat seed, much of it produced by other farmers.

Marketed in tandem with science-based recommendations for growing wheat, the annual seed supply has steadily increased since 2014 through the Wheat Seed Scaling Initiative, led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the U.S. Agency for International Development (USAID).

“We’re energizing and diversifying Ethiopia’s wheat seed sector, partly by involving and benefitting both formal and farmer seed producers, including women and men,” said Bekele Abeyo, a CIMMYT scientist who leads the project.

With money from union shares purchased by farmer cooperatives and a regulatory 30 percent reinvestment of earnings, the union is building a large warehouse to store seed. In a smaller shack nearby sits a 0.75 ton steel seed cleaner donated by the Wheat Seed Scaling Initiative, which has been working with Zereta Kembata and other seed producers identified as outstanding by SNNP policymakers.

Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples' Region (SNNP), has been a member of a seed production cooperative for four years. “Because of modern technology such as improved wheat varieties, farming is better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu
Abebe Abora, farmer in the Doyogena District of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP), has been a member of a seed production cooperative for four years. “Modern technology such as improved wheat varieties has made farming better for me than it was for my father,” he said. Photo: CIMMYT/A. Habtamu

“Ethiopia has seen a rapid rise in recent years of new and deadly strains of stem rust and yellow rust, wheat adversaries since biblical times that have lately mutated to overcome resistance genes bred into many modern wheat varieties,” said Ayele Badebo, a CIMMYT wheat pathologist based in Ethiopia. “Farmers must swiftly begin to sow a range of varieties bearing new resistance genes, but limited access to the seed has been a bottleneck.”

In addition to assisting government-managed seed producers and 4 seed companies, through the initiative CIMMYT supports 10 farmer unions that purchase, pack, and sell the seed grown by numerous farmer cooperatives, as well as 12 farmer seed production associations, including 5 women’s groups, who profit from growing and selling quality seed of the new varieties.

“The Seed Scaling Initiative gives wheat farmers 25-50 kilograms of wheat seed, based on land availability, to kick-start their seed production operation,” explained Terefe Fitta, manager of the Seed Scaling Initiative. “The farmers pay back the ‘loan’ at harvest with the same amount of seed, which is given to other prospective farmer seed producers, and so on.”

A critical innovation of the initiative has been to link farmer seed producers directly with sources of “early-generation” seed, principally state and federal researchers. “The project has also brought on board laboratories that monitor seed production and test harvested seed, certifying it for marketing,” said Badebo, citing those accomplishments as lasting legacies of the Initiative.

Women seize chance to advance

Recognizing the critical role of women in Ethiopian agriculture and rural communities, the Seed Scaling Initiative is supporting several women’s seed producer groups. An example is the Tembo Awtena Women’s Seed Producers Association, in Angacha District, SNNP.

Established in 2014, Tembo Awtena is the first women’s cooperative in the district. The group first tried to bake and sell bread but reformed in 2015 to produce seed, having heard that it was profitable from other farmer cooperatives.

Through the Seed Scaling Initiative, CIMMYT gave the association around two tons of seed to start and Ethiopia’s Southern Seed Enterprise purchased the entire first year of seed production at a 20 percent premium over market price because the quality was so good, according to Amarech Desta, Tembo Awtena chairwoman.

Amarech Desta, Tembo Awtena chairwoman. Photo: CIMMYT/A. Habtamu
Amarech Desta (left), Tembo Awtena chairwoman, with fellow farmer and association member Desalech Ashamo. Photo: CIMMYT/A. Habtamu

“In 2016, with support from CIMMYT, we sold more than $7,400 worth of seed,” said Desta, adding that word of the association’s success had attracted 30 additional women farmers in 2017, bringing the total membership to 133.

Desalech Ashamo, an association member who is a single head of household, received nearly $300 for the seed she grew in 2017 and used the earnings to paint her house. “A big advantage is that all our seed is sold in one lot, rather than piecemeal, so we receive a lump sum that can be used for a significant household project.”

Desta explained that, despite Angacha being a very traditional community, men support women’s seed production activities. “My husband knows the benefits are for all and the men even help us with field activities.”

Tembo Awtena members are especially pleased at being one of the three women’s seed production groups in the Oromia and SNNP regions to receive seed threshers recently through the Seed Scaling Initiative. Association members had been threshing the wheat seed manually, a long and laborious process, according to Desta. “With the new machine we will be able thresh in one hour what would take us three days by hand,” she said.

The chairwoman also has plans for an office, a storage area, a milling machine, opening a shop to sell farm supplies, and gaining recognition and publicity to share their story with others who may benefit.

