Skip to main content

Conservation agriculture feeds people and protects the environment

On June 5, 2020, the world celebrates World Environment Day as COVID-19 continues to cause challenges and restrictions. Existing threats of climate change with the new challenges of a global pandemic adversely affect the agricultural sector, a mainstay of most sub-Saharan African economies. This situation calls for increased attention to how agriculture is practiced and natural resources — such as soil and water — are cared for.

Smallholder farmers in Zimbabwe are custodians of these natural resources, yet climate variability of shifting rainfall seasons, El Niño and droughts threaten successful rain-fed farming. Coupled with conventional farming practices such as tillage and deforestation, the soil structure and chemical quality are gradually degrading. Each passing year has resulted in declining yields, food insecurity and increased household vulnerabilities, particularly in drought-prone, low rainfall areas of southern Zimbabwe.

With support from the Swiss Agency for Development and Cooperation (SDC), the R4 Rural Resilience Initiative, led by the World Food Programme (WFP), aims to enable vulnerable, smallholder farmers to increase their food security, income and resilience by managing climate-related risks.  Building on R4, WFP has just launched the Zambuko Livelihoods Initiative, focusing on social cohesion of communities, improved crop and livestock production and improved access to finance, with support from the United States Agency for International Development (USAID). The International Maize and Wheat Improvement Center (CIMMYT) is a partner to implement the project component on appropriate seeds and agricultural practices.

We discuss the R4 Rural Resilience Initiative with Christian Thierfelder, the Principal Cropping Systems Agronomist and a Strategic Leader for Africa at CIMMYT, and Munaye Makonnen, the Project Lead from WFP in Zimbabwe.

Promising high yields of white sorghum on a field in the mother trials in Mwenezi, Zimbabwe.
Promising high yields of white sorghum on a field in the mother trials in Mwenezi, Zimbabwe.

How is the R4 Rural Resilience Initiative responding to climate change challenges in the sites of intervention – Chebvute and Mwenezi?

Thierfelder: The R4 and Zambuko initiatives pursue an integrated approach to increase resilience of smallholder farming communities. Different partner organizations have come together in these projects to pursue different interventions such as building dams and vegetable gardens as community assets, financial education, promotion of improved climate-smart technologies such as drought-tolerant seed in combination with conservation agriculture, insurance, and linking farmers to markets. The combined actions address all needs and shortfalls in the target communities. We see a transformational change from mere subsistence farming to a more commercially oriented farming by targeted smallholders.

Makonnen: Recognizing the need to address livelihoods holistically, R4 offers farmers a set of integrated tools so that communities can better manage climate risks. Farmers participate in activities that enhance the natural resource base at watershed level, helping them adapt to climate change. They also benefit from a weather index insurance cover that protects them against drought and incentivizes them to engage in high-risk high-return investments. In the case of minor shocks, farmers have their savings groups to draw up on and can access small credit for income generating activities. With the aim of increasing productivity and income, conservation agriculture practices are promoted. For their surplus production, participants are also supported in accessing markets. The project also plans to include a component on climate services that will allow communities to mitigate the impacts of disaster risk, increase production and enhance adaptation to climate change.

Since inception, how have the farming communities responded to the technologies and practices introduced in their respective sites?

Thierfelder: Farming communities were very skeptical initially about this new approach. However, the varieties and cropping systems displayed in our 10 mother trials showed dramatically higher yields than farmers observed in their own fields, so it was not difficult to get 200 baby trial farmers to experiment with the technology. During the 2019/2020 cropping season, farmers got even more excited to see maize and legume yields thrive in their baby trials while crops planted under conventional agriculture failed. In the next cropping season, we hope to reach the tipping point of farmers trying and experimenting with these climate-smart agriculture technologies to achieve a transformational change towards more resilience.

Makonnen: Looking at the performance of the trials, farmers can see for themselves that the agricultural practices promoted by the project result in higher yields. They also get practical experience by trying these out on their own fields. Such an approach has worked well in terms of getting farmers to become interested in and eventually adopt conservation agriculture principles because it is not just based on theory — farmers can actually see and experience the change for themselves.

Even in times of COVID-19, the work must continue, observing social distancing and using facemasks. Christian Thierfelder outlines trials with farmers in Mwenezi, Zimbabwe.
Even in times of COVID-19, the work must continue, observing social distancing and using facemasks. Christian Thierfelder outlines trials with farmers in Mwenezi, Zimbabwe.

In the wake of the COVID-19 pandemic and disturbance to agri-food systems, how is the R4 Rural Resilience Initiative addressing the emerging challenges? 

