NAIROBI (Kenya) — More than 20 representatives of eastern and southern African seed companies and regulatory agencies recently took part in the demonstration of a new seed certification application that can help get quality seed to market more quickly and curb sales of counterfeit seed.
As part of an event organized by the International Maize and Wheat Improvement Program (CIMMYT) at the Kiboko research station of the Kenya Agricultural & Livestock Research Organization (KALRO) on September 17, 2018, participants field-tested a beta version of SeedAssure, a digital platform that gives automatic feedback on compliance and seed production management, along with remedy options.
SeedAssure was developed by Cellsoft, a supply chain management software company, with input from the Alliance for a Green Revolution in Africa (AGRA), the Qualibasic Seed Company, the Kenya Plant Health Inspectorate Service (KEPHIS) and CIMMYT.
“This is very useful for companies like ours, spread as we are over different countries, to manage at a distance our seed growers,” said Andy Watt of QualiBasic Seed Company, who has been testing SeedAssure on the company’s farms. “The application’s dashboard will point out which farms to visit quickly for corrections.”
Mobile innovations enhance quality and speed
For over a decade, the region’s seed sector has sought fast, cost-effective and transparent seed quality control and certification approaches for use across the value chain and the region. Seed companies often rely on under-staffed national certification agencies that may miss critical inspections or give inaccurate reports. Registration of new varieties can take many years, discouraging investment in improved seed and impeding regional trade.
The seed sector has sought mobile innovations such as tablet-based field inspections whose data load to centralized, cloud-based dashboards.
With SeedAssure’s “traffic light” system, field inspection results for factors such as plant population will score green (complied – good quality), amber (needs improvement) or red (reject) and be readily visible to key actors in the seed certification and supply chain, according to David Laurence-Brown, SeedAssure co-developer.
“This quality assurance system can help seed companies get licenses faster, speeding product to market and greatly reducing the financial risk of getting new varieties to farmers,” said Laurence-Brown. “The vision is that all actors have access to timely and accurate data on products, licensing and trade movements, with quality control checks along the value chain.”
He said that SeedAssure features 260 critical questions in 13 seed production checklists. “Putting the right questions in the right order is crucial to determine how sustainable your seed production is,” Laurence-Brown explained.
Partners test the SeedAssure app on a tablet during a field visit in Kiboko, Kenya. (Photo: Jerome Bossuet/CIMMYT)
Fixing the bugs
Participants emphasized that national and regional regulatory bodies needed to be on board.
“Advocacy has to be done at different levels, from COMESA, national plant protection organizations, big and small seed companies, and research institutes and donors,” said Kinyua Mbijjewe, a well-known figure in the African seed industry and co-creator of SeedAssure, adding that this has been underway for a year now with a positive response, and public engagement is now ramping up with partners like AGRA and USAID.
Participants also suggested simplifying SeedAssure by reducing the number of questions and the subjectivity of certain data fields. For example, they observed that a more objective method was needed for scoring pest infestations, rather than SeedAssure’s current approach of rating infestations as low, moderate or intense via visual estimation.
“This will not be adopted if it’s too complex,” said Nicolai Rodeyns, NASECO seed company, Uganda.
Developers are addressing these issues, as well as comments that the application should not mix compliance and seed production management features.
CIMMYT announced that it would offer members of the International Maize Improvement Consortium (IMIC) a one-year trial subscription to SeedAssure.
Finally, AFSTA, AGRA, CIMMYT, COMESA, USAID, and other partners are forming a SeedAssure Alliance to support testing and rollout with companies and public organizations in eastern and southern Africa.
NAIROBI (Kenya) — Members of the International Maize Improvement Consortium (IMIC) and other partners had a chance to go on a field visit to the Kiboko and Naivasha research stations in Kenya on September 18 and 19, 2018. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to share the latest developments in maize and wheat research.
On the first day, CIMMYT invited IMIC researchers to evaluate Material Under Development at the Kiboko site. These maize lines are not publicly released yet but are available to IMIC partners, so they can select the most promising ones for their research and crop improvement work.
Each seed company was looking for certain traits to develop new hybrid varieties. For instance, Samit Fayek, from Fine Seeds Egypt was looking for ‘erect type’ maize, as he wants higher crop density and grains that look big. Christopher Volbrecht, from Lake Agriculture in South Africa, was looking for “cobs that stick out as this is what farmers want.” Josephine Okot, from Victoria Seeds in Uganda, said that “seed companies often look at drought tolerance only, but we need now to integrate resistance to Maize Lethal Necrosis.”
Using Doubled Haploid breeding in Kiboko
Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)
Next on the tour to Kiboko, partners visited various stress-tolerant breeding materials, sustainable intensification cropping demonstrations and the Doubled Haploid facility. Vijaya Chaikam, Maize Doubled Haploid Scientist, explained how CIMMYT uses this methodology to cut down breeding time from six to two cycles, which drastically reduces costs.
According to B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE, doubled haploid breeding is possibly the biggest innovation to speed up genetic gain since the inception of hybrid technology a century ago. “In the next 4 or 5 years, CIMMYT aims at 80 percent use of double haploid lines for new hybrid development; breeding will be faster and much cheaper that way,” Prasanna said. “For now, breeders and seed companies need to know how to use double haploid lines to cost-efficiently crossbreed with their varieties for high-quality hybrids.”
At the end of the visit to Kiboko, CIMMYT officially opened a new maize seed storage cold room. This facility will serve to keep seeds in good condition and to better manage inventory. At the opening were the director of KALRO’s Food Crops Research Institute, Joyce Malinga, CIMMYT’s Africa Regional Representative, Stephen Mugo, and CIMMYT’s Technical Lead for the Global Maize Program, Aparna Das.
Fighting Maize Lethal Necrosis and rust in Naivasha
A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)
On the second day, partners visited the Naivasha research station. There, CIMMYT presented the latest efforts to contain Maize Lethal Necrosis (MLN), a devastating maize viral disease first reported in Kenya in 2011 which caused severe crop losses across Eastern Africa, causing severe crop losses. The Naivasha research station is home to a world-class facility to screen for Maize Lethal Necrosis, jointly managed by CIMMYT and KALRO.
At the facility, maize lines are evaluated for MLN resistance. The best lines and varieties are nominated for further development and shared with partners. National Agriculture Research partners can request MLN screening at no cost, while private seed companies are charged for the service. In the last four years, more than 150,000 germplasm have been screened.
CIMMYT wheat scientist Mandeep Randhawa explained how to recognize the different types of wheat rust diseases: stem, stripe and leaf rusts. He emphasized the Ug99 black stem rust strain, which appeared in Uganda in 1998 and has since severely impacted wheat production in the region and globally. Randhawa explained how CIMMYT develops varieties resistant to stem rust using a phenotyping platform and marker-assisted selection.