Power from valued partnerships

The success of the Wheat Seed Scaling Initiative depends on the commitment and contributions of diverse national and global partners, among them the Ethiopian Institute of Agricultural Research (EIAR) and state and district level officials in the Amhara, Oromia, SNNP, and Tigray regions, which are home to 90 percent of Ethiopia’s nearly 5 million wheat farmers.  Most of the varieties come from breeding lines of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA); a number were developed through the Delivering Genetic Gain in Wheat (formerly Durable Rust Resistance in Wheat) project, led by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK’s Department for International Development (DFID) under their UKAid project.

New Publications: Mitigating climate change effects on food security

Long term conservation agriculture in practice. Photo: CIMMYT/X. Fonseca
Long term conservation agriculture in practice.
Photo: CIMMYT/X. Fonseca

A new study on climate change patterns indicates that climate change could reduce total crop production 23 percent by 2050, the same year in which human population is expected to increase past nine billion people.

Globally, one in nine people were unable to meet their dietary energy requirements in 2015 and that number is expected to increase. Food insecurity is exacerbated by unstable global food prices, which are a reflection of unpredictable crop production seasons due to extreme weather patterns like temperature shocks, drought and flooding.

Climate-resilient agriculture has been touted as essential to achieving food security in the future. The study shows that improvements in technology and agronomic practices have the capacity to increase global food production to adequate levels, even in extreme conditions.

The authors say that beginning to implement mitigation and adaptation technologies now is crucial to check climate change’s adverse impact on global crop production and food security.

Read the full study “Impact of climate change, weather extremes, and price risk on global food supply” and check out other publications by CIMMYT staff below:

Participatory integrated assessment of scenarios for organic farming at different scales in Camargue, France. 2016. Delmotte, S., Barbier, J.M., Mouret, J.C., Le Page, C., Wery, J., Chauvelon, P., Sandoz, A., Lopez-Ridaura, S. In: Agricultural Systems, vol.143, p.147-158.

Patterns and determinants of household use of fuels for cooking: empirical evidence from sub-Saharan Africa. 2016. Dil Bahadur Rahut, Behera, B., Ali, A. In: Energy, vol. 117, p. 93-104.

Photosynthetic contribution of the ear to grain filling in wheat: a comparison of different methodologies for evaluation. 2016. Sanchez-Bragado, R., Molero, G., Reynolds, M.P., Araus, J.L. In: Journal of Experimental Botany, vol. 67, no.9, p.2787-2798.

Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. 2016. Ruiqi Zhang, Bingxiao Sun, Chen, J., Aizhong Cao, Liping Xing, Yigao Feng, Caixia Lan, Peidu Chen. In: Theoretical and Applied Genetics, vol.129, p.1975-1984.

Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. 2016. Taiichiro Ookawa, Ryo Aoba, Toshio Yamamoto, Tadamasa Ueda, Toshiyuki Takai, Shuichi Fukuoka, Tsuyu Ando, Shunsuke Adachi, Makoto Matsuoka, Takeshi Ebitani, Yoichiro Kato, Indria Wahyu Mulsanti, Kishii, M., Reynolds, M.P., Piñera Chavez, F.J., Toshihisa Kotake, Shinji Kawasaki, Takashi Motobayashi, Tadashi Hirasawa. In: Nature Scientific reports, vol.6, no. 30572.

Predicting hybrid performances for quality traits through genomic-assisted approaches in Central European wheat. 2016. Guozheng Liu, Yusheng Zhao, Gowda, M., Longin, F.H., Reif, J.C., Florian Mette, M. In: PLoS One, vol 11, no. 7.

Predicting Rift Valley fever inter-epidemic activities and outbreak patterns: insights from a stochastic Host-Vector Model. 2016. Pedro, S.A., Abelman, S., Tonnang, H. In: PLoS Neglected Tropical Diseases, vol.10, no.12, 1-26 p.

Household energy consumption and its determinants in Timor-Leste. 2017. Dil Bahadur Rahut, Mottaleb, K.A., Ali, A. In: Asian development review, v. 34, no. 1, p. 167-197.

Cover crop-based reduced tillage system influences Carabidae (Coleoptera) activity, diversity and trophic group during transition to organic production. 2017. Rivers, A., Mullen, C., Wallace, J., Barbercheck, M. In: Renewable Agriculture and Food Systems, v. 32, no. 6, p. 538-551.

Impact of climate change, weather extremes, and price risk on global food supply. 2017. Haile, M.G., Wossen, T., Kindie Tesfaye Fantaye, Joachim, vB. In: Economics of Disasters and Climate Change, v. 1, p. 55-75.

CIMMYTNEWSlayer1

Australian High Commissioner to India visits project fields

Group photo during Australian High Commissioner to India, Harinder Sidhu's visit. Photo courtesy of SRFSI program.
Group photo during the visit of the Australian High Commissioner to India, Harinder Sidhu. Photo: SRFSI program.

DEHLI, India (CIMMYT) – This November, the work of the Sustainable and Resilient Farming Systems Intensification (SRFSI) project was marked with notable recognition by the Australian Government with a visit from the Australian High Commissioner to India, Harinder Sidhu. The project is co-led by the International Maize and Wheat Improvement Center (CIMMYT) and the Australian Centre for International Agricultural Research (ACIAR).

