As the world searches for effective solutions to mitigate and adapt to climate change while navigating the cost-of-living crisis, delivering food security goals alongside robust economic value is more imperative than ever in agricultural research.
CGIAR plays a vital role in this mission, aiming to transform food, land, and water systems in collaboration with its 15 Research Centers, such as CIMMYT. Now, a new study published in World Development comprehensively analyzes CGIAR’s fiscal impact on global agricultural over nearly 60 years.
Additionally, investment in productivity gains for staple crops in developing countries has aided entire populations by securing lower food prices and generating large local growth multipliers, thus achieving a greater impact on poverty reduction when compared to productivity growth in other sectors.
CIMMYT contributes 40% of total CGIAR varietal impact
At least 221 million hectares in at least 92 countries were occupied by CGIAR crop technologies in 2020. Between 2016 and 2020, CIMMYT maize varieties accounted for 24.5 million hectares (11%) of this figure, while CIMMYT wheat varieties made up almost 74 million hectares (33%).
An example of how these CIMMYT varieties impact farmers can be seen in sub-Saharan Africa, where using improved maize seed led to an overall average increase of 38.9% in yields to 1,104 kilograms per hectare (kg/ha), equal to an increase of 429 kg/ha. With increased yields come increased profits and employment security for farmers and their families.
The frequency with which technologies are upgraded also signifies the impact of agricultural research and development (R&D) on crop productivity and the economy. On the 221 million ha planting area, many farmers utilize second or third generation technologies. For example, average varietal generation in maize is estimated to be 1.1, meaning that 10% of farmers use a second-generation variety, and most wheat farmers were also using second or third generation modern varieties. This highlights that ongoing crop research continued to impact productivity, even when the size of the adoption area remained constant.
Expanding the impact
As CGIAR’s reach and capacity have grown, economic benefits are now apparent in an increased number of global regions compared to when its work began. Initially, most economic benefits came from wheat and rice farming in Asia; however, 30% of CGIAR crop technologies now occupy sub-Saharan Africa, generating a significant share of its impact. This region remains heavily reliant upon CGIAR-related varieties, so continued investment is encouraged to maintain and build on the positive outcomes achieved to date.
“Considering the urgent need to attain nutrition security, CIMMYT always seeks ways to assure global food systems,” said Bram Govaerts, director general of CIMMYT. “This thorough analysis is a strong validation of CIMMYT’s work and its significance not just for farmers and their immediate families, but for communities and generations into the future. Our collaborative partnerships with CGIAR Research Centers and National Agricultural Research Systems (NARS) are integral in delivering successful projects that enable smallholder farmers to maximize the potential of their land.”
While similar studies have been undertaken in the past, this work takes a unique approach by drawing on a wider range of evidence built on country- and crop-specific data, such as the adoption of crop improvement technologies and productivity impacts per hectare, thereby providing a more granular assessment of CGIAR’s economic inputs.
Sub-Saharan Africa (SSA) has experienced the worst impacts of climate change on agriculture over the past decades and projections show such effects are going to intensify in the coming years. Diminished agricultural production has been the primary impact channel given the high reliance on rainfed agriculture in the region. Combined with a growing population, food security for millions of people is threatened.
Conservation Agriculture (CA) is a sustainable cropping system that can help reverse soil degradation, augment soil health, increase crop yields, and reduce labor requirements while helping smallholder farmers adapt to climate change. It is built on three core principles of minimum soil disturbance, crop residue retention, and crop diversification.
CA was introduced in southern Africa in the 1990s, but its adoption has been patchy and often associated with commercial farming. A group of researchers, led by Christian Thierfelder, principal cropping systems agronomist at CIMMYT, set out to understand the reasons why smallholder farmers adopt CA, or why they might not or indeed dis-adopt. Their results were published in Renewable Agriculture and Food Systems on March 12, 2024.
Conservation Agriculture plot. (Photo: CIMMYT)
“Conservation Agriculture can cushion farmers from the effects of climate change through its capacity to retain more soil water in response to high water infiltration and increased soil organic carbon. It is therefore a viable option to deal with increased heat and drought stress,” said Thierfelder. However, even with these benefits, adoption of CA has not been as widespread in countries like Malawi.
“There are regions within Malawi where CA has been promoted for a long time, also known as sentinel sites,” said Thierfelder. “In such places, adoption is rising, indicating that farmers are realizing the benefits of CA over time. Examining adoption dynamics in sentinel sites can provide valuable lessons on scaling CA and why some regions experience large rates of non- or dis-adoption.”
Thierfelder and his co-authors, Innocent Pangapanga-Phiri of the Center for Agricultural Research and Development (CARD) of the Lilongwe University of Agriculture and Natural Resources (LUANAR), and Hambulo Ngoma, scientist and agricultural economist at CIMMYT, examined the Nkhotakota district in central Malawi, one of the most promising examples of widespread CA adoption.