These two field days were a great opportunity to showcase progress in developing more resilient maize varieties in a fast and cost-effective way. This responsiveness is crucial as pests and diseases continue to threaten the livelihoods of African smallholders. Such impact could not happen without the strong collaboration between CIMMYT and KALRO.
The director of KALRO’s Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT’s Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)
The Doubled Haploid Facility in Kiboko and the Maize Lethal Necrosis screening facilty in Naivasha were opened in 2013 with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation.
The International Maize Improvement Consortium (IMIC) is a public-private partnership initiative launched in May 2018 as part of CIMMYT’s mission to ramp up seed breeding and production innovations.
After two years of meticulous work, the book Linear Selection Indices in Modern Plant Breeding has been released by Springer International Publishing for use by plant and animal breeders worldwide. The authors of the book, J. Jesus Céron-Rojas and José Crossa, are scientists with the Biometrics and Statistics Unit of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT). The authors saw a window of opportunity to better explain how various types of linear selection indices can be constructed, interpreted, optimized and applied in breeding through the research presented in this book.
As the first book released on the subject in over thirty years, the publisher describes it as “essential reading for plant quantitative geneticists” and “a valuable resource for animal breeders.” Its high-profile scientific contributions are expected to generate an extensive impact in the international community of theoretical and practical plant and animal breeders.
To examine classification more closely, breeders use indices to categorize traits of interest to make complete representations of desired qualities in plants and animals. Focused on the linear selection index theory and its statistical properties, breeders will be able to use phenotypic and genotypic information to assess the genetic merits of the candidates to selection.
This book is the result of financial support from the Bill & Melinda Gates Foundation, the United States Agency for International Development (USAID), the International Maize and Wheat Improvement Center (CIMMYT), the CGIAR Research Program on Maize (MAIZE)and the CGIAR Research Program on Wheat (WHEAT).
Check out other recent publications by CIMMYT researchers below:
1. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Wood, S.A., Baudron, F. In: Agriculture, Ecosystems and Environment v. 266, p. 100-108.
2. Wheat−the cereal abandoned by GM: genetic modification of wheat for disease resistance could help stabilize food production. Wulff, B.B.H., Dhugga, K. In: Science v. 361, no. 6401, p. 451-452.
3. Breeding for provitamin A biofortification of maize (Zea mays L.). Maqbool, M. A., Aslam, M., Issa, A.B., Khan, M. S. In: Plant Breeding v. 137, no. 4, p. 451-469.
4. Occurrence of the root-knot nematode species in vegetable crops in Souss region of Morocco. Janati, S., Abdellah Houari, Ahmed Wifaya, Adil Essarioui, Abdelaziz Mimouni, Abderrahim Hormatallah, Mohamed Sbaghi, Dababat, A.A., Mokrini, F. In: Plant Pathology Journal v. 34, no. 4, p. 308-315.
5. High N fertilizer application to irrigated wheat in Northern Mexico for conventionally tilled and permanent raised beds : effects on N balance and short term N dynamics. Grahmann, K., Verhulst, N., Dittert, K., Govaerts, B., Buerkert, A. In: Journal of Plant Nutrition and Soil Science vol. 181, no. 4, p. 606-620.
6. Correction to: bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. Montesinos-López, A., Montesinos-Lopez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vazquez, F.J. In: Plant Methods v. 14, art. 57.
7. β-cryptoxanthin–biofortified hen eggs enhance vitamin a status when fed to male Mongolian gerbils. Heying, E.K., Leary Ziemer, K., Tanumihardjo, J.P., Palacios-Rojas, N., Tanumihardjo, S. A. In: The Journal of Nutrition v.148, no. 8, p. 1236-1243.
8. Urgent action to combat climate change and its impacts (SDG 13) : transforming agriculture and food systems. Campbell, B.M., Hansen, J.W., Rioux, J., Stirling, C., Twomlow, S., Wollenberg, E. In: Current Opinion in Environmental Sustainability v. 34, p. 13-20.
9. Factors affecting the adoption of multiple climate-smart agricultural practices in the Indo-Gangetic plains of India. Aryal, J.P., Rahut, D.B., Maharjan, S., Erenstein, O. In: Natural Resources Forum v. 42, no. 3, p. 141-158.
LUDHIANA (India) — International experts on maize have gathered in Ludhiana, in the Indian state of Punjab, for the 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security. The conference, held on October 8-10, 2018, has attracted over 280 participants from 20 countries. The delegates come from a broad range of stakeholders, including researchers, policy makers, seed companies, service providers, innovative farmers, and representatives of development organizations and funding agencies.
In the opening ceremony on October 8, the Director of the International Maize and Wheat Improvement Center (CIMMYT) Global Maize Program and the CGIAR Research Program on Maize (MAIZE), B.M. Prasanna, discussed the current situation of maize in Asia as well as the themes of the conference. A diverse range of relevant topics will be covered, from breeding for climate resilience in maize based systems and climate-smart agriculture to socioeconomics for greater impact. “Gender and social inclusion is an important issue not only for Asia, but for the entire world. Women play a very important role in our farming systems, but women’s access to improved inputs such as seed is very low. All communities, regardless of caste or creed, need access to these inputs,” he said. The need for scale-appropriate mechanization and the importance of public-private partnerships will also be discussed.
Another topic of interest is fall armyworm, an invasive insect pest that has spread through 44 countries in Africa and was recently reported in India for the first time. “This pest can migrate very quickly, and doesn’t require visas and passports like we do. It will travel, so Asian nations need to be prepared,” said Prasanna. “However, there is no need for alarm; we will be looking at lessons learned from other regions and will work together to control this pest.”
Maize in Asia has high productivity and high demand, with maize productivity in the region growing by 5.2 percent annually, compared to a global average of 3.5 percent. However, this is not enough. “Asia produces nearly 80 million tons of maize annually, but demand will be double by the year 2050,” said the Director General of International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff. “We need to produce two times more maize in Asia, using two times less inputs, and it needs to be two times more nutritious. Climate change will make this more difficult. Continued funding for maize research is crucial. We need to work together to ensure that this research and innovation gets to farmers,” he explained.
In his welcome remarks, the director of research at Punjab Agricultural University, N.S. Bains, expressed his pleasure that the conference would be held in India for the second time, after 24 years. “What brings us together today is maize, a crop with an evolution bordering on the magical, that belongs even more to the future than to the past. Now maize leads the way in crop genomics. We are looking to use maize to solve many current challenges, which will be the theme of this conference,” he said.
The director general of the Indian Council of Agricultural Research (ICAR), Trilochan Mohapatra, discussed in detail the situation of maize in India. The country produces 25-27 million metric tons of maize per year, yet low productivity for kharif, or rainfed season, remains a challenge. “We have continuously enhanced maize productivity in India since the times of great food insecurity in the 1950s, and have tremendous scope to improve using new technologies, such as marker-assisted selection for quality in maize,” he said.
The director of the ICAR-Indian Institute of Maize Research, Sujay Rakshit, gave a vote of thanks to the conference organizers and particularly the funders that made the event possible.