Field visit at SRFSI. Photo courtesy of SRFSI program.
Field visit at SRFSI. Photo: SRFSI program.

Sidhu’s visit to observe the SRFSI project’s activities from a grassroots level allowed her to have hands-on experience and interaction with university students, farmers, women’s self-help groups, local service providers and private agencies engaged as members of an SRFSI innovation platform.

Sidhu met with the members of a farmers’ club which is solely operated and monitored by women of the local community. She was highly impressed with the efforts of these women to make themselves independent and self-reliant through new innovations in mushroom, fish and duck farming.

Australian High Commissioner to India, Harinder Sidhu, sitting with a local women's group. Photo courtesy of SRFSI program.
Australian High Commissioner to India, Harinder Sidhu, sitting with a local women’s group. Photo: SRFSI program.

“It was heartening to observe the positive response of the farmers, especially women, to conservation and sustainable farming, and how the technology has improved incomes, reduced drudgery, had positive health impacts and facilitated the development of agri-entrepreneurs,” said Sidhu in her thank you letter.

On the last day of her visit to trial fields, Sidhu was impressed by the service provider business model developed by the SRFSI project to facilitate the creation of employment opportunities and motivation for youth to engage in farming activities.

Sidhu wrote, “I wish you and your team success in reaching out to farmers in north Bengal and working together with them to improve their lives and those of future generations.”

SRFSI is led by the International Maize and Wheat Improvement Center (CIMMYT) and the Australian Centre for International Agricultural Research (ACIAR) and jointly implemented by the Department of Agriculture, Government of West Bengal and Uttar Banga Krishi Viswavidyalaya Agricultural University.

New systems analysis tools help boost the sustainable intensification of agriculture in Bangladesh

Group photo at ESAP workshop in Bangladesh. Photo: CSISA.
Group photo at ESAP workshop in Bangladesh. Photo: CSISA.

DHAKA, Bangladesh (CIMMYT) – In South Asia, the population is growing and land area for agricultural expansion is extremely limited. Increasing the productivity of already farmed land is the best way to attain food security.

In the northwestern Indo-Gangetic Plains, farmers use groundwater to irrigate their fields. This allows them to grow two or three crops on the same piece of land each year, generating a reliable source of food and income for farming families. But in the food-insecure lower Eastern Indo-Gangetic Plains in Bangladesh, farmers have lower investment capacities and are highly risk averse. Combined with environmental difficulties including ground water scarcity and soil and water salinity, cropping is often much less productive.

Could the use of available surface water for irrigation provide part of the solution to these problems? The government of Bangladesh has recently promoted  the use of surface water irrigation for crop intensification. The concept is simple: by utilizing the country’s network of largely underutilized natural canals, farmers can theoretically establish at least two well-irrigated and higher-yielding crops per year. The potential for this approach to intensifying agriculture however has various limitations.  High soil and water salinity, poor drainage and waterlogging threaten crop productivity. In addition, weakly developed markets, rural to urban out-migration, low tenancy issues and overall production risk limit farmers’ productivity. The systematic nature of these problems calls for new approaches to study how development investments can best be leveraged to overcome these complex challenges to increase cropping intensity.

Policy makers, development practitioners and agricultural scientists recently gathered to respond to these challenges at a workshop in Dhaka. They reviewed research results and discussed potential solutions to common limitations. Representatives from more than ten national research, extension, development and policy institutes participated. The CSISA-supported workshop however differed from conventional approaches to research for development in agriculture, in that it explicitly focused on interdisciplinary and systems analysis approaches to addressing these complex problems.

Systems analysis is the process of studying the individual parts and their integration into complex systems to identify ways in which more effective and efficient outcomes can be attained. This workshop focused on these approaches and highlighted new advances in mathematical modeling, geospatial systems analysis, and the use of systems approaches to farmer behavioral science.

Timothy J. Krupnik, Systems Agronomist at CIMMYT and CSISA Bangladesh country coordinator, gave an overview of a geospatial assessment of landscape-scale irrigated production potential in coastal Bangladesh to start the talks.

For the first time in Bangladesh, research using cognitive mapping, a technique developed in cognitive and behavioral science that can be used to model farmers’ perceptions of their farming systems, and opportunities for development interventions to overcome constraints to intensified cropping, was described. This work was conducted by Jacqueline Halbrendt and presented by Lenora Ditzler, both with the Wageningen University.

“This research and policy dialogue workshop brought new ideas of farming systems and research, and has shown new and valuable tools to analyze complex problems and give insights into how to prioritize development options,” said Executive Director of the Krishi Gobeshona Foundation, Wais Kabir.