Total LandCare (TLC), a regional NGO working in Malawi has been consistently promoting CA in tandem with CIMMYT in the Nkhotakota district since 2005.
Results from both individual farmer interviews and focused group discussions revealed that farmers that implement CA saw higher yields per hectare than those who practiced conventional tillage practices. In addition, farmers using CA indicated greater resilience in times of drought, improved soil fertility, and reduced pest infestation.
Why adopt CA?
The primary factors enhancing CA adoption in the Nkhotakota district were the availability of training, extension and advisory services, and demonstration plots by the host farmers. Host farmers are farmers that have been trained by a TLC extension officer and have their own plot of land to demonstrate CA methods. In addition, host farmers train other farmers and share knowledge and skills through farmer field days and other local agricultural exhibitions.
“Social networks among the farmers serve a vital role in CA adoption,” said Ngoma. “Seeing tangible success carries significant weight for non-adopter farmers or temporal dis-adopters which can persuade them to adopt.”
Maize demonstration plot. (Photo: CIMMYT)
During focus group discussions facilitated by the authors, farmers indicated that demonstration plots also removed fear for the unknown and debunked some myths regarding CA systems, for example, that practitioners show ‘laziness’ if they do not conventionally till their land.
“This suggests that CA uptake could be enhanced with increased, targeted, and long-term promotion efforts that include demonstration plots,” said Ngoma.
Similarly, the longer duration of CA exposure positively influenced farmers’ decisions to adopt CA methods as longer exposure might allow farmers to better understand the benefits of CA practices.
Why not adopt CA?
Farmers reported socioeconomic, financial, and technical constraints to adopt CA. An example is that farmers might not have the labor and time available for weed control, a necessary step in the first few years after the transition to CA.
“Weed control is an important challenge during the early years of CA adoption and can be seen as the ‘Achilles heel’ of CA adoption,” said Thierfelder. CIMMYT scientists therefore focused a lot of research in recent years to find alternative weed control strategies based on integrated weed management (IWM) using chemical, biological, and mechanical control options.
Examining the stover in a maize plot. (Photo: CIMMYT)
In most cases, the benefits of CA adoption are seen only after 2 to 5 years. Having such a long-term view is not always possible for smallholder farmers, who often must make decisions based on current conditions and have immediate family obligations to meet.
As a contrast to adopters of CA, non-adopters reported a lack of knowledge about CA as a whole and a lack of specific technical knowledge needed to transition from more traditional methods to CA.
This scarcity of technical support is often due to the lack of strong agriculture extension support systems. Since CA adoption can be complex, capacity building of both farmers and extension agents can therefore foster adoption and implementation of CA. This reinforces that farmer-to-farmer approaches through host farmers could complement other sources of extension to foster adoption.
Next steps
The authors identified three policy recommendations to accelerate CA adoption. First, there is a need to continue promoting CA using farmer-centric approaches more consistently, e.g., the host farmer approach. Using a farmer-centered approach facilitates experiential learning and can serve as a motivation for peer-to-peer exchange and learning and can reduce misinformation. The host farmer approach can be augmented by mega-demonstrations to showcase CA implementation at scale. In addition, rapid and mass extension delivery can be enhanced by using digital technologies.
Second, CA promotion should allow farmers the time to experiment with different CA options before adoption. What remains unclear at the policy level is the types of incentives and support that can be given to farmers to encourage experimentation without creating economic dependence. NGOs and extension workers could help farmers deal with the weed pressure soon after converting from full to minimum tillage by providing herbicides and training.
Third, there is a need to build and strengthen farmer groups to facilitate easier access to training, to serve as conduits for incentive schemes such as payments for environmental services, and conditional input subsidies for CA farmers. Such market-smart incentives are key to induce initial adoption in the short term and to facilitate sustained adoption.
In February 2024, the Kenya Drylands Crop Seed Systems Workshop, co-hosted by CIMMYT and KALRO in Nairobi, focused on enhancing seed systems for key dryland crops like pigeon pea and sorghum. The workshop aimed to align innovative breeding with effective seed distribution, crucial for improving agricultural productivity and food security in Kenya’s semi-arid regions.
Melinda Yerka, a researcher from the University of Nevada, Reno, is collaborating with CIMMYT, focusing on enhancing sorghum hybrids for better dairy feed, utilizing her breakthroughs in sorghum breeding alongside CIMMYT’s agricultural expertise. Their joint efforts aim to develop sorghum varieties with higher protein and starch content, suitable for diverse climates, particularly in Africa. This partnership underscores a strategic approach to global food security, leveraging sorghum’s adaptability to support sustainable agriculture and climate resilience.