B.S. Dhillon (center) receives the MAIZE Champion Award for his pioneering work in maize breeding. Left to right: N.S. Bains, B.M. Prasanna, Martin Kropff, B.S. Dhillon, Trilochan Mohapatra, Sujay Rakshit. (Photo: Manjit Singh/Punjab Agricultural University)
At the conclusion of the opening remarks, the organizers presented the vice-chancellor of Punjab Agricultural University, B.S. Dhillon, with the MAIZE Champion for Asia Award for his pioneering work in maize breeding throughout his career. “We are so lucky to work with a crop that has contributed so much to humanity. No other crop can compare,” Dhillon said in his address to participants. He also discussed the importance of climate-resilient maize varieties to help smallholder farmers suffering from the effects of climate variability.
The remainder of the conference will address the main opportunities and challenges for maize in Asia through technical sessions covering diverse topics such as novel tools and strategies for increasing genetic gains, specialty maize, processing and value addition, and nutritionally enriched maize for Asia.
On October 10, conference participants will go on a field trip to the BISA farm in Ladhowal, Ludhiana. Nearly 100 improved maize varieties developed by CIMMYT, ICAR and public and private sector partners will be on display, in addition to scale-appropriate mechanization options, precision nutrient and water management techniques, decision tools, sensors and automation-based management systems.
At the closing of the conference, the 2018 MAIZE-Asia Youth Innovators Awards will be presented, and winners will present their research. The awards were launched in collaboration between the CGIAR Research Program on Maize (MAIZE) and YPARD (Young Professionals for Agricultural Development) to recognize the contributions of innovative young women and men who can inspire fellow young people to get involved with maize-based agri-food systems.
The conference program and details are available at www.maize.org.
For further information, contact:
Jennifer Johnson
Communications Officer
CGIAR Research Program on Maize (MAIZE)
CIMMYT, Mexico
Telephone: +52 (55) 5804 2004 ext. 1036
Email: j.a.johnson@cgiar.org
CIMMYT
CIMMYT – The International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.
MAIZE
The CGIAR Research Program on MAIZE (MAIZE) is an international collaboration between more than 300 partners that seeks to mobilize global resources in maize research and development to achieve a greater strategic impact on maize-based farming systems in Africa, South Asia and Latin America.
Led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Institute of Tropical Agriculture (IITA) as its main CGIAR partner, MAIZE focuses on increasing maize production for the 900 million poor consumers for whom maize is a staple food in Africa, South Asia and Latin America. MAIZE’s overarching goal is to double maize productivity and increase incomes and livelihood opportunities from sustainable maize-based farming systems.
The new lines are specifically adapted to tropical/subtropical maize production environments in Africa, Asia and Latin America, and are freely available to both public and private sector breeders worldwide.
CML582, one of the 26 new CIMMYT maize lines released by the Center. (Photo: CIMMYT)
CIMMYT is pleased to announce the release of a set of 26 new CIMMYT maize lines (CMLs). These CMLs were developed by the CIMMYT Global Maize Program’s multi-disciplinary teams of scientists at breeding locations in sub-Saharan Africa, Latin America and Asia. These lines are adapted to the tropical/subtropical maize production environments targeted by CIMMYT and partner institutions. CMLs are freely available to both public and private sector breeders worldwide under the standard material transfer agreement (SMTA).
CIMMYT seeks to develop improved maize inbred lines with superior performance and multiple stress tolerance to improve maize productivity for resource-constrained smallholder farmers. To achieve this aim, CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses. Suitability as either seed or pollen parent is also thoroughly evaluated.
Release of a CML does not guarantee high combining ability or per se performance in all environments; rather, it indicates that the line is promising or useful as a hybrid component or parent for pedigree breeding for one or more target mega-environments. The descriptions of the lines include heterotic group classification, along with information on their specific combining ability with widely-used CIMMYT lines.
For a summary of the 26 new CMLs, please click here.
Further details on all CMLs, including the pedigrees, are available here.
A limited quantity of seed of the CMLs can be obtained from the CIMMYT Germplasm Bank. To send a request, please contact Denise Costich, Head of the Maize Genetic Resources Center: d.costich@cgiar.org.
For further details, please contact B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Director of CIMMYT’s Global Maize Program: b.m.prasanna@cgiar.org.
Involving diverse segments of a target population in agricultural innovation interventions allows for more inclusive and equitable processes while stimulating local innovation and development outcomes. But what are the key characteristics of rural innovators? And how are their experiences similar for women and men, and how are they different?
To examine these questions, a team of researchers from CIMMYT, collaborating CGIAR centers, and Wageningen University and Research conducted individual interviews with 336 rural women and men known in their communities for trying out new things in agriculture. The results of this study are collected in 84 GENNOVATE community case studies from 19 countries across Africa, Asia, and Latin America.
Building on study participants’ own reflections and experiences with innovation in their agricultural livelihoods, the research team combined variable-oriented analysis with analysis of specific individuals’ lived experience. The study provides in-depth knowledge on how the characteristics and experiences of individual innovators interlink with the social setting to facilitate or impede innovation.
Results indicate that factors related to personality and agency are what most drive capacity to innovate. Access to resources is not a prerequisite but an important enabling aspect. Women have great potential for local innovation, but structural inequalities mean that men are often better positioned to access resources and leverage support – as a result when women challenge the status quo, men’s support is important.
This paper draws on data collected as part of GENNOVATE case studies funded by the CGIAR Research Programs on Wheat, Maize, Grain Legumes, Humid Tropics and Rice, as well as RTB (Roots, Tubers and Bananas), A4NH (Agriculture for Nutrition and Health) and FTA (Forests, Trees and Agroforestry).
Development of research design and field methodology was supported by the CGIAR Gender & Agricultural Research Network, the World Bank, the governments of Mexico and Germany, and the CGIAR Research Programs on Wheat and Maize. Data analysis was supported by the Bill & Melinda Gates Foundation.
Women farmers in Nepal use a mini tiller for direct seeding. (Photo: P.Lowe/CIMMYT)
Check out other recent publications by CIMMYT researchers below:
Facilitating change for climate-smart agriculture through science-policy engagement. Dinesh, D., Zougmore, R., Vervoort, J., Totin, E., Thornton, P.K., Solomon, D., Shirsath, P.B., Pede, V.O., Lopez-Noriega, I., Läderach, P., Korner, J., Hegger, D., Girvetz, E.H,. Friis, A.E., Driessen, P.P.J., Campbell, B.M. In: Sustainability v. 10, no. 8, art. 2616.
Assessment of management options on striga infestation and maize grain yield in Kenya. Kanampiu, F., Makumbi, D., Mageto, E.K., Omanya, G., Waruingi, S., Musyoka, P., Ransom, J. K. In: Weed Science v. 66, no. 4, p. 516-524.