Workshop participants also discussed how to prioritize future development interventions, including how to apply a new online tool that can be used to target irrigation scheme planning, which arose from the work presented by Krupnik. Based on the results of these integrated agronomic and socioeconomic systems analyses, participants also learned how canal dredging, drainage, micro-finance, extension and market development must be integrated to achieve increases in cropping intensity in southern Bangladesh.

Mohammad Saidur Rahman, Assistant Professor, Seed Science and Technology department at Bangladesh Agriculture University, also said he appreciated the meeting’s focus on new methods. He indicated that systems analysis can be applied not only to questions on cropping intensification in Bangladesh, but to other crucial problems in agricultural development across South Asia.

The workshop was organized by the Enhancing the Effectiveness of Systems Analysis Tools to Support Learning and Innovation in Multi-stakeholder Platforms (ESAP) project, an initiative funded by the CGIAR Research Program on Maize (MAIZE) through the International Maize and Wheat Improvement Center (CIMMYT) and supported in Bangladesh through the Cereal Systems Initiative for South Asia (CSISA). ESAP is implemented by Wageningen University’s Farming Systems Ecology group and the Royal Tropical Institute (KIT).

CSISA is a CIMMYT-led initiative implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). CSISA works to increase the adoption of various resource-conserving and climate-resilient technologies by operating in rural “innovation hubs” in Bangladesh, India and Nepal, and seeks to improve farmers’ access to market information and enterprise development.

Breaking Ground: Leonard Rusinamhodzi on innovating farming systems for climate change

TwitterBGLernardFood security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the region by 2025, said Leonard Rusinamhodzi, a systems agronomist at the International Maize and Wheat Improvement Center.

Erratic rainfall and increasing temperatures are already causing crops to fail, threatening African farmers’ ability to ensure household food security, he said. Africa is the region most vulnerable to climate variability and change, according to the UN Intergovernmental Panel on Climate Change.

Small-scale family farmers, who provide the majority of food production in Africa, are set to be among the worst affected. Rusinamhodzi’s work includes educating African farmers about the impacts of climate change and working with them to tailor sustainable agriculture solutions to increase their food production in the face of increasingly variable weather.

The world’s population is projected to reach 9.8 billion by 2050, with 2.1 billion people set to live in sub-Saharan Africa alone. The UN Food and Agriculture Organization estimates farmers will need to increase production by at least 70 percent to meet demand. However, climate change is bringing numerous risks to traditional farming systems challenging the ability to increase production, said Rusinamhodzi.

Graphic created by Gerardo Mejia. Data sourced form the UN Intergovernmental Panel on Climate Change.
Graphic created by Gerardo Mejia. Data sourced from the UN Intergovernmental Panel on Climate Change.

Rusinamhodzi believes increasing farmers’ awareness of climate risks and working with them to implement sustainable solutions is key to ensuring they can buffer climate shocks, such as drought and erratic rainfall.

“The onset of rainfall is starting late and the seasonal dry spells or outright droughts are becoming commonplace,” said Rusinamhodzi. “Farmers need more knowledge and resources on altering planting dates and densities, crop varieties and species, fertilizer regimes and crop rotations to sustainably intensify food production.”

Growing up in Zimbabwe – a country that is now experiencing the impacts of climate change first hand – Rusinamhodzi understands the importance of small-scale agriculture and the damage erratic weather can have on household food security.

He studied soil science and agronomy and began his career as a research associate at the International Center for Tropical Agriculture in Zimbabwe learning how to use conservation agriculture as a sustainable entry point to increase food production.

Conservation agriculture is based on the principles of minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It improves soil function and quality, which can improve resilience to climate variability.

It is a sustainable intensification practice, which is aimed at enhancing the productivity of labor, land and capital. Sustainable intensification practices offer the potential to simultaneously address a number of pressing development objectives, unlocking agriculture’s potential to adapt farming systems to climate change and sustainable manage land, soil, nutrient and water resources, while improving food and nutrition.

Tailoring sustainable agriculture to farmers

Smallholder farming systems in Africa are diverse in character and content, although maize is usually the major crop. Within each system, farmers are also diverse in terms of resources and production processes. Biophysically, conditions – such as soil and rainfall – change significantly within short distances.

Given the varying circumstances, conservation agriculture cannot be promoted as rigid or one-size fits all solution as defined by the three principles, said Rusinamhodzi.

The systems agronomist studied for his doctoral at Wageningen University with a special focus on targeting appropriate crop intensification options to selected farming systems in southern Africa. Now, with CIMMYT he works with African farming communities to adapt conservation agriculture to farmers’ specific circumstances to boost their food production.

Rusinamhodzi’s focus in the region is to design cropping systems around maize-legume intercropping and conservation agriculture. Intercropping has the added advantage of producing two crops from the same piece of land in a single season; different species such as maize and legumes can increase facilitation and help overcome the negative effects of prolonged dry spells and poor soil quality.

Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT
Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT

“The key is to understand the farmers, their resources including the biophysical circumstances and their production systems, and assist in adapting conservation agriculture to local needs,” he said.

Working with CIMMYT’s Sustainable Intensification Program, Rusinamhodzi seeks to understand production constraints and opportunities for increased productivity starting with locally available resources.

Using crop simulation modeling and experimentation, he estimates how the farming system will perform under different conditions and works to formulate a set of options to help farmers. The options can include agroforestry, intercropping, improved varieties resistant to heat and drought, fertilizers and manures along with the principles of conservation agriculture to obtain the best results.

The models are an innovative way assess the success or trade-off farmers could have when adding new processes to their farming system. However, the application of these tools are still limited due to the large amounts of data needed for calibration and the complexity, he added.

Information gathered is shared with farmers in order to offer researched options on how to sustainably boost their food production under their conditions, Rusinamhodzi said.

“My ultimate goal is to increase farmers’ decision space so that they make choices from an informed position,” he said.

Rusinamhodzi also trains farmers, national governments, non-profit organizations, seed companies and graduate students on the concepts and application of sustainable intensification including advanced analysis to understand system productivity, soil quality, water and nutrient use efficiency and crop pest and disease dynamics.

 

Leonard Rusinamhodzi works with the SIMLESA project funded by the Australian Centre for International Agricultural Research and the CGIAR MAIZE program.

 

 

How smarter financing can boost Nepal’s seed sector

Support from Nepal’s banking sector has the potential to benefit seed companies across the country. Photo: P. Lowe/CIMMYT
Support from Nepal’s banking sector has the potential to benefit seed companies across the country. Photo: P. Lowe/CIMMYT

KATHMANDU, Nepal (CIMMYT) – Nepal’s push to grow its seed sector is expanding to banking, with new financial measures expected to benefit seed companies across the country.

Nepal launched its National Seed Vision 2013-2025 to improve food security by increasing its domestic production of high quality seeds, and make them available and affordable to farmers. The seed replacement rate, or the percentage of area using certified quality seeds rather than the farm saved seed, is set to increase up to 30 percent for cereal crops and over 90 percent for vegetables.

However, there is a lack of financing from formal sources across agricultural value chains, which led the country to mandate that banks allocate 10 percent of their lending – around NPR 1.3 billion ($12.7 million) – to agriculture in 2017.

A value chain is the full set of activities businesses go through to bring a product or service from conception to delivery, in agriculture, this could involve everything from the development of plant genetic material to selling the final crop at market.

Value chain finance refers to financial products and services that flow to or through any point in a value chain that enables investments that increase actors’ returns, as well as the growth and competitiveness of the chain. This could dramatically improve Nepal’s seed sector by giving farmers, seed companies and banks access to more resources to grow.

In fact, if banks financed just 30 percent of seed company working capital, it would give an extra $2 million to invest in research and development activities, such as variety development, quality improvement, maintenance breeding and other vital functions that are currently not carried out by Nepali seed companies. These funds could also be invested in infrastructure development such as storage and seed processing facilities.

Participants concluded at a recent consultative meeting on financing seed business in Nepal that soft loans – loans that have lenient terms like low interest rates or extended grace periods – to seed companies that charge a government-mandated 5 percent interest rate are an ideal way to provide this extra working capital. The commercial banks offering these loans would benefit by reaching more farmers, thereby expanding their customer base and would reach the government-mandated agricultural financing target.

The Nepal Seed and Fertilizer (NSAF) project provided a platform to banks and seed companies to share information and identify business opportunities to support NSAF’s seed system development approach during the meeting. Nearly 40 participants from national banks, seed companies and other governmental and non-governmental organizations participated.

Dyutiman Choudhary, NSAF coordinator, shared the overall seed system development approach of NSAF and the role of finance in seed business. An overview of successful cases and models of bank-seed company partnerships adopted in Asia and Africa was also given.

Banks requested additional information about risks in the seed business and sought guidance to assess and reduce risks associated to their loans. It was agreed that value chain finance through three-party agreements between banks, farmers and seed companies could be a viable approach that could be initiated immediately.

“Through this sort of agreement, seed companies guarantee they will purchase seeds from farmers,” said the Seed Entrepreneurs Association of Nepal Chair. “This guarantees a market for seed, minimizing the risk of market failure for banks.”

Four national banks so far have shown interest in partnering with the NSAF seed companies to finance seed production with soft loans. A proposed working group comprised of banks, seed companies and the Government of Nepal will provide strategic direction to finance seed business. NSAF will lead the working group to guide strategic decisions on financing seed business by sharing evidence based information, providing a common platform and catalyzing innovations to ease access to finance by seed companies.

The Nepal Seed and Fertilizer project (NSAF) is funded by the United States Agency for International Development and led by the International Maize and Wheat Improvement Center in collaboration with Nepal’s Ministry of Agricultural Development and private sector. Learn more about NSAF through this infographic and fact sheet from the U.S. government’s Feed the Future initiative.