Thierfelder: We have created the base of more resilient farming systems that should positively respond to all external shocks – droughts, floods and maybe a virus as well. In our technology package we do promote self-pollinating legumes such as cowpea and groundnuts which can be grown even when farmers are cut off from supply chains for seed and fertilizer. We therefore hope that this can be a contribution to reducing the negative impact of the COVID-19 crisis.

Makonnen: As COVID-19 is compromising food security, it is now more important than ever to ensure that agricultural production continues to function smoothly. R4 continues to provide all the services in its integrated risk management package despite the pandemic. As farmers face challenges in production, including limited access to labor, we hope that high yielding and less labor-intensive conservation agriculture practices promoted by R4 really come into their own. Ensuring the safety of our beneficiaries, staff and partners is a priority for WFP so we have developed guidelines for R4 implementation in the context of COVID-19. For instance, trainings are taking place in smaller groups, social distancing is observed in all activities, messages on COVID-19 prevention are shared with beneficiaries and we are also looking into digital solutions to continue implementation during these unprecedented times.

Looking ahead, how will the adoption of appropriate agricultural practices and seed varieties strengthen the resilience of the farming communities?

Thierfelder: Our approach has been multi-faceted addressing different areas of concern to the farmers: income generation, credit, improved productivity, insurance and marketing. We believe that with this mix of interventions farming can more effectively withstand external stresses. However, we also realize that adoption does not happen overnight and requires a significant experimentation and learning process with farmers. WFP has seen the need for longer term investments, and this is now beginning to pay off.

Makonnen: Adoption of appropriate agricultural practices and seeds is just one of the components of R4. We know resilience requires a holistic approach which is why we have a set of interventions within R4 involving multiple partners. R4 will continue to work across the entire value chain bringing together natural resource management, access to financial services, access to inputs and markets and promotion of appropriate agricultural practices so that the farmers we work with are well equipped to manage risks and become resilient to the changing climate and risks to their food security.

Sign Phiri from CIMMYT inspects maize crops.
Sign Phiri from CIMMYT inspects maize crops.

Cover photo: Kiyasi Gwalale stands on her baby trial plot.

The many colors of maize, the material of life

Tonahuixtla, a small town located in Mexico’s state of Puebla, had suffered extreme environmental degradation due to deforestation and erosion. Agricultural land was in poor condition and the town had stopped producing many of their heirloom maize varieties, a loss to both biodiversity in the region and local culture. Poverty had increased, forcing many to migrate to bigger cities or to the United States for work. Those who were left behind, most of them women, had few ways to generate income to support their families.

Today, the story of Tonahuixtla is different. The town actively participates in reforestation and erosion-prevention activities. Landrace maize production is increasing, preserving the town and region’s biodiversity and customs. The residents have job opportunities that allow them to stay in their town and not migrate, all while preserving local biodiversity and protecting the environment.

What caused this change?

Corn husks.

Long considered a waste product, corn husks have been given a new lease on life through the Totomoxtle project. Named for the traditional indigenous Nahuatl word for corn husk, Totomoxtle turns the husks of native maize, found in a variety of colors, into a beautiful and sustainable veneer for furniture and walls. Founded by Mexican graphic designer Fernando Laposse, Totomoxtle has given farmers an incentive to plant native maize again, preserving invaluable biodiversity for future generations.

When Denise Costich, head of the maize collection of the germplasm bank at the International Maize and Wheat Improvement Center (CIMMYT), heard about the Totomoxtle project she knew she wanted to help. Passionate about preserving native maize, she and her team identified 16 landrace varieties from the CIMMYT maize collection that would produce husks in interesting colors and could grow well in the altitude and climate conditions of Tonahuixtla. She invited Laposse and project members to come visit the genebank and learn about CIMMYT’s work, and provided them with seed of the landraces they had identified.

“This is what we normally do in our work at the germplasm bank, we give people seed,” Costich said. “But this turned into a closer collaboration.”

In the dry and mountainous terrain surrounding the village of Tonahuixtla, native maize preservation and reforestation efforts have been key in protecting the local environment and culture. (Photo: Denise Costich/CIMMYT)
In the dry and mountainous terrain surrounding the village of Tonahuixtla, native maize preservation and reforestation efforts have been key in protecting the local environment and culture. (Photo: Denise Costich/CIMMYT)

Colorful collaboration

The maize germplasm bank team arranged for Totomoxtle project members to receive training in how to make controlled pollinations in the native maize varieties, at one of CIMMYT’s experimental stations.

“The technicians at CIMMYT’s Agua Fria station loved meeting the project members from Tonahuixtla, and immediately became passionate about the Totomoxtle project,” Costich said. “To this day, the technicians still save all of the colored corn husks from CIMMYT maize trials and send them to Tonahuixtla to provide them with additional material for their project.”