Maize combined insect resistance genomic regions and their co-localization with cell wall constituents revealed by tissue-specific QTL meta-analyses. Badji, A., Otim, M., Machida, L., Odong, T., Kwemoi, D.B., Okii, D., Agbahoungba, S., Mwila, N., Kumi, F., Ibanda, A., Mugo, S.N., Kyamanywa, S., Rubaihayo, P. In: Frontiers in Plant Science v. 9, art. 895.
Gender and equitable benefit-sharing mechanisms through agricultural innovation platforms in Rwanda. Adam, R.I., Misiko, M.T., Dusengemungu, L., Rushemuka, P.N., Mukakalisa, Z. In: Community Development vol. 49, no. 4, p. 380-397
Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Roorkiwal, M., Jarquín, D., Muneendra K. Singh., Pooran M. Gaur., Chellapilla Bharadwaj., Abhishek Rathore., Howard, R., Samineni Srinivasan., Ankit Jain., Vanika Garg., Sandip Kale., Annapurna Chitikineni., Shailesh Tripathi., Jones, E., Robbins, K., Crossa, J., Varshney, R. K. In: Scientific Reports v. 8, art. 11701.
NAIROBI (Kenya) — As the invasion of the voracious fall armyworm threatens to cause US$3-6 billion in annual damage to maize and other African food staples, 35 organizations announced today the formation of a global coalition of research for development (R4D) partners, focused on developing technical solutions and a shared vision of how farmers should fight against this pest. After causing extensive crop damage in Africa, the presence of the fall armyworm was recently confirmed in India.
The new Fall Armyworm R4D International Consortium will serve to develop and implement a unified plan to fight this plant pest on the ground. Focusing on applied research, the consortium joins other global efforts and coordinates with international bodies working against this pest. The Fall Armyworm R4D International Consortium will be co-led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA).
“This pest caught us all by surprise and it continues eating away at maize and other crops that are important for the food security and livelihoods of African farmers. We can no longer afford to work in isolation,” said the Director General of CIMMYT, Martin Kropff. “Many organizations in the public and private sector are working intensively on different approaches,” he added, “but farmers are not interested in half solutions. They want to have integrated solutions, supported by strong science, which work effectively and sustainably.”
Consortium members will coordinate efforts to pursue a wide range of options for fighting fall armyworm, with a strong emphasis on integrated pest management, which includes host plant resistance, environmentally safer chemical pesticides, biological and cultural control methods, and agronomic management.
The Deputy Director General for Partnerships for Delivery at IITA, Kenton Dashiell, said that efforts are underway to identify and validate biopesticides, or “very safe products that don’t harm the environment or people but kill the pest.” In some areas, Dashiell explained, farmers may need to consider temporarily switching to a food crop that is not susceptible to armyworm.
A fall armyworm on a damaged leaf in Nigeria, 2017. (Photo: G. Goergen/IITA)
The Vice President of Program Development and Innovation at the Alliance for a Green Revolution in Africa (AGRA), Joe DeVries, said his organization is serving as a bridge between scientists and farmers. AGRA is developing a network of “village-based advisers” across 15 countries who will be connected to farmers via a “private sector-led” extension system to help farmers deal with fall armyworm infestations. AGRA and its partners already have trained more than 1,000 advisers and expect to add several thousand more who can “quickly bring to farmers the latest knowledge about the best methods of control.”
The Chief Scientist at the Bureau of Food Security of the United States Agency for International Development (USAID), Rob Bertram, expressed his excitement about the formation of the consortium, both for its immediate relevance for fighting fall armyworm and as a forerunner of “more resilient” agriculture systems in Africa, which is likely to see similar threats in the future. CIMMYT and USAID, together with global experts, developed an integrated pest management guide to fight fall armyworm, available in English, French and Portuguese.
The Director General of Development at the Center for Agriculture and Biosciences (CABI), Dennis Rangi, noted that the ability for people to more rapidly travel around the world is also making it easier for plant pests to hop from continent to continent. “Today we are focusing on the fall armyworm, tomorrow it could be something different,” he said.
The members of the Fall Armyworm R4D International Consortium will hold their first face-to-face meeting on October 29-31, 2018, in Addis Ababa, Ethiopia. This international conference will be organized by CIMMYT, IITA, AGRA, CABI, FAO, icipe, FAO, USAID and the African Union Commission.
The technical coordinators of the consortium are B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Global Maize Program at CIMMYT, and May-Guri Saethre, Deputy Director General of Research for Development at IITA.
PARTNERS OF THE FALL ARMYWORM R4D INTERNATIONAL CONSORTIUM
Leads:
International Maize and Wheat Improvement Center (CIMMYT)
International Institute of Tropical Agriculture (IITA)
Members:
African Agricultural Technology Foundation (AATF)
Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA)
Alliance for a Green Revolution in Africa (AGRA)
Bayer
Bill & Melinda Gates Foundation
Biorisk Management Facility (BIMAF)
Brazilian Agricultural Research Corporation (Embrapa)
Center for Agriculture and Biosciences (CABI)
Corteva
CropLife International
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)
Food and Agriculture Organization of the United Nations (FAO)
Forum for Agricultural Research in Africa (FARA)
International Centre of Insect Physiology and Ecology (icipe)
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
Lancaster University
Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures)
Michigan State University (MSU)
Mississippi State University (MSU)
North-West University (NWU)
Norwegian Institute of Bioeconomy Research (NIBIO)
Oregon State University (OSU)
Rothamsted Research
Syngenta
UK Department for International Development (DFID)
United States Agency for International Development (USAID)
University of Bonn
University of Florida (UFL)
University of Greenwich
Virginia Polytechnic Institute and State University (Virginia Tech)
Wageningen University and Research (WUR)
West and Central African Council for Agricultural Research (CORAF/WECARD)
World Agroforestry Centre (ICRAF)
MEDIA CONTACTS
For more information, please contact:
Geneviève Renard, Head of Communication, CIMMYT g.renard@cgiar.org, +52 (55) 5804 2004, ext. 2019.
Katherine Lopez, Head of Communication, IITA k.lopez@cgiar.org, +234 0700800, ext. 2770
The 2018 MAIZE Youth Innovators Awards – Asia recognize the contributions of young women and men who can inspire fellow young people to get involved in maize-based research, social change and farming. The awards are sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).
The awardees have been invited to attend the 13th Asian Maize Conference in Ludhiana, India, where they will present their work and receive their awards.
The winners in the two categories are:
RESEARCHER
Dinesh Panday, Nepal
Focus: Soil fertility and nutrient management
Dinesh Panday.
Dinesh Panday’s family has a long history in agriculture, which strongly rooted his passions in the field of soil science. He is a Doctorate Graduate Research Assistant in Soil Fertility and Nutrient Management at the University of Nebraska-Lincoln under the supervision of Bijesh Maharjan and Richard Ferguson.
