Skip to main content

Prevention is better than cure

Whenever seed is transferred between countries, continents or regions there is an inherent risk that new plant pathogens could spread to previously non-infested areas — with potentially devastating consequences. FAO estimates that these pathogens are responsible for the loss of up to 40% of global food crops, and for trade losses in agricultural products exceeding $220 billion each year.

With old and new pests and diseases causing devastation across the world, it is becoming increasingly important to consider plant health. This is especially true at the International Maize and Wheat Improvement Center (CIMMYT), an organization which processes and distributes enormous quantities of seed each year and in 2019 alone sent over 10,000 tons to more than 100 partners in Africa, the Americas, Asia and Europe.

Amos Alakonya joined CIMMYT in July 2019, and as head of the organization’s Seed Health Unit he is acutely aware of the need to mitigate risk throughout the seed production value chain.

In the lead up to this year’s International Phytosanitary Awareness Week, the plant pathologist sits down to discuss pests, screening procedures, and explain why everyone should be talking about seed health.

Amos Alakonya, head of CIMMYT's Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)
Amos Alakonya, head of CIMMYT’s Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)

Can you start by telling us about the CGIAR Germplasm Health Unit consortium and what it does?

Within CGIAR we have a cluster called Genebank Platform whose main function is to support CGIAR efforts in conservation and distribution of germplasm.  Ten CGIAR Centers have germplasm banks that work closely with germplasm health units to ensure that they only distribute plant materials free from pests and diseases.

What is the procedure for introducing seed at CIMMYT?

At CIMMYT, researchers must follow the correct procedure when bringing in seed.  Once someone has identified the need to bring in seed, contacted a supplier and agreed on the genotypes and amount required, the responsibility is transferred to the Seed Health Unit. We take care of communication with the seed supplier and provide support in acquisition of the necessary phytosanitary documentation that will ensure compliance with host country rules.

For instance, we will process and provide a plant import permit allowing us to bring in the seed while also stipulating the conditions it must meet before entry into Mexico. This document is used as the standard guide by the authorities in the supplier country, commonly referred to us National Plant Protection Organization (NPPO). The NPPO will then perform a pre-shipment verification and issue a phytosanitary certificate if the seed meets the standards stated in the import permit.

Because we distribute our materials as public goods, we ensure that all seed sent out or received can be used and distributed without restrictions from the supplier or the recipient. This is achieved by the signing of a standard material transfer agreement that complies with International treaty on Plant Genetic Resources for Food and Agriculture. This is done through CIMMYT’s legal unit.

Petri dishes and a microscope in Amos Alakonya's lab. (Photo: Eleusis Llanderal/CIMMYT)
Petri dishes and a microscope in Amos Alakonya’s lab. (Photo: Eleusis Llanderal/CIMMYT)

Once we have received all the necessary documents, materials are cleared through customs and delivered to the lab, where we begin our analysis. The first thing we do is assess the material visually and confirm there is no discoloration and no foreign material like soil or seeds from other species. At the next stage, we set up several assays to detect fungi, bacteria and viruses. We only release seed to scientists or allow distribution after we’ve confirmed they are free from injurious pathogens. Overall, this process takes between 25 and 40 days, so scientists must plan ahead to avoid any inconvenience.

That sounds like a complex process. Do you face any challenges along the way?

There are several challenges but we work around them. One of the biggest ones is meeting up with time expectations. For example, every scientist wants to make sure that they’re on track, but sometimes the seed takes longer than expected to arrive or the documentation gets misplaced which means the seed cannot be released from customs in time.

Even after a delay, the seed has to still pass through the standard health testing procedure. Sometimes we find that the supplier’s NPPO hasn’t carried out the right tests, so we bring in seed that turns out to be non-compliant and may end up being destroyed as a result. However, we only recommend seed destruction in cases where we can’t mitigate.

That’s why it’s crucial that everyone — at all stages of the seed production value chain — is aware of the risks and appropriate mitigation processes. These include checking seed before planting, regular field inspections, and observing field hygiene and spraying regimes.

The theme for this year’s event focuses on transboundary threats to plant health. Are there any emerging ones that you’re concerned about?

Currently there are three main concerns. The first is Maize Lethal Necrosis. The disease was initially reported in the USA and Peru in 1977, but since 2011 the disease has been invading farms in east and central Africa. Because of this, maize breeders in the region cannot send seed directly to their partners in other regions of the world without going through a quarantine field station in Zimbabwe. This comes with additional costs and time burden to the program.