Establishing a soil borne pathogen research center in Turkey

Participants of the workshop. Photo: Directorate of Plant Protection Central Research Institute of Turkey.
Participants of the workshop. Photo: Directorate of Plant Protection Central Research Institute of Turkey.

ANKARA, Turkey (CIMMYT) – In a world of rapidly changing climates and related threats to agriculture and food production, including the emergence and spread of deadly crop pathogens and pests, Turkey’s Ministry of Food, Agriculture and Livestock (MFAL) has for the first time allocated funding to establish a world-class center for research on soil borne pathogens.

The announcement was made at an international workshop on soil borne pathogens (SBP) organized at MFAL in Ankara in October by the Directorate of Turkey’s Plant Protection Central Research Institute, Ankara (PPCRI). The new SBP research center will be located at that PPCRI, according to Dr. Nevzat BİRİŞİK, Director General, MFAL General Directorate of Agricultural Research and Policies.

“Among other things, the new center will focus on controlling the expansion of soil borne pathogens to new cropping areas, as well as linking to international research and experts on the pathogens, which cause massive damage each year to agriculture in Turkey,” BİRİŞİK said.

More than 147 delegates from across the ministry of agriculture and representatives of private companies gathered at this workshop, bringing together senior government officials and high-level experts to review and discuss scientific and technical activities in the management of soil borne pathogens in cereals.

The Turkish Ministry of Agriculture has given ongoing support to the International Maize and Wheat Improvement Center (CIMMYT)-led SBP program in Turkey to fight against diseases affecting cereal crops, which occupy 65 percent of Turkey’s farmland.

 

Presenters received with the director of PPCRI, Dr. Sait Ertürk. Photo Directorate of Plant Protection Central Research Institute of Turkey.
Presenters received with the director of PPCRI, Dr. Sait Ertürk. Photo Directorate of Plant Protection Central Research Institute of Turkey.

Soil borne pathogens cause significant damage in cereals, with global yield potential losses in wheat of up to 20 percent. Changing climates that are reducing growing conditions in tropical areas are also enabling the spread of SBPs into northern regions at increasing rates. This spread presents the risk of areas previously unaffected by SBPs having serious issues. Climate change may also affect the resistance of crops to specific soil pathogens through impacts of warming or drought and through the increased pathogenicity of organisms by mutation induced by environmental stress.

 

The SBP program is also involved with the use of chemical control on soil pathogens, with regard to the outlook and future expectations of pioneering pesticide producers in the world. The SBP program at CIMMYT-Turkey is using seed treatment to investigate whether or not it can synergistically reduce diseases populations. Seed treatment is absolutely required where diseases are present or where farmers do not accept changing their local, highly susceptible varieties with the resistant and modern ones.

CIMMYTNEWSlayer1

How does CIMMYT’s improved maize get to the farmer?

The International Maize and Wheat Improvement Center (CIMMYT) works to develop improved maize varieties with traits that smallholder farmers in sub-Saharan Africa, Latin America and Asia need. These include tolerance to abiotic stresses such as drought and heat, and biotic stresses such as diseases and insect-pests. This infographic explains exactly how CIMMYT ensures that its improved maize seed (both hybrids and open-pollinated varieties) gets to the smallholder farmers through the public and private sector partners. This process goes from product development, product advancement, announcement of new products to the partners, product licensing to improved varietal release, seed scale-up, and deployment to the farming communities in target geographies. Feedback loops from the farmers (through on-farm trials) and from the public and private sector partners enrich our breeding teams to continuously refine the product pipelines.

For more information on our work with maize please click here

How does CIMMYT's Improved Maize Seed get to the Farmers (Oct 2017)

New publications: How climate-smart is conservation agriculture?

Wheat surrounds the border of the Volcanoes National Park in Rwanda. Photo: F. Baudron/CIMMYT
Wheat surrounds the border of the Volcanoes National Park in Rwanda. Photo: F. Baudron/CIMMYT

Africa is facing increasing complications in farming as climate change makes weather more unpredictable and leads to mass desertification of previously farmable land. Conservation agriculture (CA) has been touted for decades as the solution, not only to farming in climate change, but as a way to sequester Carbon in soil and actively combat climate change through agriculture.

A new study shows that while CA is well suited to helping farmers adapt to, and even increase profits in changing climates, there is considerable uncertainty about how much CA contributes to the mitigation aspect.

Overall the authors emphasized that the main benefit of CA is the adaptation potential, which helps farmers markedly improve productivity, achieve stable yields and decrease labor inputs, but further research is needed to determine effects on climate change.

Read the full study “How climate-smart is conservation agriculture (CA)?  Its potential to deliver on adaptation mitigation and productivity on smallholder farms in southern Africa” and check out other recent publications by CIMMYT staff below:

How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. 2017. Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T.S., Lamanna, C., Eyre, J.X. In: Food Security, vol 9, p 537–560.

Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms. 2016. Plett, D., Holtham, L., Baumann, U., Kalashyan, E., Francis, K., Enju, A., Toubia, J., Roessner, U., Bacic, A., Rafalski, A., Tester, M., Garnett, T., Kaiser, B.N., Dhugga, K. In: Plant Molecular Biology, vol. 92, p. 293-312.

Nitrogen management under conservation agriculture in Cereal-based Systems. 2016. Jat, H.S., Jat, R.K., Parihar, C.M., Jat, S.L., Tetarwal, J.P., Sidhu, H.S., Jat, M.L. In: Indian Journal of Fertilizers, vol.15, no.4, p.76-91.

Novel structural and functional motifs in cellulose synthase (CesA) genes of bread wheat (Triticum aestivum, L.). 2016. Kaur, S., Gill, K.S., Singh, J., Dhugga, K. In: PLoS One, vol.11, no.1, 1-18 p.

Ocurrence and identification of cereal cyst nematode, heterodera filipjevi (nemata: heteroderidae), in Bolu province of Turkey. 2016. Imren, M., Toktay, H., Kutuk, H., Dababat, A.A. In: Nematropica, vol. 44, no. 2, p. 154-161.

On-farm evaluation of hermetic technology against maize storage pests in Kenya. 2016. Likhayo, P., Bruce, A.Y., Mutambuki, K., Tadele Tefera Mueke, J. In: Journal of Economic Entomology, vol.109, no.4, p. 1-8.

Stay-green and associated vegetative indices to breed maize adapted to heat and combined Heat-Drought Stresses. 2017. Cerrudo, D., Gonzalez-Perez, L., Mendoza, A., Trachsel, S. In: Remote sensing, vol. 9, no. 3, p. 1-13.

The research and implementation continuum of biofortified sweet potato and maize in Africa. 2017. Tanumihardjo, S.A., Ball, A.M., Kaliwile, C., Pixley, K.V. In: Annals of the New York Academy of Sciences, v. 1390, p. 88-103.

Transgenic strategies for enhancement of nematode resistance in plants. 2017. Muhammad Amjad Ali, Azeem, F., Amjab Abbas Joyia, F.A., Hongjie Li, Dababat, A.A. In: Frontiers in Plant Science, v. 8, no. 750.

Understanding the determinants of alternate energy options for cooking in the Himalayas: Empirical evidence from the Himalayan region of Pakistan. 2017. Dil Bahadur Rahut, Ali, A. Mottaleb, K.A. In: Journal of Cleaner Production v. 149, p. 528-539.

Utilizing high-throughput phenotypic data for improved phenotypic selection of stress-adaptive traits in wheat. 2017. Cairns, J.L., Reynolds, M.P., Poland, J. In: Crop Science, v. 57, p. 648-659.

Investigating Conservation Agriculture (CA) Systems in Zambia and Zimbabwe to Mitigate Future Effects of Climate Change.  2010. Thierfelder, C., Wall, P. C. In: Journal of Crop Improvement, v.24(2), p. 113-121.

CIMMYT seeks a junior communications consultant

The Corporate Communications Department of the International Maize and Wheat Improvement

Center (known by its Spanish acronym, CIMMYT, staging.cimmyt.org) is seeking a candidate for a one-year, paid consultancy to assist in web production, social media management, writing, editing, public relations and event coordination.

Located 40 km outside of Mexico City, CIMMYT is a not-for-profit, international agricultural research- for-development organization that generates and promotes improved maize and wheat varieties and cropping systems for farmers in developing countries to ensure global food security and help combat poverty, hunger and malnutrition.

The Communications Junior Consultant will work full-time assisting department writers, editors and project managers in duties such as:

  • Managing CIMMYT social media, including monitoring on-line traffic, use of social media platforms (Facebook, Twitter, Instagram, Google +, and Flickr), and helping to plan and implement social media campaigns.
  • Writing, editing and proofing articles for weekly newsletters, annual reports, brochures, and other institutional outlets.
  • Developing online content about projects, results, meetings, and partnerships.
  • Monitoring conventional media for agricultural and development-related articles.
  • Other communications and dissemination tasks, as required and agreed.

The ideal candidate will be able to commit for one year and have an undergraduate degree in communications and/or journalism, a proven interest in social media and knowledge and experience in on-line applications. She/he will also have excellent writing and/or editing experience in English. Knowledge of Spanish, science, agriculture and agricultural development are advantages.

CIMMYT offers Junior Consultants a monthly stipend paid in US dollars, a housing allowance, health insurance and an airline ticket to and from Mexico. CIMMYT will assist in obtaining necessary travel documents, including a work visa. To apply, please e-mail a letter of interest, a resume, two writing samples, and contact information for two references to:

Matt O’Leary

Social Media Coordinator

m.oleary@cgiar.org

CIMMYT is an equal-opportunity employer and strives for staff diversity in gender and nationality.