Successful global wheat disease surveillance and monitoring has resulted in early detection of wheat stem rust Ug99 in Nepal. A combination of vigilant field surveys and sampling by Nepal’s National Plant Pathology Research Centre (NPPRC) and National Wheat Research Program (NWRP), supported by rigorous and accurate disease diagnostics at the Global Rust Reference Center (GRRC), Denmark, resulted in confirmed detection of the Ug99 strain named TTKTT. The long running and sustained surveillance efforts undertaken by NPPRC and NWRP, including off-season surveys, proved vital in the detection of Ug99 in Nepal. Confirmed results were obtained from two field samples collected in early November 2023 from off-season summer wheat crops in Dolakha district, Nepal. Repeated experiments and high quality pathotyping and genotyping at GRRC confirmed the results.
“The combination of molecular genotyping of incoming samples, without prior recovery in our laboratory and independent diagnostic assays of recovered stem rust isolates, confirmed the presence of Ug99 and a highly virulent race variant termed TTKTT,” says professor Mogens Hovmøller, leader of the GRRC at Aarhus University in Denmark.
Suraj Baidya (NPPRC) and Roshan Basnet (National Wheat Research Program) undertake field surveys at Dandunghe, Dolakha, Nepal. (Photo: CIMMYT)
Ug99 was first detected in East Africa in 1998/99, and its unique virulence sparked fears that a large proportion of wheat cultivars globally would be at risk from this potentially devastating disease. The international wheat community came together through the Borlaug Global Rust Initiative (BGRI) to address the threats posed by Ug99. The BGRI partners have successfully monitored the evolution and spread of Ug99 and bred hundreds of resistant wheat varieties that are now being grown at scale in priority wheat growing regions. Migration of Ug99 from Africa to other regions, including South Asia, was always seen as likely due to the transboundary nature of the disease and long-distance dispersal of rust spores by wind.
Detection of a Ug99 race in Nepal is not therefore a surprise, but it highlights the effectiveness of the wheat rust surveillance and monitoring systems that have been developed. The disease was present at extremely low levels in the fields in Nepal, and early detection is one of the main factors in preventing disease spread. Other factors also contribute to reduced risk. The wheat on which the Ug99 race TTKTT was detected were fodder crops and cut soon after the surveys were completed, which prevented further buildup of disease. In addition, no wheat is grown in the main season in these areas, with farmers shifting to cultivation of potato (a non-host crop for stem rust).
According to Suraj Baidya, senior scientist and chief of NPPRC, “Extensive follow up surveys in the Dolakha detection area by NPPRC in the 2023/24 main season resulted in no wheat being observed and no detection of stem rust.” Similarly, extensive surveys by NPPRC throughout other wheat growing areas of Nepal in the 2023/24 main season have resulted in no reports of stem rust in the country. To date, extensive surveys in other countries in South Asia (Pakistan, Bangladesh, Bhutan) have not detected stem rust in 2023/24.
Although the current risk of stem rust outbreaks is considered to be low, detection of the Ug99 race TTKTT in Nepal is a clear reminder of the threat posed to wheat production in South Asia by the incursion of virulent stem rust races or other plant diseases of concern. “The spread and risk from transboundary diseases like stem rust is increasing,” says Dave Hodson, leader of the Wheat Disease Early Warning Advisory Systems (DEWAS) project at CIMMYT. “Sustained and increased surveillance efforts are needed across the region and expanded to include other important emerging diseases.” Successful deployment of Ug99 resistant cultivars through the BGRI partners, including CIMMYT, ICARDA and NARS, has decreased vulnerability, but it is important to note that the race TTKTT is a recently evolved variant of Ug99 with additional virulence compared to the original strains. As a result, not all cultivars in South Asia may have effective resistance today. Screening of germplasm and major cultivars from South Asia against TTKTT at the Kenya Agriculture and Livestock Research Organization (KALRO)/CIMMYT international stem rust screening nursery in Kenya is extremely important to get an accurate picture of current vulnerability.
The details of the diagnostic confirmation of Ug99 in Nepal are available at the GRRC website (see GRRC lab report)
Work on wheat disease surveillance and monitoring, plus breeding of resistant varieties is being supported by the DEWAS and AGG projects funded by BMGF and FCDO, UK.
Key partners –
National Plant Pathology Research Centre (NPPRC), Nepal. Contact: Suraj Baidya (suraj_baidya222@yahoo.co.in)
National Wheat Research Program (NWRP), Nepal. Contact: Roshan Basnet
Global Rust Reference Center (GRRC), Aarhus University, Denmark. Contact: Mogens Hovmøller (mogens.hovmoller@agro.au.dk)
Thirty-three-year-old Promila Rani Mondol lives in Baliakandi Upazila in Bangladesh with her husband, four daughters, and mother-in-law. The family’s main source of livelihood is agriculture. Promila has become a successful machinery solution provider (MSP), under the USAID-funded Feed the Future Cereal Systems Initiative for South Asia–Mechanization Extension Activity (CSISA-MEA). She and her husband are the main earning members of the family.