His research aims to determine the effectiveness of high carbon char in reducing environmental nitrogen loss and improving nitrogen fertilizer use efficiency in fertilized soils in semi-arid regions. Using active and passive sensors to detect maize nitrogen stress, predict grain yield and determine in-season and additional side-dress applications of nitrogen fertilizer it is possible to reduce environmental impacts.
Jie Xu, China
Focus: Drought stress in maize root systems
Jie Xu.
An associate researcher at Sichuan Agricultural University, China, Jie Xu is interested in how maize roots influence performance under drought stress. By studying maize inbred lines that exhibit different drought tolerance, her research explores their genome and transcriptome variations to understand the genetic basis of plant adaptation to drought. The findings can then be used in breeding drought-tolerant maize.
Jie Xu and her team have developed methods to dissect the genetic and epigenetic mechanisms underlying maize drought stress response. This work involves the identification of non-synonymous SNPs and corresponding candidate genes for drought tolerance using analyses such as common variant and clustering techniques. Her team also revealed the impact smRNAs and histone modifications have in the regulation of maize drought stress response.
Vignesh Muthusamy, India
Focus: Development of biofortified provitamin-A rich QPM maize hybrids
Vignesh Muthusamy.
Vignesh Muthusamy is from a farming community in the Namakkal district in Tamil Nadu. A Senior Scientist at the Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, he specializes in maize genetics and breeding. His research demonstrates the use of modern biotechnological tools in crop improvement. He was associated with the development of India’s first provitamin A enriched maize hybrid ‘Pusa Vivek QPM 9 Improved’ and with the development of three quality protein maize hybrids that possess high lysine and tryptophan in protein. These biofortified maize hybrids offer tremendous scope to address widespread human malnutrition. Further research work includes the development of a high-yielding sweet corn hybrid and several novel maize genetic resources for nutritional quality traits.
Muthusamy has received many prestigious awards from different societies and scientific organizations, including Jawaharlal Nehru Award for Outstanding Doctoral Thesis Research in Agricultural and Allied Sciences from Indian Council of Agricultural Research. As Principal Investigator, he is handling projects funded by Department of Biotechnology and Department of Science & Technology, Government of India for development of nutritionally rich maize and specialty corn genotypes. Besides research, he is also actively involved in teaching and guidance of post graduate students of the institute.
CHANGE AGENT
Samjhana Khanal, Nepal
Focus: Social inclusion of young people and site-specific nutrient management (SSNM) using Nutrient Expert®
Samjhana Khanal.
Samjhana Khanal, an agricultural graduate, has founded and co-founded various social organizations at a local level in Nepal to involve young minds in the development of innovative strategies to work towards sustainable agriculture and zero hunger.
Besides taking part in agricultural trainings, workshops and conferences during her undergraduate degree, Samjhana worked as a R&D Research Assistant at the Eastern Regional Agricultural Directorate in Nepal and has published a number of research papers. Her most recent research involves the productivity and profitability of hybrid maize using the Nutrient Expert® Maize model in eastern Terai, Nepal. Using Nutrient Expert®, a dynamic nutrient management tool based on site-specific nutrient management (SSNM) principles, farm-specific fertilizer recommendations for maize are possible, resulting in higher grain yield and improved productivity and profits for farmers.
International experts to convene in Ludhiana, India, to discuss the way forward to increase climate resilience and productivity of maize, and to strengthen maize-based cropping systems in Asia.
A farmer checks her maize as it comes out of a shelling machine powered by a four-wheel tractor, Nepal. (Photo: P. Lowe/CIMMYT)
Ludhiana, India (CIMMYT) — Maize is one of the most important crops in Asia, alongside rice and wheat, and provides important economic opportunities to smallholder farmers. The 13th Asian Maize Conference will take place in Ludhiana, India, on October 8-10, 2018. It will bring together key Asian maize partners and global experts to discuss the present status, challenges, and future opportunities for enhancing maize for food, feed, nutrition and environmental security in Asia.
The conference is jointly organized by the Indian Council of Agricultural Research (ICAR), the International Maize and Wheat Improvement Center (CIMMYT), the ICAR-Indian Institute of Maize Research (ICAR-IIMR), Punjab Agricultural University (PAU), the CGIAR Research Program on Maize (MAIZE) and the Borlaug Institute for South Asia (BISA).
The importance of maize in Asian cropping systems has grown rapidly in recent years, with several countries registering impressive growth rates in maize production and productivity. China ranks first in the world in terms of area under maize, with nearly 36 million hectares. In South and South East Asia, maize is cultivated on more than 22 million hectares, where farmers produce nearly 80 million metric tons of maize (FAOSTAT, 2018).
Despite the achievement of increased maize production in Asia, there is a need to keep up with ever-increasing and competing demands for food, feed and industry needs. The demand for maize in Asia is expected to double by 2050. However, the magnitude and dynamics of abiotic and biotic stresses are rapidly increasing due to changing climates, placing constraints on maize production. Existing constraints to maize production and productivity in several Asian countries exacerbates the pressure to meet demand, further emphasizing the need for improved technologies and management practices. Therefore, continued investment in maize research for development (R4D) is required to ensure future maize production can meet demand.
Farm workers harvest maize. (Photo: P. Lowe/CIMMYT)
Tremendous opportunities exist for innovations in maize breeding, precision agriculture, seed systems, and value chains, offering exciting prospects for future growth and development of maize in the region. The 13th Asian Maize Conference will focus on ways and means to enhance Asian farmers’ access to high-yielding, climate-resilient and quality seeds, along with climate-smart agronomic management practices. Further topics of discussion include institutional innovations and enabling policies for sustainable intensification of maize-based cropping systems in Asia, and increasing engagement of women and young farmers and entrepreneurs in maize value chains.
The 2018 Maize-Asia Youth Innovators Awards were launched in collaboration between the CGIAR Research Program on Maize (MAIZE) and YPARD (Young Professionals for Agricultural Development) during the run-up to the conference. The awards recognize the contributions of innovative young women and men who can inspire fellow young people to get involved with maize-based agri-food systems. Winners from different categories (researchers and change agents) have been invited to attend the 13th Asian Maize Conference, where they will make brief presentations of their work and receive their awards.
The Conference is expected to draw around 275 participants from several maize-growing countries in Asia, besides experts outside the continent. The delegates come from a broad range of stakeholders, including researchers, policy makers, seed companies, service providers, innovative farmers, and representatives of several development organizations and funding agencies.
The conference program and details will be available on http://maize.org/.
For further information, contact:
Jennifer Johnson
Communications Officer
CGIAR Research Program on Maize (MAIZE)
CIMMYT, Mexico
Telephone: +52 (55) 5804 2004 ext. 1036
Email: j.a.johnson@cgiar.org
KIGALI, Rwanda (CIMMYT) — The African Green Revolution Forum (AGRF) is the place to be for organizations interested in Africa’s agricultural development. Research institutions, development agencies, funders, farmers’ organizations, large agribusinesses and green start-ups came together for the latest edition of this event in Kigali, Rwanda, on September 4-8. Organized by the Alliance for a Green Revolution in Africa (AGRA) since 2010, this year’s theme was “Lead. Measure. Grow.”