We’re also very concerned about wheat blast, which is now present in Bangladesh where we have trials and share seed in both directions. We have therefore already put in place screening tools against wheat blast to ensure we do not introduce it into experimental fields in Mexico.

And finally, we have the fall armyworm. This pest is indigenous to South America where it is less ferocious, but ever since it reached Africa around 2016 it has been causing destruction to maize and costing farmers lots of money to control through application of chemicals. This emerging disease really undermines food security efforts.

This is obviously an important topic to raise global awareness about. Why do you think it is so crucial to discuss seed health within CIMMYT internally as well?

Amos Alakonya, head of CIMMYT's Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)
Amos Alakonya, head of CIMMYT’s Seed Health unit. (Photo: Eleusis Llanderal/CIMMYT)

It’s very important that everyone working at CIMMYT, and especially those working with seed, is aware of the potential risks because about 30% of maize and 50% of wheat grown worldwide can be traced to CIMMYT germplasm. And it’s even more important for Mexico because most of our wheat breeding program is based here and it is also the center of origin for maize. With partners in more than 100 countries we have to be extremely vigilant. If anything goes wrong here, many countries will be at risk.

Ultimately, we want people to be aware of the important role they play in ensuring phytosanitary compliance because prevention is better than cure. We would like to envisage a situation where everybody in CIMMYT is aware of the mitigation processes that have been put in place to ensure safe seed exchanges.

Will you continue working to raise awareness beyond this year’s event?

Yes. In December 2018, the United Nations declared 2020 the International Year of Plant Health. Everybody will be encouraged to take this opportunity to inform people about the importance of seed health, especially as it relates to food security, environmental conservation and economic empowerment.

It’s exciting because this event only happens every 30 to 50 years, so this is really a once in a lifetime opportunity to showcase the work we do every day, both as a unit and in collaboration with our global partners.

Cover photo:
A mixture of maize seeds seen in close-up. (Photo: Xochiquetzal Fonseca/CIMMYT)

Malawi farmers nurture soil grow incomes with conservation agriculture

The International Maize and Wheat Improvement Center (CIMMYT) introduced farmers Kassim Massi and Joyce Makawa to conservation agriculture, along with five other families in their community.

“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains.

Read more here.

Drought Is Crippling Small Farmers in Mexico — With Consequences for Everyone Else

As climate change creates new challenges for farmers in Mexico, different landraces could prove extremely valuable to farmers. Different varieties of maize are able to grow in harsh weather conditions, and some could hold the key to using fewer chemicals in farming.

Over centuries, indigenous growers bred some 59 different native varieties of maize, or “landraces,” according to CIMMYT, the International Maize and Wheat Improvement Center, which preserves the seeds of some 48,000 maize varieties from all over the world at a seed bank in the town of Texcoco near Mexico City. Unlike commercial varieties sold by companies like Monsanto, landraces are highly adapted to the soil and climate of the communities where they are grown.

“Farmers keep selecting seeds from plants that do survive in extreme conditions to plant them in the following year,” said Martha Willcox, a geneticist at CIMMYT.

Read more here.

What is wheat blast?

What is wheat blast disease?

Wheat blast is a fast-acting and devastating fungal disease that threatens food safety and security in tropical areas in South America and South Asia. Directly striking the wheat ear, wheat blast can shrivel and deform the grain in less than a week from the first symptoms, leaving farmers no time to act.

The disease, caused by the fungus Magnaporthe oryzae pathotype triticum (MoT), can spread through infected seeds and survives on crop residues, as well as by spores that can travel long distances in the air.

Magnaporthe oryzae can infect many grasses, including barley, lolium, rice, and wheat, but specific isolates of this pathogen generally infect limited species; that is, wheat isolates infect preferably wheat plants but can use several more cereal and grass species as alternate hosts. The Bangladesh wheat blast isolate is being studied to determine its host range. The Magnaporthe oryzae genome is well-studied but major gaps remain in knowledge about its epidemiology.

The pathogen can infect all aerial wheat plant parts, but maximum damage is done when it infects the wheat ear. It can shrivel and deform the grain in less than a week from first symptoms, leaving farmers no time to act.
The pathogen can infect all aerial wheat plant parts, but maximum damage is done when it infects the wheat ear. It can shrivel and deform the grain in less than a week from first symptoms, leaving farmers no time to act.

Where is wheat blast found?