In the village of Tonahuixtla, project members — many of them women — work to iron the corn husks flat and glue them on to a stiff backing, then send them via courier to Laposse’s workshop in London where he uses them to create beautiful furniture and wall panels. This work allows the residents of Tonahuixtla to stay in their village and not be forced to migrate, all while preserving maize biodiversity and protecting the environment.

“Part of what this project is doing is also helping to keep families together — providing livelihoods so that people can stay in their communities, so that they don’t have to send all of their young people off to Mexico City or to the United States. To me, it’s really all connected,” Costich said.

Native maize tassels against a bright blue sky in Tonahuixtla. (Photo: Denise Costich/CIMMYT)
Native maize tassels against a bright blue sky in Tonahuixtla. (Photo: Denise Costich/CIMMYT)
In the town of Tonahuixtla, Puebla, Mexico, a native maize field sits below a tree-covered hillside. The town has been active in reforestation efforts to control erosion. (Photo: Denise Costich/CIMMYT)
In the town of Tonahuixtla, Puebla, Mexico, a native maize field sits below a tree-covered hillside. The town has been active in reforestation efforts to control erosion. (Photo: Denise Costich/CIMMYT)
Denise Costich (front right, sitting) poses for a photo with Tonahuixtla residents and members of the Totomoxtle project. (Photo: Provided by Denise Costich/CIMMYT)
Denise Costich (front right, sitting) poses for a photo with Tonahuixtla residents, members of the Totomoxtle project, and CIMMYT Germplasm Bank staff. (Photo: Provided by Denise Costich/CIMMYT)

The value of sustainability

The project also shows the intersection between biodiversity conservation and protecting the local environment. The maize husks used for the project are a sustainable and biodegradable material, and any residue from the maize husks that are not used for the Totomoxtle project are either fed to animals in the dry season or used to make fertilizer, which is then returned to the maize fields, a completely circular cycle in which nothing is wasted.

“I think that many of the communities that we work in really do understand the value and the importance of biodiversity,” Costich said. “In Tonahuixtla, the people are trying to reforest the hillsides in their region. They understand the connection between having no vegetation on the hills and having the rain water just roll right off the hills and into the temporary streams, thus losing that critically important resource. Over the years, as a result of the work they have done there, they have seen with their own eyes the improvement in the environment, not only that the hills are now covered with vegetation, but also they see a lot less runoff and erosion. I think that’s a really important lesson for everyone. I come from an ecology background, so I am always very excited to get involved in projects where it’s not just about maize, it’s about everything. It’s also about people’s lives, and nutrition, and the connections between them.”

Preserving local maize biodiversity is not just important for Tonahuixtla — it is important to all of humanity. Native maize varieties have adapted for thousands of years in farmers’ fields across Mesoamerica, developing natural resistance to local plant pests and diseases, as well as climatic conditions such as heat or drought. These native maize seeds, passed down generation to generation, could hold the key to developing improved maize varieties that can resist emerging maize diseases or extreme weather events related to climate change. If this biodiversity is lost, it represents a loss to global food security as a whole.

CIMMYT works to protect many of these native maize varieties in their germplasm bank, which is home to over 28,000 different collections of maize. Kept in cold storage under optimum conditions in the CIMMYT seed vault, these seeds are preserved for future generations and are available to anyone who needs them, including farmers such as those in Tonahuixtla, who had lost much of their native maize diversity.

“The biodiversity of cultivated plants is basically the guarantee for the future,” Costich said. “This is our security backup. Seed security is food security.”

Maize cobs and veneer made out of corn husks are on display at an exhibition of the Totomoxtle project in Mexico City. (Photo: Denise Costich/CIMMYT)
Maize cobs and veneer made out of corn husks are on display at an exhibition of the Totomoxtle project in Mexico City. (Photo: Denise Costich/CIMMYT)
Members of the CIMMYT Germplasm Bank team stand for a photo with a variety of landraces at an exhibition of the Totomoxtle project in Mexico City. (Photo: Emilio Diaz)
Members of the CIMMYT Germplasm Bank team stand for a photo with a variety of landraces at an exhibition of the Totomoxtle project in Mexico City. (Photo: Emilio Diaz)

Cover photo: Denise Costich (center, pink hat) stands with members of the Totomoxtle project and CIMMYT Germplasm Bank staff members near Tonahuixtla. (Photo: Provided by Denise Costich/CIMMYT)

Researcher says COVID-19 to affect Africa’s food situation

Boddupalli Prasanna, director of the global maize program at the International Maize and Wheat Improvement Center (CIMMYT), a global research body, called on scientists to help countries in finding faster solutions to the effects of COVID-19 on food security.