The President of Rwanda, Paul Kagame, recalled a sentence stuck in his memory since childhood: “Everything is agriculture, the rest is good luck”. All the top leaders present at AGRF 2018 agreed that investing in smallholder agriculture is a top development priority, since the growth of the primary sector “drives down poverty, two to four times faster than other sectors” and provides livelihoods for three quarters of the African population.
Transforming policy declarations into impact on the ground
Even though African governments agreed on a roadmap towards inclusive agricultural growth — the Comprehensive African Agriculture Development Programme, or CAADP — in 2003, the agriculture sector has remained stagnant since the 1980s. A majority of African countries continue to be net food importers despite their bountiful natural resources, as highlighted in the Africa Agriculture Status Report 2018.
Some African food ventures are quite successful exporting beans, roses or avocados to Europe. However, most African farmers still live on less than one dollar a day, on small rain-fed plots of less than two hectares, having to cope with high climate variability and damages from numerous pests and diseases. They often plant low quality seeds, on acid and degraded soils, with little fertilizer. Rapid ageing of the farming population, 60 years old on average, is a particular concern at a time when many young people are underemployed.
“African agriculture is at a defining moment” was a message hammered home by several keynote speakers of AGRF 2018. So what makes this moment different?
In recent years, some countries have seen a significant rise in farm productivity. Ethiopia, for instance, exceeded the CAADP target of 6 percent annual agricultural growth in the last 25 years, halving its poverty rates over the same period.
African agriculture is facing new threats, from climate change to devastating pests like the fall armyworm, but researchers can be fast to respond, particularly if they are properly funded and listened to.
“The challenge is to design the right partnerships or business models between research, government, civil society and the private sector, to reach impact at scale”, explained CIMMYT’s director general, Martin Kropff. One example would be the Fall Armyworm Research for Development (R4D) International Consortium, officially launched at AGRF 2018.
Research has to anticipate and respond to the needs of smallholder farmers in diverse ecological and socioeconomic contexts. The agenda has to become demand-driven and researchers have to look at new collaborations if they want to reach the farmers.
The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion “Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit.” (Photo: CIMMYT)
Make agriculture resilient and attractive to youth
Leaders discussed the ways to build viable, fair and sustainable food systems that will provide good opportunities for African farmers, especially the next generation, and affordable, nutritious food for the whole population.
In their view, the roadmap for the coming years includes several key actions: investing in infrastructure, investing in youth and education, investing in value addition and food processing and removing trade barriers.
Speakers also flagged irrigation as a top priority. “African farmers do not need rain; they need water,” summed up John Mellor, who coordinated the African State of Agriculture Report 2018. He explained that top-down irrigation schemes are difficult to manage and maintain, so the focus should rather be on farmer-led irrigation.
The conference highlighted how digital agriculture, big data and other innovations offer the opportunity to leapfrog agriculture growth and make farming attractive to youth. For instance, Hello Tractor, a CIMMYT partner, is an Uber-like service linking tractor owners and machinery service providers with farmers. CIMMYT research shows that appropriate rural mechanization adapted to smallholders, like two-wheel tractors, will ease labor problems and enable adoption of more sustainable practices, like direct sowing. This can make farming more attractive for young people and create opportunities for them to become service providers.
Taking knowledge to farmers
Many innovations are out there to help African farmers grow more and better food; from climate resilient new varieties and customized agronomic advice to new e- or m-business models.
Mobile finance solution Tulaa brings together farmers, agro-dealers and credit providers on a virtual marketplace. Through Tulaa, farmers can borrow money to purchase the right fertilizers or seeds at the right time. Another platform, Precision Agriculture for Development, is providing more than 120,000 Kenyan farmers with agronomic advice via SMS, so they can better identify and manage fall armyworm. Other new digital platforms are linking smallholder farmers with quality inputs, extension services, finance, food processing and market opportunities.
All these operators will need to use accurate, science-based data. That is where CIMMYT’s expertise could play a big role, for instance providing customized fertilization recommendations to individual farmers, as planned in the Taking Maize Agronomy to Scale in Africa (TAMASA) project.
B.M. Prasanna, director of CIMMYT’s Global Maize Program, concluded that “AGRF is an excellent platform to network, debate issues relevant to African agriculture, form alliances and think forward.” Providing more resources in agricultural research for development will generate a stream of new technologies and solutions that will drive agricultural growth. Something African countries urgently need with their fast-growing population (2-3 percent annually) and one additional billion people to feed by 2050.
The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)
An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat, according to a report published in Nature Scientific Reports on September 10.
Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as two wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.
The findings promise greatly to ease development of wheat varieties with enhanced levels of zinc, a critical micronutrient lacking in the diets of many poor who depend on wheat-based food, according to Velu Govindan, wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new report.
“A collaboration among research centers in India, Australia, the USA and Mexico, this work will expedite breeding for higher zinc through use of ‘hotspot’ genome regions and molecular markers,” said Govindan. “It also advances efforts to make selection for grain zinc a standard feature of CIMMYT wheat breeding. Because varieties derived from CIMMYT breeding are grown on nearly half the world’s wheat lands, ‘mainstreaming’ high zinc in breeding programs could improve the micronutrient nutrition of millions.”
More than 17 percent of humans, largely across Africa and Asia, lack zinc in their diets, a factor responsible for the deaths of more than 400,000 young children each year.
Often used in human disease research, the genome-wide association approach was applied in this study to zero in on genome segments — known as quantitative trait loci (QTLs) — that carry genes of interest for wheat grain zinc content, according to Govindan.
“The advantages of the genome-wide association method over traditional QTL mapping include better coverage of alleles and the ability to include landraces, elite cultivars, and advanced breeding lines in the analysis,” he explained. “Our study fully opens the door for the expanded use of wheat progenitor species as sources of alleles for high grain zinc, and the outcomes helped us to identify other candidate genes from wheat, barley, Brachypodium grasses and rice.”
Farmers in South Asia are growing six zinc-enhanced wheat varieties developed using CIMMYT breeding lines and released in recent years, according to Ravi Singh, head of the CIMMYT Bread Wheat Improvement Program.
Financial support for this study was provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. It was also supported by CGIAR Funders, through the Research Program on Wheat and the Research Program on Agriculture for Nutrition and Health. Research partners in India and Pakistan greatly contributed to this study by conducting high-quality field trials.
Farmer Eveline Musafari intercrops maize and a variety of legumes on her entire farm. She likes the ability to grow different food crops on the same space, providing her family with more food to eat and sell. (Photo: Matthew O’Leary/CIMMYT)
Honest Musafari, a fifty-year-old farmer from rural Zimbabwe, eagerly picks up a clump of soil from his recently harvested field to show how dark and fertile it is. A farmer all his life, Musafari explains the soil has not always been like this. For years, he and his neighbors had to deal with poor eroding soil that increasingly dampened maize yields.