First officially identified in Brazil in 1985, the disease is widespread in South American wheat fields, affecting as much as 3 million hectares in the early 1990s. It continues to seriously threaten the potential for wheat cropping in the region.

In 2016, wheat blast spread to Bangladesh, which suffered a severe outbreak. It has impacted around 15,000 hectares of land in eight districts, reducing yield on average by as much as 51% in the affected fields.

Wheat-producing countries and presence of wheat blast.
Wheat-producing countries and presence of wheat blast.

How does blast infect a wheat crop?

Wheat blast spreads through infected seeds, crop residues as well as by spores that can travel long distances in the air.

Blast appears sporadically on wheat and grows well on numerous other plants and crops, so rotations do not control it. The irregular frequency of outbreaks also makes it hard to understand or predict the precise conditions for disease development, or to methodically select resistant wheat lines.

At present blast requires concurrent heat and humidity to develop and is confined to areas with those conditions. However, crop fungi are known to mutate and adapt to new conditions, which should be considered in management efforts.

How can farmers prevent and manage wheat blast?

There are no widely available resistant varieties, and fungicides are expensive and provide only a partial defense. They are also often hard to obtain or use in the regions where blast occurs, and must be applied well before any symptoms appear — a prohibitive expense for many farmers.

The Magnaporthe oryzae fungus is physiologically and genetically complex, so even after more than three decades, scientists do not fully understand how it interacts with wheat or which genes in wheat confer durable resistance.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) are partnering with national researchers and meteorological agencies on ways to work towards solutions to mitigate the threat of wheat blast and increase the resilience of smallholder farmers in the region. Through the USAID-supported Cereal Systems Initiative for South Asia (CSISA) and Climate Services for Resilient Development (CSRD) projects, CIMMYT and its partners are developing agronomic methods and early warning systems so farmers can prepare for and reduce the impact of wheat blast.

CIMMYT works in a global collaboration to mitigate the threat of wheat blast, funded by the Australian Centre for International Agricultural Research (ACIAR), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR) and the Swedish Research Council (Vetenskapsrådet). Some of the partners who collaborate include the Bangladesh Wheat and Maize Research Institute (BWMRI), Bolivia’s Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), Kansas State University and the Agricultural Research Service of the US (USDA-ARS).

Can African smallholders farm themselves out of poverty?

How big do farms need to be to enable farmers to escape poverty by farming alone? And what alternative avenues can lead them to sustainable development?

These issues were explored in a paper in which we examined how much rural households can benefit from agricultural intensification. In particular we, together with colleagues, looked at the size of smallholder farms and their potential profitability and alternative strategies for support. In sub-Saharan Africa smallholder farms are, on average, smaller than two hectares.

Read more here: https://theconversation.com/can-african-smallholders-farm-themselves-out-of-poverty-126692

The end of an era: Alexey Morgunov retires after a 28-year career

At the end of 2019, the International Maize and Wheat Improvement Center (CIMMYT) will say goodbye to Alexey Morgunov, head of the International Winter Wheat Improvement Program (IWWIP) in Turkey.

A native of Russia, Morgunov joined CIMMYT as a spring wheat breeder in 1991 working with Sanjaya Rajaram, former Global Wheat Program director and World Food Prize laureate. Morgunov went on to work as a breeder of winter wheat in Turkey in 1994 and later to Kazakhstan, where he helped generate new wheat varieties and technologies for Central Asia and the Caucasus region.

Since 2006 he has led the International Winter Wheat Improvement Program (IWWIP), a highly-productive collaboration between Turkey, the International Center for Research in Dry Areas (ICARDA), and CIMMYT.

As part of that program, Morgunov contributed to the development of more than 70 widely grown wheat varieties in Central and West Asia and, in 2013, to a national wheat landrace inventory in Turkey. He has also helped develop and characterize synthetic wheats — created by crossing modern durum wheat with grassy relatives of the crop — and used them in breeding to broaden the diversity of winter wheat.

Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)
Alex Morgunov (right) with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Alex Morgunov/CIMMYT)

A professional journey across Central Asia

Morgunov said his childhood in rural Russia instilled in him the importance of agriculture and of education.

“My parents, who lived in rural Russia, went through hunger and were trying to make sure that their children worked somewhere close to food production so that we wouldn’t go hungry,” he explained. “They said: ‘OK, Alex, you go to an agricultural university and you will not be hungry.’ ”

After his university studies, Morgunov joined the Plant Breeding Institute at Cambridge as a visiting scientist in the late 1980s, where he crossed paths with CIMMYT scientists seeking to partner with the newly independent states of the former Soviet Union. After an interview in 1991, he was invited to join the CIMMYT team in Mexico as a wheat breeder.