In Rajbari district, around 100 miles away from Dhaka, the capital of Bangladesh, agriculture is the primary livelihood for the community. Farmers engage in crop cultivation across three different seasons, focusing on crops such as rice, wheat, maize, jute, mustard, spices, and vegetables. In 2014, Promila’s family had barely two acres of cultivable land, and her husband was the sole breadwinner. Their average monthly income was US $91, which made it challenging to cover everyday expenses. To increase their family income, she began assisting her husband in crop production activities by planting seeds of jute, maize, wheat, mustard, and spice crops.
In 2014, the family became involved with the CSISA-MI project. Initially, they owned a power tiller. The project assisted them to purchase a power tiller-operated seeder attachment for land cultivation and line sowing. In 2018, Promila received training in line sowing techniques, including seed calibration using the power tiller operated seeder (PTOS) machine which was equipped with a starter kit. She began line sowing Rabi crops such as wheat, mung beans, sesame, and mustard. During the Kharif season, she engaged in line sowing jute.
After the launch of the CSISA-MEA in 2019, Promila participated in several activities including hands-on training on rice transplanter operation, one-acre mechanized rice transplantation demonstration by CSISA-MEA for her service business expansion, seedling raising training, two-day training on agricultural machinery operation maintenance and troubleshooting, and two exposure visits on rice transplanter service business models. With the assistance of CSISA-MEA, she organized several meetings to connect mat seedling (seedlings grown on a special mat or seedling tray), entrepreneurs, farmers, and MSPs, which led to the expansion of her business prospects. Additionally, CSISA-MEA linked her with the Department of Agricultural Extension, where she procured 1,750 seedling raising trays and 750 kg of seed support for mat seedling raising, significantly boosting her business growth.
In 2023, Promila bought a rice transplanter before Aman season (mid-July to mid-November-December) with a 50% government subsidy. CSISA-MEA helped her get the government subsidy and connected her with the VPKA foundation, which provided her with loan at a low-interest rate of 4%, along with a flexible repayment plan.
Promila Rani Mondol uses a rice transplanter to plant rice in the field in Rajbari, Bangladesh. (Photo: Asmaul Husna/CIMMYT)
During the Aman season, she provided rice transplantation services in 20 hectares of land benefiting approximately 150 farmers. During that season, her total earning was US $1,640. Additionally, in 2023, she earned approximately US $1,047 by line sowing aus rice and jute; and line sowing wheat, sesame, and mustard by PTOS during the Rabi season. Through her network of contacts with farmers across three blocks (shalmara, baliakandi, and nobabpur in Rajbari district), she offers machine rice transplantation services using the seedlings.
What sets her apart is not just her success as an MSP, but her commitment to breaking gender norms and inspiring other women in her community. Currently, with an annual income of US $2,276 and a profit margin of US$1,184, she has become a community leader, encouraging 15 other women to venture into farming and seedling raising services.
“With just one day of cultivation and seeding service, I can cover my daughter’s tutorial expenses for an entire month. The support from CSISA-MEA has made me more self-reliant as an MSP and increased my confidence in meeting family expenses,” says Promila.
Currently, 15 women in her community offer farming and seed planting services. Others, such as Sunita Rani, Niba Rai, Rakoli, Dipti, Mita, and Angoli, are inspired by her. While seven women can now operate the rice transplanter machine in the fields, others are showing an interest in the same. This is a significant and positive change in the community initiated by Promila.
Her impact extends beyond her own success; she has sparked a positive change in her community’s perception of women in agriculture. As the vice president of the MSP Networking Committee in Rajbari district, she continues to shoulder responsibilities, contributing not only to her family’s well-being but also to the larger narrative of women empowerment in Bangladesh.
CIMMYT is combating the effects of El Niño and climate change by fostering climate-smart agriculture, including drought-tolerant crops and conservation practices, to bolster smallholder farmer resilience and productivity. Through partnerships and sustainable farming innovations, CIMMYT aims to improve food security and adapt to environmental challenges, ensuring that advanced technologies benefit those most in need.
In a landmark initiative to bolster sustainable agriculture and food security, the consultative workshop ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ marked a pivotal step towards revitalizing millet cultivation across the continent. Spearheaded by the Bill & Melinda Gates Foundation, in collaboration with CIMMYT and the Senegalese Institute of Agricultural Research (ISRA), a meeting held in Senegal united global experts to unlock the untapped potential of millets as a cornerstone of sustainable agriculture and food security in Africa.
The discussions included identifying the symptoms of the problem, underlying issues causing these symptoms, and the interventions needed to be implemented to address these issues. This collaborative efforts among national and international organizations including government bodies, research institutes, and NGOs, demonstrated the goal of revitalizing millet cultivation through partnerships.
A group photo of the participants in the ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ workshop in Senegal. (Photo: Marion Aluoch/CIMMYT)
The United Nations General Assembly declared 2023 the International Year of Millets to raise awareness of and direct policy attention to millets’ nutritional and health benefits and their suitability for cultivation under adverse and changing climatic conditions.
Long overlooked but brimming with potential, millets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.