“My soil was getting poorer each time I plowed my field, but since I stopped plowing, left the crop residues and planted maize together with legumes the soil is much healthier,” says Musafari. His 1.6-hectare maize-based farm, in the Murehwa district, supports his family of six.
For over two years, Musafari has been one of the ten farmers in this hot and dry area of Zimbabwe to trial intercropping legumes and green manure cover crops alongside their maize, to assess their impact on soil fertility.
The on-farm trials are part of efforts led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with Catholic Relief Services (CRS) and government extension services to promote climate-resilient cropping systems in sub-Saharan Africa.
Increasing land degradation at the farm and landscape level is the major limitation to food security and livelihoods for smallholder farmers in sub-Saharan Africa, says CIMMYT senior cropping systems agronomist Christian Thierfelder.
“Over 65 percent of soils in Africa are degraded. They lack the nutrients needed for productive crops. This is a major part of the reason why the region’s maize yields are not increasing,” he explains. “The failure to address poor soil health will have a disastrous effect on feeding the region’s growing population.”
The area where Musafari lives was chosen to test intercropping, along with others in Malawi and Zambia, for their infamous poor soils.
Mixing it up
When legumes are intercropped with maize they act as a green manure adding nutrients to the soil through nitrogen fixation. Intercropping legumes and cereals along with the principles of conservation agriculture are considered away to sustainable intensify food production in Africa. (Photo: Christian Thierfelder/CIMMYT)
Planted in proximity to maize, legumes — like pigeon pea, lablab and jack beans — add nitrogen to the soil, acting as green manure as they grow, says Thierfelder. Essentially, they replace the nutrients being used by the cereal plant and are an accessible form of fertilizer for farmers who cannot afford mineral fertilizers to improve soil fertility.
“Our trials show legumes are a win for resource poor family farmers. Providing potentially 5 to 50 tons per hectare of extra organic matter besides ground cover and fodder,” he notes. “They leave 50 to 350 kg per hectare of residual nitrogen in the soil and do not need extra fertilizer to grow.”
Added to the principles of conservation agriculture — defined by minimal soil disturbance, crop residue retention and diversification through crop rotation and intercropping — farmers are well on their way to building a resilient farm system, says Geoffrey Heinrich, a senior technical advisor for agriculture with CRS working to promote farmer adoption of green manure cover crops.
For years Musafari, as many other smallholder farmers in Africa, tilled the land to prepare it for planting, using plows to mix weeds and crop residues back into the soil. However, this intensive digging has damaged soil structure, destroyed most of the organic matter, reduced its ability to hold moisture and caused wind and water erosion.
Letting the plants do the work
Growing legumes alongside maize provides immediate benefits, such as reduced weeding labor and legume cash crops farmers can sell for a quick income. The legumes also improve the nitrogen levels in the soil and can save farmers money, as maize needs less fertilizer. (Photo: Christian Thierfelder/CIMMYT)
Musafari says the high price of mineral fertilizer puts it out of reach for farmers in his community. They only buy little amounts when they have spare cash, which is never enough to get its full benefit.
He was at first skeptical green manure cover crops could improve the quality of his soil or maize yields, he explains. However, he thought it was worth a try, considering growing different crops on the same plot would provide his family with more food and the opportunity to make some extra cash.
“I’m glad I tried intercropping. Every legume I intercropped with my maize improved the soil structure, its ability to capture rain water and also improved the health of my maize,” he says.
Thierfelder describes how this happens. Nitrogen fixation, which is unique to leguminous crops, is a very important process for improving soil fertility. This process involves bacteria in the soil and nitrogen in the air. The bacteria form small growths on the plant roots, called nodules, and capture the atmospheric nitrogen as it enters the soil. The nodules change the nitrogen into ammonia, a form of nitrogen plants use to produce protein.
In addition, legumes grown as a cover crop keep soil protected from heavy rains and strong winds and their roots hold the soil in place, the agronomist explains. They conserve soil moisture, suppress weeds and provide fodder for animals and new sources of food for consumption or sale.
Farmers embrace intercropping
Extension worker Memory Chipinguzi explains the benefits of intercropping legumes with cereals to farmers at a field day in the Murehwa district, Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)
Working with CIMMYT, Musafari and his wife divided a part of their farm into eight 20 by 10 meter plots. On each plot, they intercropped maize with a different legume: cowpea, jack bean, lablab, pigeon pea, sugar bean and velvet bean. They also tried intercropping with two legumes on one of the plots. Then they compared all those options to growing maize alone.
“Season by season the soil on each of the trial plots has got darker and my maize healthier,” describes Musafari. “Rains used to come and wash away the soil, but now we don’t plow or dig holes, so the soil is not being washed away; it holds the water.”
“I really like how the legumes have reduced the weeds. Before we had a major problem with witchweed, which is common in poor soils, but now it’s gone,” he adds.
Since the first season of the trial, Musafari’s maize yields have almost tripled. The first season his maize harvested 11 bags, or half a ton, and two seasons later it has increased to 32 bags, or 1.5 tons.
Musafari’s wife Eveline has also been convinced about the benefits of intercropping, expressing the family now wants to extend it to the whole farm. “Intercropping has more advantages than just growing maize. We get different types of food on the same space. We have more to eat and more to sell,” she says.
The family prefers intercropping with jack bean and lablab. Even though they were among the hardest legumes to sell, they improved the soil the most. They also mature at the same time as their maize, so they save labor as they only have to harvest once.
The benefits gained during intercropping have influenced farmers to adopt it as part of their farming practices at most of our trial sites across southern Africa, CRS’s Heinrich says.
“Immediate benefits, such as reduced weeding labor and legume cash crops that farmers can sell off quick, provide a good incentive for adoption,” he adds.
Honest and Eveline Musafari with extension worker, Memory Chipinguzi. Neighbors have noticed the intercropping trials on the Musafari’s farm and are beginning to adopt the practice to gain similar benefits. (Photo: Matthew O’Leary/CIMMYT)
The majority of African farmers are smallholders who cultivate less than 2 hectares, explains Thierfelder. If they are to meet the food demand of a population set to almost double by 2050, bringing it to over 2 billion people while overcoming multiple challenges, they need much more productive and climate-resilient cropping systems.
New research identifies that the defining principles of conservation agriculture alone are not enough to shield farmers from the impacts of climate change. Complementary practices are required to make climate-resilient farming systems more functional for smallholder farmers in the short and long term, he warns.
“Intercropping with legumes is one complementary practice which can help building healthy soils that stand up to erratic weather,” says Thierfelder. “CIMMYT promotes climate-resilient cropping systems that are tailored to farmers’ needs,” he emphasizes.
“To sustainably intensify farms, growers need to implement a variety of options including intercropping, using improved crop varieties resistant to heat and drought and efficient planting using mechanization along with the principles of conservation agriculture to obtain the best results.”