He was later posted to Kazakhstan to build relationships in Central Asia, a period he cites as a standout. “In the late 90s CIMMYT started working with Central Asian countries experiencing severe food security issues,” he said. “They didn’t really have any technologies or varieties for grain production, so we started a program in 95/96 which later developed into a CGIAR program.”

“We had great impact in those countries at the time, introducing zero tillage in Kazakhstan, new seed varieties in Tajikistan after the civil war, and high-yielding rust-resistant varieties to Uzbekistan.”

Reflecting on his time at CIMMYT, it was the friends and connections he made that stood out the most for Morgunov.

“The thing I most enjoyed was communicating with colleagues,” Morgunov said. “You start working in Kazakhstan and other places and building up cooperation and technical relationships and, over time, these relationships become friendships that we enjoy for as long as we live. I think this is very satisfactory for us as human beings.”

Last month, Morgunov received a fellowship from the Crop Science Society of America. The award is the highest recognition granted by the association.

Active retirement

One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)
One of Morgunov’s passions is sailing. (Photo: Alex Morgunov)

Despite his plans to retire, Morgunov still plans to continue working — but on his own terms. “My wife is from Kazakhstan so we will be moving there and I plan to continue working in a different capacity and different schedule,” he explains. “Some Russian universities are writing to me to participate in projects and also universities from Kazakhstan. I have a couple of PhD students in Kazakhstan so I’d like to move more into the educational side of things, working with younger people.”

He was also given an Adjunct Faculty position by Washington State University early this year and will volunteer for them.

Morgunov has also recommended that CIMMYT creates an “emeritus” status for long-serving colleagues retiring from the organization, so they can continue to support the organization.

It won’t be all work though. Morgunov is a devoted tennis player and plans to improve his backhand. A keen sailor, he also hopes to spend more time on the waves and visiting new countries.

A switch to success

Halima Bibi stands on her field in the district of Malda, West Bengal, India.
Halima Bibi stands on her field in the district of Malda, West Bengal, India.

In recent years, due to increasing demand and financial advantage, maize is gaining importance as a significant cash crop in West Bengal, India.

Halima Bibi is one of the farmers who embraced the possibilities of the crop. All the hard work she put into maize cultivation paid off when she learnt that she would receive the Krishi Karman Prize, awarded by India’s Ministry of Agriculture, for best maize production for the year 2017-2018. “I couldn’t believe my ears when officials from the state agriculture department told me that I had won the award,” Bibi excitedly shared.

As most other farmers in the district of Malda, Bibi and her husband Zakir Hossain were growing rice in their 10-bigha (3.3-acre) land, but life was still a struggle for the couple and their two children, trying to make ends meet.

Life took a turn for Bibi and her family when she observed field activities of the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project and she realized the importance of no-till maize cultivation. In 2015, she hired a zero-till multi-crop planter and sowed maize in her land. Since then, there was no looking back.

“When I learnt about the high demand for maize, we started cultivating the crop on half of our land, but gradually shifted to growing maize across our entire 10 bighas,” Bibi said. “The agriculture department helped me a lot.”

Rewarding productivity

Sefaur Rahman, a researcher and assistant director of agriculture in the district of Malda, predicted a dramatic growth in maize cultivation in West Bengal in the coming years, because farmers are now aware of the crop’s increased productivity, profitability and cost efficiency.

Through the SRFSI project, the International Maize and Wheat Improvement Center (CIMMYT) and the Australian Centre for International Agricultural Research (ACIAR) have reached out to a large number of smallholder farmers, especially marginalized women, to promote conservation agriculture and other sustainable techniques that make farming more profitable. In West Bengal, the project team has worked in partnership with Uttar Banga Krishi Viswavidyalaya agricultural university and the West Bengal Department of Agriculture, among others.

In the 2017-18 crop season, Bibi produced 16,800 kg of maize from her land. She initially invested 20,000 rupees ($280) per acre, which led to a net profit of 150,000 rupees ($2,113) in total.

A quick lesson learned, the right decision at the right time, and a lot of hard work led Bibi to win the Krishi Karman Prize. These awards are given to the best performing states for raising the country’s food grain production. Taking to Twitter, the Chief Minister of West Bengal, Mamata Banerjee, expressed her satisfaction. “I am happy to share that West Bengal has been selected once again for Krishi Karman Award by Govt. of India for the year 2017-18, primarily for maize production,” she said.