Lessons learned from India
India, a key player in millet production, provided valuable insights into millet cultivation and consumption, providing a potential model for Africa to emulate in its millet-related strategies.
To understand the growth of millets in India, the Indian Ambassador to Senegal, Naba Kumar Pal, highlighted the strategies used by the Indian government to raise awareness about millets as a nutritious cereal that contributes to food security and provides a nutritious dietary option aimed at eliminating hunger and improving nutrition in his opening remarks.
“The first step the government did was to rebrand millets from ‘coarse grains’ to ‘nutri-cereals’, a move that has significantly increased domestic consumption and market interest of millets in India,” said the ambassador.
Indian Ambassador to Senegal, Naba Kumar Pal, highlights the Indian government’s efforts to promote millets as a nutritional powerhouse. (Photo: Marion Aluoch/CIMMYT)
In Africa, millets are under appreciated and not utilized as crops. They are often labeled as a ‘poor man’s crop,’ ‘neglected crop,’ or ‘orphan crop’. The negative connotations have, among other areas, influenced consumers’ perceptions. By changing the vocabulary from demeaning to empowering, millets’ image can be transformed from an overlooked option to a crop of choice in Africa.
The workshop also delved into policy advocacy and commercialization efforts in India, and how these strategies could be replicated in African contexts. Tara Satyavati and Dayakar Rao, representing Indian institutions, shared insights on millet production, nutritional evaluation, and the development of value-added products. The importance of policy intervention, such as increasing the Minimum Support Price (MSP) for millets and including them in public meal programs in India, was discussed. These measures not only provided financial incentives to farmers but also increased accessibility and consumption among the general population.
The two asserted that “millets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.”
Millets are adaptable to diverse climates, have low water requirements, and provide nutritional benefits. African countries, which face similar issues in terms of climate change and food security, can use millets as a crop to promote environmental sustainability and economic viability.
National and international collaborations
A panel discussion shed light on national and international initiatives that highlighted collaborative efforts in crop improvement and millet innovations. On the national level, Hamidou Diallo from the Ministry of Agriculture, Rural Equipment, and Food Sovereignty of Senegal (MAERSA) outlined a multi-pronged approach for Senegal. These approaches included increasing millet production, providing high-quality seeds, equipping local producers with essential tools and equipment, providing fertilizers to farmers, and expanding the overall cultivated areas of millet. These efforts represent a focused approach to leveraging agricultural innovation in millets to improve livelihoods and income for small-scale farmers.
“Aligning with the needs of the local community ensures the initiatives are impactful and resonate with the agricultural landscape and community needs,” he emphasized.
Insights into the international initiatives included discussions on innovative initiatives in the Dryland Crop Program (DCP), presented by Dryland Crops Program Director and Wheat Program Director Kevin Pixley, included the establishment of the African Dryland Crops Improvement Network, gene editing, a legumes mining project and the Vision for Adapted Crops and Soils (VACS) project, that will include millets as a prioritized crop.
“We need to find innovative ways to reach more farmers with options to improve their livelihood and popularize millets across different market segments,” said Pixley.
From left to right: Damaris Odeny (ICRISAT India), Geoff Morris (Colorado State University), Douglas Gayeton (co-founder of The Lexicon), Hamidou Diallo (MAERSA, Senegal), Kevin Pixley (director of the Dryland Crops Program), and Makiko Taguchi (FAO), engage in a panel discussion on the importance of national and international initiatives in promoting crop improvement and millet innovations, highlighting the collaborative spirit driving agricultural progress.
Other topics covered included insights from the United States Agency for International Development (USAID) innovation lab on sorghum and millets, emphasizing the importance of African-led projects and addressing the knowledge gap between African and U.S. researchers.
Makiko Taguchi of the Food and Agriculture Organization of the United Nations (FAO) emphasized the importance of global engagement in promoting millets as a sustainable and nutritious food source for global food security and agricultural development and highlighted the various initiatives and projects born of the International Year of Millets. Douglas Gayeton, co-founder of The Lexicon emphasized the role of effective messaging in changing people’s perceptions of millets. He underscored the importance of shifting away from terms like ‘neglected’ and ‘orphaned’ crops to more positive empowering language that resonates with consumers and policy makers.
CIMMYT’s role in dryland crop innovation
Recognizing the ever-evolving needs of society at large, CIMMYT began an initiative to advance research and broaden its impact by implementing the Dryland Crops Program. This approach is based on CIMMYT’s 2030 strategy, which will shape agriculture’s future as a driver of climate resilience, sustainable, and inclusive agricultural development, and food and nutrition security, all while meeting the United Nations Sustainable Development Goals and Africa 2063 by promoting food security, improving nutrition, and mitigating the effects of climate change.