Better farmer access to machinery eases crop residue burning in India

uper SMS fitted combine harvester and Happy Seeder” for simultaneously harvesting of rice and seeding of wheat. Photo: HS Sidhu /CIMMYT
“Super SMS” fitted combine harvester and “Happy Seeder” can be used for simultaneously harvesting rice and seeding wheat. Photo: H.S. Sidhu/CIMMYT

EL BATAN, Mexico (CIMMYT) — In conjunction with recent state regulations outlawing the use of fire to destroy field crop waste in northwest India, some farmers are benefitting from technological innovations that can help prevent damaging smog levels in the capital Delhi and other areas, according to scientists.

Currently, the majority of farmers in northwest India burn leftover vegetation residue to prepare fields for planting in cyclical rice-wheat crop rotations, leading to negative consequences for soil quality, the environment, animal and human health. Rice-wheat crop rotations make up 84 percent of burned crops, a key source of atmospheric pollution.

“Farmers need access to appropriate machinery and training to implement change to discourage burning,” said M.L. Jat, a systems agronomist who works in New Delhi with the International Maize and Wheat Improvement Center (CIMMYT). “Using crop residue in a sustainable and eco-friendly manner could benefit all stakeholders.”

Many farmers keep costs low by burning residue on the farm, rather than paying for its removal for other uses, which could include animal feed, biofuel,  incorporating it into the soil or retaining it in the field as mulch, according to a research paper titled “Burning issues of paddy residue management in northwest fields of India.” Fire is also used to eliminate weeds, pests, disease and remaining field stubble after harvest.

Ash left on the fields after residue burning increases the availability of some nutrients, while depleting others and negatively affecting soil health in the long term. During burning, soil temperature increases, bacteria and fungi are killed off, regenerating in a matter of days. Residue burning can damage plants and trees on field edges with negative implications for the overall ecosystem.

Residues can be used as a renewable energy source to improve air, soil quality, climate change and reduce global warming, provided these are economically viable options for farmers. Incentives could also help encourage farmers to leave residues on their fields for use as fertilizer.

If residue is mulched into the soil, nutrient levels improve and carbon sequestration capacity increases, lowering the release of greenhouse gases into the environment. Additionally, residue retention reduces evaporation and increases soil moisture by as much as 10 percent during the wheat-growing season.

Farmers can benefit from the Happy Seeder, a machine that can plant wheat seed directly into the soil by boring through crop residue. The Straw Management System (SMS) machine spreads straw residue thinly on the soil surface allowing seeding.

“Residues are also of great economic value as livestock feed, fuel and industrial raw materials, but of the total rice residues produced in northwestern India, only around 15 percent can potentially be used for these purposes and the rest must be managed with in-situ (on site) management technologies,” said Jat, who conducted the research in collaboration with the CGIAR research programs on maize (CRP Maize), wheat (CRP Wheat) and climate change, agriculture and food security (CCAFS).

“Although farmers are aware of the adverse affects of crop burning, they rely on it due to the lack of economically viable and acceptable machinery and alternatives to dispose of residue.”

However, deploying advanced technology, including the concurrent use of straw management systems, fitted combine harvesters and Happy Seeders for direct drilling is a viable solution to eliminate burning, he added.

With these advancements and aggressive campaigns, within a period of a couple of months in Punjab state alone, over 1,000 combine owners have launched a “Super SMS.”

Additionally, nearly 2,000 happy seeders are being manufactured, which will lead to large-scale adoption of conservation agriculture techniques in the upcoming wheat season, Jat said.

Related articles:

The Evergreen Revolution: Six ways to empower India’s no-burn agricultural future

New study uncovers climate footprint of India’s favorite foods

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

New Dehli air pollution causes United Airlines flight cancellations

World leaders: Back climate change action in agriculture to give our food system a fighting chance

Global climate change negotiators meet this week to tackle myriad issues, including how to reduce greenhouse gas emissions from agriculture and protect food and farming from worsening climate impacts.

But unheralded and behind COP23 headlines, governments, private companies, and scientists led by CGIAR are already developing and sharing life-saving innovations for farmers, particularly smallholders, who fight daily at the climate change frontlines.

Technology such as drought- and heat-tolerant maize, resistant crops and control practices to combat newly-emerging pests, insurance to recover from extreme or erratic weather, and more targeted use of nitrogen fertilizers are already being adopted in Africa and Asia to reduce agriculture’s footprint while improving farm resilience and productivity.

Click here to read a message by Elwyn Grainger-Jones, Executive Director, CGIAR System Organization, and Martin Kropff, Director General, CIMMYT (the International Maize and Wheat Improvement Center) describing these efforts and issuing a wake-up call for world leaders.