As Bibi’s story confirms, embracing conservation agriculture techniques is the way to reap maximum benefits and profits from the farm. In this case, the zero-till cultivation of maize paved a new road towards self-sufficiency and sustainability for the farmers of West Bengal.

Screening cycle for deadly MLN virus set to begin in Kenya in January 2020

Maize plants at the MLN screening facility in Naivasha, Kenya. (Photo: Jennifer Johnson/CIMMYT)
Maize plants at the MLN screening facility in Naivasha, Kenya. (Photo: Jennifer Johnson/CIMMYT)

The maize lethal necrosis (MLN) artificial inoculation screening site in Naivasha, Kenya, will begin its phenotyping (screening/indexing) cycle of 2020 at the beginning of January 2020, which will continue in four other intervals throughout the year. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.

In 2013, the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural & Livestock Research Organization (KALRO) jointly established the MLN screening facility at the KALRO Naivasha research station in Kenya’s Rift Valley, with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture.

MLN was first discovered in Kenya in 2011 and quickly spread to other parts of eastern Africa. The disease causes premature plant death and unfilled, poorly formed maize cobs, which can lead to up to 100% yield loss in farmers’ fields.

CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm — for hybrid, inbred and open pollinated varieties — against MLN in a quarantined environment.

This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 200,000 accessions — more than 300,000 rows of maize — from more than 15 multinational and national seed companies and national research programs.

Partners can now plan for annual MLN phenotyping (screening/indexing) during 2020 with the schedule below. The improved and streamlined approach for MLN phenotyping should enable partners to accelerate breeding programs to improve resistance for MLN for sub-Saharan Africa.

2020 annual phenotyping (indexing/screening) schedule:

When the seeds are available  Planting period (planned) MLN Screening / Indexing
December Second week of January MLN Indexing
March Second week of April MLN Screening
June Second week of July MLN Indexing
August Second week of September MLN Screening
October Second week of November MLN Indexing

More information about the disease and resources for farmers can be found on CIMMYT’s MLN portal.

Please note that it can take up to six weeks to process imports and clear shipments.

For assistance in obtaining import permits and necessary logistics for the upcoming screening, please contact:

L.M. Suresh
Tel.: +254 20 7224600 (direct)
Email: l.m.suresh@cgiar.org

CIMMYT–Kenya, ICRAF House
United Nations Avenue, Gigiri
P.O. Box 1041–00621
Nairobi, Kenya.

Nurture soil as our food and climate insurance

Kassim Massi and Joyce Makawa have learned how conservation agriculture nurtures the soil of their 2.5-acres farm in Lemu, Malawi, and helps them to better cope with regular dry spells and storm rains. With four children and two grandchildren, their livelihoods depend on rainfed crop farming, in particular maize, the main staple in Malawi, and a few goats and free-range poultry. The International Maize and Wheat Improvement Center (CIMMYT) introduced them to conservation agriculture, along with five other families in their community.

“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains. “The mulch also helps to limit water runoff when there are heavy rains. I don’t see the streams of mud flowing out of this plot like for my other field where I only planted maize as usual on ridges,” he adds.

Massi and Makawa started small, on a quarter acre, testing maize and maize-pigeon pea intercropping under conservation agriculture. Later they diversified to a maize-groundnut rotation with pigeon pea alleys, while introducing different drought-tolerant maize varieties on their plot. Pigeon pea and groundnut are legume crops that enrich the soil in nitrogen via nodules that host specific bacteria called rhizobia in their root systems. Massi and Makawa also put layers of maize stalks and groundnut haulms on the ground after harvest, creating a mulch that not only enriches the soil in organic matter but retains soil moisture and improves soil structure.

While they got only two bags of 50kg maize grain from their conventionally tilled maize field, they harvested almost three times more maize grain plus three bags of groundnuts, and two and half bags of pigeonpea from the 0.1 hectares grown under conservation agriculture. “This plot has become our food insurance and we plan to expand it.”

Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)
Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)

Good for the soil and good for the farmer

“Building healthy soils over the years is one of the great impacts of conservation agriculture,” explains Christian Thierfelder, an agronomist with CIMMYT in Zimbabwe. “With no tillage, legume rotation or intercropping and crop residue management, a beneficial soil pore structure is developed over time. This enables water to infiltrate into the soil where it is available for plant growth in times of drought or during in-season dry spells.”