The meeting underscored the immense potential of millets in Africa to contribute to a resilient and nutritious future, reinforcing the need for continued collaboration, innovation, and investment in this vital crop. With the right mix of policy support, technological innovation and market development, millets could be the key to Africa’s resilient and sustainable agricultural future. The workshop concluded with a call to action for stakeholders to collaborate and implement innovative practices to enhance the growth of the millet sector in Africa.
In a pioneering effort led by CIMMYT, the “Hybrid Maize Seed Marketing in Kenya” workshop has become a catalyst for innovation within Kenya’s maize seed industry. This landmark event brought together representatives from seed companies, agro-dealers, and other key stakeholders, fostering collaborations that have since ignited transformative changes. From revitalizing marketing strategies to introducing early maturity maize varieties, the workshop’s outcomes are shaping a more responsive and sustainable seed market. CIMMYT’s role in facilitating these industry advancements underscores its commitment to agricultural development and farmer support, setting the stage for continued progress in Kenya’s maize sector.
‘A better understanding of the links between gender roles in household decision-making and the adoption of technologies can enhance the uptake of innovations in smallholder farming systems,’ concludes a recently published paper by CIMMYT. The paper connects women’s bargaining power in households with the adoption of rust resistant wheat varieties, based on the work of Accelerating Genetic Gains in Maize and Wheat (AGG) in Ethiopia.
“While an emerging body of literature finds positive correlations between women’s influence in household decision-making and socioeconomic, health, and nutritional outcomes, few studies have analyzed the links between intra-household decision-making and the adoption of agricultural technologies,” said Michael Euler, agriculture research economist at CIMMYT.
A case study in Ethiopia
For this study, researchers used a dataset from Ethiopian wheat-producing households.
Ethiopia is the second-largest wheat producer in Africa, with an aggregate grain production of 5.5 million metric tons and 4-5 million farmers engaged in cultivation. The Ethiopian Highlands are a hot spot for wheat rust. With recurrent epidemics in the last decade, the emergence of new strains of wheat rust increased production risks. On the positive side, farmers seem to be responsive to the management of rust diseases. Rust-resistant bread wheat varieties, released since 2010, have been widely adopted by smallholder farmers across Ethiopia.
The CIMMYT study surveyed 1,088 wheat-producing households in Ethiopia to analyze the links between women’s role in household decision-making concerning crop production and the adoption and turnover rates of rust-resistant wheat varieties. Female and male members from the same households responded separately, which facilitated capturing individual perceptions and the intra-household dynamics in decision-making.
Farmer Shumuna Bedeso weeds her wheat field. (Photo: Peter Lowe/CIMMYT)
Intra-household decision-making arrangements and wheat varietal choice
Overall, the study reveals a positive association between women’s role in decision-making regarding the selection of wheat seed and the adoption of rust-resistant wheat varieties and wheat varietal turnover. Findings may be related to differences in risk aversion between women and men farmers. While women farmers may tend to advocate for the adoption of rust resistant varieties to avoid potential financial difficulties that arise from purchase of fungicide in the growing season, men farmers may be more inclined to adopt high yielding varieties and use fungicides to combat rust within the season.
Spouses may agree or have different opinions regarding their decision-making roles. Spousal agreement on the woman having a role in making crop variety decisions is associated with higher adoption rates compared to spousal agreement that the woman has no role. Joint decision-making with mutually uncontested spousal roles may yield better outcomes due to larger combined exposure to information, as well as spousal discussion and reflection on potential implications of the varietal choice decision.
Conclusion: It is about negotiation, contestation and consensus
Household decisions, including the decision to adopt agricultural technologies often result from negotiation, contestation, and consensus between wife and husband. This process is shaped by diverging interests, motivations and objectives, while its results are determined by different levels of individual bargaining power. “Our findings indicate that women’s ownership of agricultural land and household assets is strongly associated with their active role in household decisions on wheat varietal choice, and with spousal agreement,” said Moti Jaleta, senior agricultural economist at CIMMYT. The dynamics in intra-household decision-making are likely to influence households’ adoption of agricultural technologies.
Disregarding the dynamics in decision-making implies that households are unilateral decision-makers, a scenario which probably does not hold true considering the level of spousal disagreement regarding their roles and influence in choosing crop varieties. A deeper understanding of the connections between gender dynamics in household decision-making and adoption choices can enhance the efficiency of public extension systems, increase the adoption rates of modern innovations, improve agricultural productivity, and enhance livelihoods in smallholder agriculture.
Lourine Bii, 33, is a pioneer as the first female technician at the Kiboko Plant Breeding Station. Moving from KALRO to CIMMYT, she is independently managing trials and breaking gender barriers in agricultural research. Her journey illustrates the importance of inclusivity and empowerment in shaping the future of agriculture.
On the northern banks of the Ganges lies the city of Begusarai, in India’s Bihar State. Amid the expected structures of a city—temples and transit hubs—is a five-acre business hub dedicated to agriculture. This center, called the Bhusari Cold Storage Center, includes a 7,000-ton cold storage facility for vegetables, a dry grain storage area, outlets for farmer inputs and outputs, a farmer training center, a soil testing laboratory, and a farm implement bank. The brainchild of Navneet Ranjan, this facility works in collaboration with state partners, CIMMYT, and the Cereal System Initiative for South Asia (CSISA) project.