CIMMYT maize germplasm bank staff preparing the order for the repatriation of Guatemalan seed varieties. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) maize germplasm bank recently received an award in recognition of its contributions towards the Buena Milpa initiative in Guatemala, which aims to enhance the sustainability of maize systems in the country. Denise Costich, head of the maize germplasm bank, received the award on behalf of CIMMYT during the event ‘Maize of Guatemala: Repatriation, conservation and sustainable use of agro-biodiversity,’ held on September 7, 2018, in Guatemala City.
The seed varieties stored in the CIMMYT germplasm bank were of vital importance in efforts to restore food security in the aftermath of Hurricane Stan, which swept through Guatemala in 2005, leading to 1,500 deaths. Many farmers lost entire crops and some indigenous communities were unable to harvest seed from their traditional maize varieties, known as landraces. Generations of selection by farmers under local conditions had endowed these varieties with resistance to drought, heat, local pests and diseases. Such losses were further exacerbated by the discovery that the entire maize seed collection in Guatemala’s national seed bank had been damaged by humidity; the seeds were vulnerable to insects and fungus and could not be replanted.
In 2016, drawing upon the backup seed stored in its maize germplasm bank in Mexico, CIMMYT sent Guatemalan collaborators seed of 785 native Guatemalan maize varieties, including some of the varieties that had been lost. Collaborators in Guatemala subsequently planted and multiplied the seed from the historic CIMMYT samples, ensuring the varieties grow well under local conditions. On completion of this process, the best materials will be returned to local and national seedbanks in Guatemala, where they will be available for farmers and researchers to grow, study and use in breeding programs.
Jointly hosted by the government of Guatemala through the Ministry of Agriculture, Livestock and Food and the Ministry of Culture and Sport, the recent ceremony signified the official delivery of the repatriated seed into the national system. Attendees celebrated the importance of maize in Guatemala and witnessed the presentation of repatriated maize collections to local and national Guatemalan seedbank authorities, including the Institute of Agricultural Science and Technology (ICTA).
“Supporting the seed conservation networks, on both the national and community levels in countries like Guatemala, is a key part of the mission of the CIMMYT Germplasm Bank,” said Costich. “Our collaboration with the Buena Milpa project has enabled the transfer of both seed and seed conservation technologies to improve the food security in communities with maize-centered diets.”
The Buena Milpa initiative in Guatemala is improving storage practices in community seed reserves: tiny, low-tech seed banks meant to serve as backups for villages in cases of catastrophic seed loss. So far, Buena Milpa has enabled 1,800 farmers to access community seed reserves. In addition, 13,000 farmers have applied improved practices and technologies.
The CIMMYT maize germplasm bank, headquartered in Mexico, serves as a backup for farmers and researchers in times of catastrophic seed loss by safeguarding maize genetic diversity, a crucial building block in global food security.
For the first time ever, a research team of more than 40 scientists has genetically characterized values of exotics in hexaploid wheat. CIMMYT scientists, together with partners in Demark, India, Mexico, Pakistan, and the UK, used next-generation sequencing and multi-environment phenotyping to study the contribution of exotic genomes to pre-breeding lines. Research required collaborative development, evaluation, and deployment of novel genetic resources to breeding programs addressing food security under climate change scenarios in India, Mexico, and Pakistan.
The team generated large-scale pre-breeding materials, which have been evaluated for important traits such as grain yield, quality, and disease resistance. Pre-breeding and haplotype-based approaches revealed useful genetic footprints of exotic lines in pre-breeding germplasm. Results of the study, recently published in Nature Scientific Reports, show that some DNA from exotic germplasm improved the biotic and abiotic stress tolerances of lines derived from crosses of exotics with CIMMYT’s best elite lines.
The practical successes of large-scale, impact-oriented breeding work will be useful to other wheat breeding programs around the world, and the information generated could be used to boost global wheat productivity.
Sukhwinder Singh, wheat lead on CIMMYT’s SeeD Project, explains that pre-breeding is in-demand and the resources developed through this study can serve as tools to address upcoming challenges in wheat production more efficiently, as desirable alleles from exotics have been mobilized into best elite genetic background. Breeding programs can now use this material to deliver outcomes in shorter timeframes by avoiding the lengthy process of searching for exotics first.
This research was conducted as part of the Seeds of Discovery and MasAgro projects in collaboration with the Borlaug Institute for South Asia, and was made possible by generous support from Mexico’s Department of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), the Government of Punjab, and the CGIAR Research Program on Wheat.
Check out other recent publications by CIMMYT researchers below:
Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. González-Camacho, J.M., Ornella, L., Perez-Rodriguez, P., Gianola, D., Dreisigacker, S., Crossa, J. In: Plant Genome v. 11, no. 2, art. 170104.
Bayesian functional regression as an alternative statistical analysis of high‑throughput phenotyping data of modern agriculture. Montesinos-López, A., Montesinos-López, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vázquez, F.J. In: Plant Methods v. 14, art. 46.
Effect of ppd-a1 and ppd-b1 allelic variants on grain number and thousand-kernel weight of durum wheat and their impact on final grain yield. Arjona, J.M., Royo, C., Dreisigacker, S., Ammar, K., Villegas, D. In: Frontiers in Plant Science v. 9, art. 888.
Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. Sukumaran, S., Jarquín, D., Crossa, J., Reynolds, M.P. In: Plant Genome v. 11, no. 2, art. 170112.
Mexican tropical cream cheese yield using low-fat milk induced by trans-10, cis-12 conjugated linoleic acid: effect of palmitic acid. Granados-Rivera, L.D., Hernández-Mendo, O., Burgueño, J., Gonzalez-Munoz, S.S., Mendoza-Martinez, G.D., Mora-Flores, J.S., Arriaga-Jordan, C.M. In: CyTA-Journal of Food v. 16, no. 1, p. 311-315.
A farm landscape in Ethiopia. (Photo: Apollo Habtamu/ILRI)
Despite her unassuming nature, the literary character Miss Marple solves murder mysteries with her keen sense of perception and attention to detail. But there’s another sleuth that goes by the same name. MARPLE (Mobile And Real-time PLant disEase) is a portable testing lab which could help speed-up the identification of devastating wheat rust diseases in Africa.
Rust diseases are one of the greatest threats to wheat production around the world. Over the last decade, more aggressive variants that are adapted to warmer temperatures have emerged. By quickly being able to identify the strain of rust disease, researchers and farmers can figure out the best course of action before it is too late.
The Saunders lab of the John Innes Centre created MARPLE. In collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT), researchers are testing the mobile diagnostic kit in Holeta, central Ethiopia.
“These new pathogen diagnostic technologies … offer the potential to revolutionize the speed at which new wheat rust strains can be identified,” says Dave Hodson, a CIMMYT rust pathologist in Ethiopia. “This is critical information that can be incorporated into early warning systems and result in more effective control of disease outbreaks in farmers’ fields.”