Under the GIZ-funded Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe initiative, the different ecosystem services that soils bring have been measured against the typical ploughed maize monocropping system. Fifteen year-long experiments show that 48.5mm more water infiltrates per hour under no-till as compared with the conventional method. Soil erosion is reduced by 64% for ripline-seeded maize with legume intercropping. At the Henderson Research station in Zimbabwe where soil erosion loss has been quantified, it means 90 metric tons per hectare of topsoil saved over twelve years.

“Conservation agriculture is good for the soil, and it is good for the farmer. The maize-legume intercropping under conservation agriculture provides very good financial return to labor and investment in most rural communities we worked with,” Thierfelder notes.

Climate mitigation or resilience?

There is growing recognition of the importance of soils in our quest for sustainability.

Soils play for instance an important role in climate regulation. Plants fix carbon dioxide (CO2) through photosynthesis and when those plants die and decompose, the living organisms of the soil, such as bacteria, fungi or earthworms, transform them into organic matter. That way, soils capture huge quantities of the carbon emissions that fuel climate change. This soil organic carbon is also essential for our food security because it retains water, and soil nutrients, essential for growing crops.

The quantity of carbon soils capture depends on the way farmers grow their crops. Conservation agriculture improves soil biodiversity and carbon sequestration by retaining crop residues as mulch, compared to conventional practices.

“Research shows that practices such as conservation agriculture can restore soil organic carbon at the level of four per thousand when farmers apply all principles of conservation agriculture: no-till, soil cover and crop diversification,” explains Marc Corbeels, agronomist seconded to CIMMYT from Cirad. Increasing soil organic content stocks globally by 0.4% per year is the objective of the “4 per 1000” initiative as a way to mitigate climate change and improve food security. At global level, sequestrating 0.4% more soil organic carbon annually combined with stopping deforestation would counteract the annual rise in atmospheric CO2.

The overall soil organic carbon sequestration potential of conservation agriculture should however not be overestimated,” Corbeels warns. “Carbon sequestration is complex and context-specific. It depends for instance on the type of soils and the initial soil organic status, and the crop and biomass productivity as enough crop residues should be produced.”

“Now farmers in Malawi, Zambia and Zimbabwe are facing prolonged drought and, in some parts, farming communities got hit by flash floods. With degraded and barren soils in this tropical environment, it is a disaster. In my experience, more than mitigation, improved climate resilience is a bigger benefit of conservation agriculture for the farmers”, Corbeels says.

“Science is important to build up solid evidence of the benefits of a healthy soil and push forward much-needed policy interventions to incentivize soil conservation,” Thierfelder states.

Scaling out conservation agriculture practices is what has driven him over the past decade in southern Africa.

“One big lesson I learnt from my years of research with farmers is that if you treat well your soil, your soil will treat you well. Conservation agriculture adopters like Kassim Massi and his family are more resilient to these successive shocks. We need more farmers like them to achieve greater food security and climate resilience in the region,” he concludes.

December 5, we are celebrating World Soil Day under the theme “Stop Soil Erosion, Save our Future!” As CIMMYT’s research shows, farmers cannot deliver sustainable food security without healthy soils, as the farming land producing our staple crops provide important environmental services as well. CIMMYT calls for soil-smart agriculture and food systems.

Agricultural solutions to tackle humanity’s climate crisis

More than 11,000 scientists signed on to a recent report showing that planet Earth is facing a climate emergency and the United Nations warned that the world is on course for a 3.2 degree spike by 2100, even if 2015 Paris Agreement commitments are met.

Agriculture, forestry, and land-use change are implicated in roughly a quarter of global greenhouse gas emissions.

Agriculture also offers opportunities to mitigate climate change and to help farmers — particularly smallholders in developing and emerging economies who have been hardest hit by hot weather and reduced, more erratic rainfall.

Most of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while meeting the rising demand for food and, where possible, reducing emissions.

Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)
Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Climate-resilient crops and farming practices

53 million people are benefiting from drought-tolerant maize. Drought-tolerant maize varieties developed using conventional breeding provide at least 25% more grain than other varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average. These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people in the continent. One study shows that drought-tolerant maize can provide farming families in Zimbabwe an extra 9 months of food at no additional cost. The greatest productivity results when these varieties are used with reduced or zero tillage and keeping crop residues on the soil, as was demonstrated in southern Africa during the 2015-16 El Niño drought. Finally, tolerance in maize to high temperatures in combination with drought tolerance has a benefit at least twice that of either trait alone.