In the decade since its formation, the center has served nearly 100 villages in and around Begusarai, helping thousands of smallholder farmers access equipment, knowledge, and seeds they otherwise do not have access to.
“Since coming to the center I have not only benefited in using mechanized services at a small price but also learned about new schemes and incentives provided to smallholder farmers by the government,” said Ram Kumar Singh, a farmer from the village of Bikrampur. A similar story was related by Krishadev Rai from the village of Sakarpura, who said the laser land leveler machine at the center dramatically lowered costs associated with irrigation and other inputs, including information about different fertilizers and varietal seeds available at the market.
Farmers from the region have benefited immensely from the services of the center. According to Anurag Kumar, a CIMMYT senior research associate with CSISA, “The existence of the state-of-the-art center in the last decade has helped over 25,000 smallholder farmers avail themselves of services and information on farming and agriculture.” He said the center has also helped promote conservation agriculture technologies, implement climate-resilient farming practices, and build the capacity of smallholder farmers.
Ranjan, a native of the region, is a marine engineer by education but has diversified experiences from different sectors. A decade ago, Ranjan returned home after pursuing higher education and working in distant cities in India and abroad.
Ranjan met recently with CSISA representatives to share his motivation, hopes, and aspirations about the reach and impact of the Bhusari Center for farmers of Begusarai and beyond.
How did the Bhusari Agri-business center, popularly known as Bhusari Cold Storage, come into being?
In 2012, driven by a deep-rooted desire to bridge the significant societal gap between my professional advancements in the corporate world and the enduring struggles within my rural hometown in Bihar, I founded the Bhusari Agri-business Center. The name “Bhusari” was thoughtfully chosen, as it represents approximately 50 villages in the area, traditionally, and collectively known by this moniker, underscoring our commitment to the region’s agricultural heritage and community.
From the start, we knew we wanted our center, born from a combination of my family’s initial investment and funding secured through a State Bank of India loan alongside a significant subsidy from the Government of Bihar, to serve as a comprehensive agri-business solution. We designed this project not only as a business venture but as a social enterprise aimed at improving the livelihoods of local farmers by ensuring better returns for their produce, disrupting the traditional agricultural value chain that often left them exploited.
The establishment of Bhusari Cold Storage stands as a testament to the potential of marrying native understanding with professional management to foster socio-economic development in rural areas.
During an interactive session with progressive farmers, Ranjan listens to a farmer express his expectation from the Bhusari center. (Photo: CIMMYT)
What has been your biggest achievement with the establishment of Bhusari Cold Storage?
If I were to pinpoint our most significant achievement, it would be the creation of the farm implement bank. This initiative has helped revolutionize the agricultural landscape for the small-scale farmers in our area by providing them with access to modern farming equipment.
Before the inception of this bank, many farmers in our region faced challenges because of outdated farming techniques and the lack of access to modern machinery, which often resulted in inefficient farming practices and high operational costs. Introducing zero tillage, planters, harvesters, and especially the laser land leveler, has been a game-changer. This farm implement bank has also popularized the use of advanced agricultural technologies among the farming community. The positive effects of these modern farm implements have been many, including reduced labor costs, improved crop yields, and more sustainable farming practices.
How has a project like CSISA and other partners supported farmers and the efforts of agri-entrepreneurs like you in the region?
The support from CSISA and its partners has helped enhance the capabilities of farmers and bolster the efforts of agri-entrepreneurs in the region. CSISA’s contribution, particularly through its project scientists and field technicians, has been pivotal in training farmers. This collaboration has led to a significant increase in awareness and adoption of advanced agricultural implements and practices, including zero tillage and land levelers, among the farming community.
The center has conducted extensive training programs for many farmers, thanks to the resources, knowledge, and technology facilitated by CSISA, the State Department of Agriculture, and Krishi Vigyan Kendra (KVK). This partnership has enabled us to disseminate knowledge and tools to the farmers and drive the adoption of innovative farming techniques that lead to higher efficiency and reduced costs. The collaboration with CSISA and state partners has been a cornerstone in our mission to modernize agriculture in the region, making significant strides towards sustainable farming practices, and enhancing the livelihoods of the local farming community. Through these collective efforts, we have been able to empower farmers with the skills and technologies necessary to thrive in a competitive and evolving agricultural landscape.
Navneet Ranjan with Sarah Fernandes, CIMMYT global communications manager (2nd from left), during her visit to the Bhusari Cold Storage center with CSISA colleagues. (Photo: CIMMYT)
What do you hope for next for Bhusari or other endeavors in agri-business to support smallholder farmers?