Wheat yields rise in difficult environments. Nearly two decades of data from 740 locations in more than 60 countries shows that CIMMYT breeding is pushing up wheat yields by almost 2% each year — that’s some 38 kilograms per hectare more annually over almost 20 years — under dry or otherwise challenging conditions. This is partly through use of drought-tolerant lines and crosses with wild grasses that boost wheat’s resilience. An international consortium is applying cutting-edge science to develop climate-resilient wheat. Three widely-adopted heat and drought-tolerant wheat lines from this work are helping farmers in Pakistan, a wheat powerhouse facing rising temperatures and drier conditions; the most popular was grown on an estimated 40,000 hectares in 2018.

Climate-smart soil and fertilizer management. Rice-wheat rotations are the predominant farming system on more than 13 million hectares in the Indo-Gangetic Plains of South Asia, providing food and livelihoods for hundreds of millions. If farmers in India alone fine-tuned crop fertilizer dosages using available technologies such as cellphones and photosynthesis sensors, each year they could produce nearly 14 million tons more grain, save 1.4 million tons of fertilizer, and cut CO2-equivalent greenhouse gas emissions by 5.3 million tons. Scientists have been studying and widely promoting such practices, as well as the use of direct seeding without tillage and keeping crop residues on the soil, farming methods that help capture and hold carbon and can save up to a ton of CO2 emissions per hectare, each crop cycle. Informed by CIMMYT researchers, India state officials seeking to reduce seasonal pollution in New Delhi and other cities have implemented policy measures to curb the burning of rice straw in northern India through widespread use of zero tillage.

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

Measuring climate change impacts and savings

In a landmark study involving CIMMYT wheat physiologists and underlining nutritional impacts of climate change, it was found that increased atmospheric CO2 reduces wheat grain protein content. Given wheat’s role as a key source of protein in the diets of millions of the poor, the results show the need for breeding and other measures to address this effect.

CIMMYT scientists are devising approaches to gauge organic carbon stocks in soils. The stored carbon improves soil resilience and fertility and reduces its emissions of greenhouse gases. Their research also provides the basis for a new global soil information system and to assess the effectiveness of resource-conserving crop management practices.

CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT's experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Managing pests and diseases

Rising temperatures and shifting precipitation are causing the emergence and spread of deadly new crop diseases and insect pests. Research partners worldwide are helping farmers to gain an upper hand by monitoring and sharing information about pathogen and pest movements, by spreading control measures and fostering timely access to fungicides and pesticides, and by developing maize and wheat varieties that feature genetic resistance to these organisms.

Viruses and moth larvae assail maize. Rapid and coordinated action among public and private institutions across sub-Saharan Africa has averted a food security disaster by containing the spread of maize lethal necrosis, a viral disease which appeared in Kenya in 2011 and quickly moved to maize fields regionwide. Measures have included capacity development with seed companies, extension workers, and farmers the development of new disease-resilient maize hybrids.

The insect known as fall armyworm hit Africa in 2016, quickly ranged across nearly all the continent’s maize lands and is now spreading in Asia. Regional and international consortia are combating the pest with guidance on integrated pest management, organized trainings and videos to support smallholder farmers, and breeding maize varieties that can at least partly resist fall armyworm.

New fungal diseases threaten world wheat harvests. The Ug99 race of wheat stem rust emerged in eastern Africa in the late 1990s and spawned 13 new strains that eventually appeared in 13 countries of Africa and beyond. Adding to wheat’s adversity, a devastating malady from the Americas known as “wheat blast” suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area and threatening to move quickly throughout South Asia’s vast wheat lands.

In both cases, quick international responses such as the Borlaug Global Rust Initiative, have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)
A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)

Partners and funders of CIMMYT’s climate research

A global leader in publicly-funded maize and wheat research and related farming systems, CIMMYT is a member of CGIAR and leads the South Asia Regional Program of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

CIMMYT receives support for research relating to climate change from national governments, foundations, development banks and other public and private agencies. Top funders include CGIAR Research Programs and Platforms, the Bill & Melinda Gates Foundation, Mexico’s Secretary of Agriculture and Rural Development (SADER), the United States Agency for International Development (USAID), the UK Department for International Development (DFID), the Australian Centre for International Agricultural Research (ACIAR), Cornell University, the German aid agency GIZ, the UK Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors to Window 1 &2.