Looking ahead, our vision for Bhusari and future agri-business endeavors deeply focuses on empowering smallholder farmers by enhancing their access to financial resources and tailored agricultural solutions. By addressing the financial barriers that often hinder farmers’ ability to invest in their operations, we aim to unlock new opportunities for growth and innovation in the agricultural sector. A key priority is to streamline the process so that these farmers can obtain credit lines and working capital more efficiently.
Additionally, recognizing farmers’ diverse needs and challenges in different regions, we are committed to making customized farm implements more readily available. These tailored tools are essential for increasing agricultural efficiency and productivity, as farming practices and conditions vary greatly across regions. To complement these efforts, we plan to expand our training programs and provide more customized knowledge to farmers.
Ultimately, the aim is to scale up this model and create several other replicable projects across Bihar and beyond. By demonstrating the success of these initiatives, we hope to inspire and facilitate similar transformations in other regions, fostering a more sustainable, efficient, and prosperous agricultural landscape for smallholder farmers.
Cover photo: Founder Navneet Ranjan (5th from right) and CIMMYT colleagues with beneficiary farmers at the Bhusari center in Begusarai, Bihar. (Photo: Nima Chodon/CIMMYT)
The “Sino-Pak Research Activities on Wheat Genomics” seminar, featuring CIMMYT-CAAS China’s Prof. Dr. Zhonghu He, highlighted the CIMMYT’s contributions to enhancing wheat genomics for better productivity and food security. Hosted by PARC at NARC, the event underscored advancements in breeding technologies and molecular markers, aiming to develop climate-resilient wheat varieties and foster Sino-Pak collaboration in agricultural research and innovation.
CIMMYT, in collaboration with CGIAR, is leading the charge in Kenya to close the gender gap in agricultural research, particularly in plant breeding stations. Through initiatives like targeted training programs and infrastructure improvements, they’re empowering women to take on roles traditionally dominated by men. This includes offering tractor driving courses and adapting facilities to meet women’s needs. Lourine Bii’s success story, rising to oversee plant breeding trials, exemplifies how investing in women not only furthers gender equality but also enhances research quality and relevance by incorporating diverse perspectives into agricultural innovations.
The third edition of Scaling Scan, a user-friendly tool that helps teams reimagine innovation scaling processes, was launched in February 2024.
Developed six years ago by CIMMYT and partners, the tool assesses the status of ten scaling ‘ingredients’ such as business models, finance, evidence, public sector governance, etc. that are considered critical to achieving a scaling ambition. The tool highlights what project teams need to pay attention to on the journey to reach scale. It emphasizes the need to think strategically about potential scaling bottlenecks right at the beginning of the project.
The new edition incorporates feedback across users from voluntary organizations, CGIAR, and private companies, and responds more effectively to climate change and gender inclusivity challenges.
Features of the new edition: inclusive, socially responsible, and accessible
The third edition was developed by subject matter experts from CIMMYT, SNV the Netherlands, the Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ), the Food and Agriculture Organization of the United Nations (FAO), and the Alliance of Bioversity International and Center for Tropical Agriculture (CIAT).
There is more focus on scaling innovation as a means to contribute to food systems transformation with an upgrade on systems check. Users can go through the x-curve to reflect on what dominant technology or practice can be scaled down to make space for CIMMYT’s ‘innovation of interest’.
The upgraded tool takes into consideration social responsibility, acknowledging intersectional trade-offs for the beneficiaries when they scale innovations. It helps reflect upon who will win or lose from the scaling of these innovations, and how the scaling ambition can also include capacity-building and equality.
The parameters of environmental responsibility, which previously focused on how to use resources, now also includes an analysis of potential trade-offs and risks of scaling innovations.
Researchers and program managers still use linear approaches to scaling which are not suitable for complex development problems such as hunger and poverty. The latest edition improves the equity of scaling. The new edition is also more accessible and user-friendly; the interface is upgraded and is available in English, Spanish, and French
The new version includes updated tools to help users further analyze and plan their scaling strategies by strengthening their lowest ingredient.
There is also a workbook and a digital tool that can be used for both online and on-site settings. Check out the material and a forum to exchange opinions and questions on the application of the tool on the Scaling Scan webpage.
What’s next?
Coming up is a paper to help users learn more about previous experiences of organizations, academics, and practitioners using the Scaling Scan by collating the learnings of the past six years. It includes the analysis of the tendencies of the Scaling Scan results that have been used in different countries around the world, which can be useful for future enabling conditions assessments of innovations.
There is also an online course coming up which will train and certify users as a Scaling Scan trainer. Try the Scaling Scan tool today!
Acknowledgements
Intellectual collaborators from FAO, GIZ, and The Alliance Bioversity International and CIAT for their support in developing the third edition of the Scaling Scan.
CGIAR Low-Emission Agriculture Initiative (Mitigate +) for helping develop the workbook.
AgriLAC Initiative for the publication of the six years of experience in Scaling Scan.
DX Digital Initiative for support in developing the Scaling Scan course.