Corn Fed: A Tortilla Revolution in Queens

Food entrepreneur Jorge Gaviria had the idea to small-scale farmers one by one who had surplus corn, buy it from them at market price and then import it to the United States. He partnered with CIMMYT to build up relationships with farmers, working out intricate systems that would determine fair prices and ensure that they were only buying surplus corn.

Read more here.

US Under Secretary of Agriculture ready for further cooperation with CIMMYT

The US delegation stands for a group photo next to the sculpture of Norman Borlaug at the global headquarters of CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)
The US delegation stands for a group photo next to the sculpture of Norman Borlaug at the global headquarters of CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)

The existence of the International Maize and Wheat Improvement Center (CIMMYT) marks one of the longest and strongest bilateral relationships between Mexico and the United States of America. Beginning with a pilot program sponsored by the Mexican government and the Rockefeller Foundation in the 1940s, it would officially become CIMMYT in 1966, with many examples of strong collaboration between both countries throughout over 50 years of history.

United States Under Secretary of Agriculture for Trade and Foreign Agricultural Affairs Ted McKinney and dozens of other U.S representatives were officially introduced to this legacy when they visited CIMMYT on November 8, 2019.

The director of the Genetic Resources program, Kevin Pixley (left), gives a tour of the recently remodelled Germplasm Bank museum to US Under Secretary McKinney (second from left). (Photo: Eleusis Llanderal/CIMMYT)
The director of the Genetic Resources program, Kevin Pixley (left), gives a tour of the recently remodelled Germplasm Bank museum to US Under Secretary McKinney (second from left). (Photo: Eleusis Llanderal/CIMMYT)

“This is a place I’ve wanted to visit for a very long time,” McKinney stated as he first laid eyes on the CIMMYT offices, “the historical CIMMYT.”

After photos and a quick tour of the museum, McKinney talked to CIMMYT Director General Martin Kropff over Skype. They bonded over their respect for Norman Borlaug and his legacy, especially as McKinney had known him and later his granddaughter Julie personally while the two men worked at Dow Agrosciences.

Kropff gave a presentation on CIMMYT’s impact on agriculture in the United States. McKinney was amazed at how much of CIMMYT’s wheat research benefits farmers in the United States, and expressed enthusiasm for further cooperation. “We’re ready, willing and able to help in any way,” he stated.

The director of the Integrated Development program and regional representative for the Americas, Bram Govaerts, presented on CIMMYT’s work with the United States. Mark Rhoda-Reis, Bureau Director of the Wisconsin Department of Agriculture, was pleased to learn that CIMMYT has been working with the University of Wisconsin-Madison on drought-tolerant maize.

The US Under Secretary of Agriculture for Trade and Foreign Agricultural Affairs, Ted McKinney (center), speaks during one of the sessions at CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)

The group then split off into two groups for tours of the wheat fields and the CIMMYT germplasm bank.  The delegation participated in a series of roundtable discussions on various topics such as climate change, sustainable agri-food systems, and the delegates’ objectives and needs related to agriculture in their respective states. A frequent topic was the dilemma of a public with a growing fear of technology, though technology is indispensable in the growth of the science of agriculture. “Research and education is the future of agriculture,” said one of the representatives.

The director of the Genetic Resources program, Kevin Pixley (center), shows some of the genetic materials at CIMMYT's Germplasm Bank to US Under Secretary McKinney (top-left). (Photo: Eleusis Llanderal/CIMMYT)
The director of the Genetic Resources program, Kevin Pixley (center), shows some of the genetic materials at CIMMYT’s Germplasm Bank to US Under Secretary McKinney (top-left). (Photo: Eleusis Llanderal/CIMMYT)

At the closing of their visit, the delegation was eager to spread their newfound knowledge about CIMMYT’s work and legacy. “I’m just so impressed with the work done here… the representation of all the countries in this facility is outstanding!,” said Chris Chin, Director of the Missouri Department of Agriculture.

“I was blown away. [CIMMYT] is so valuable to every country in the world,” stated Ignacio Marquez, a representative from the Washington State Department of Agriculture.

Ethiopia, great mobilization against wheat rust

To protect crops, a rapid alert system has been developed which is able to predict the spread of wheat rust and warns policy makers and farmers allowing timely and targeted interventions.

The project involved a multidisciplinary team – biologists, meteorologists, agronomists, IT and telecommunications experts – and the system was developed by the University of Cambridge, the Met Office of Great Britain, the Ethiopian Agricultural Research Institute (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).

At the base of it all is the data. Read more here.