“I am particularly worried about farmers, especially smallholder farmers, who are quite vulnerable to the ongoing challenge,” Prasanna said in a statement.

Read more here: https://newsghana.com.gh/researcher-says-covid-19-to-affect-africas-food-situation/

Two decades of illustrious service

Stephen Mugo (left) shows grain filling to Felister Makini of KALRO and Oscar Magenya, from Kenya's Ministry of Agriculture. (Photo: Joshua Masinde/CIMMYT)
Stephen Mugo (left) shows grain filling to Felister Makini of KALRO and Oscar Magenya, from Kenya’s Ministry of Agriculture. (Photo: Joshua Masinde/CIMMYT)

After a long and distinguished service as a maize breeder and senior manager at the International Maize and Wheat Improvement Center (CIMMYT), Stephen Mugo has retired from the organization. A Principal Scientist and Maize Breeder at CIMMYT’s Global Maize Program, Mugo also served as CIMMYT’s Country Representative for Kenya and CIMMYT’s Regional Representative for Africa.

He joined CIMMYT in 1998 as a post-doctoral fellow and his last day of work was on May 31, 2020. His colleagues honored him with memorable tributes at an online meeting held on May 21, 2020.

“Mugo has always demonstrated his commitment and determination, even in the most challenging times, for the benefit of CIMMYT and its staff. He has been a very productive scientist, maize breeder and project leader of several projects that have had great impact in the past. We are proud of what he has been doing and still does for CIMMYT,” said Director General Martin Kropff.

In his illustrious career, Mugo led the Stress Tolerant Maize for Africa Supplement Project (STMA-SUP) and the TELA Maize Project, both of which aimed at improving maize for drought tolerance and insect pest resistance in five countries in eastern and southern Africa. He was also the CIMMYT leader for the Water Efficient Maize for Africa (WEMA) project (2008-2018), Insect Resistant Maize for Africa (IRMA) project (1999-2004) and the Strengthening Seed Systems project in Kenya and Uganda (2001-2003).

“I leave CIMMYT with fond memories and with my head held high. I sincerely wish to thank my colleagues for being a wonderful team that continues to work hard to ensure that we get the right seed to the farmer,” Mugo said. “I have enjoyed every bit of my time at the organization. What I would request is that for us to continue working well together, we need to respect and treat one another the way you would like to be treated. This way, the organization would move from strength to strength,” he expressed.

Stephen Mugo (right) at the MLN research station in Naivasha, Kenya, in September 2018. (Photo: Joshua Masinde/CIMMYT)
Stephen Mugo (right) at the MLN research station in Naivasha, Kenya, in September 2018. (Photo: Joshua Masinde/CIMMYT)

Mugo holds a PhD in Plant Breeding and Genetics from Cornell University and has published extensively in peer reviewed journals, with several book chapters to his name.

B.M. Prasanna, Director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE) acknowledged the tremendous contribution that Mugo has made over the years in the projects he led.

“His work on the Insect Resistant Maize for Africa (IRMA) project has been phenomenally important, especially some of the germplasm that we are now finding as native genetic resistant to the fall armyworm,” Prasanna remarked. “He is a great champion and tremendous ambassador for CIMMYT’s work in Africa. I am sure he will continue to contribute to CIMMYT for years to come.”

Even though he leaves the stage, Mugo will provide consultancy support to CIMMYT, particularly on the MLN Gene Editing and TELA Maize projects.

Farm mechanization under COVID-19

The COVID-19 pandemic continues to transform the way the world operates, and agricultural production systems are not exempt.

Even in countries that have identified the agricultural sector as an essential one, ongoing restrictions on transport and freedom of movement are causing disruptions across the value chain — with potentially devastating impact on already fragile food systems in Latin America, sub-Saharan Africa and South Asia.

With this in mind, systems agronomists and mechanization specialists at the International Maize and Wheat Improvement Center (CIMMYT), discuss the impact of restrictions on agricultural labor and production, and the role farm mechanization can play in addressing new challenges.

What are the implications of the agricultural labor shortages that are emerging in Africa and Latin America as a result of COVID-19 restrictions?

A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)
A woman demonstrates the use of a mini-tiller in Naivasha, Kenya. (Photo: Matt O’Leary/CIMMYT)

Frédéric Baudron: The pandemic has demonstrated that food production systems around the world — even in countries where agriculture is thought to be highly mechanized — are highly dependent on farm labor.

Africa is often presented as being dominated by farms which rely mainly on the labor of family members. Therefore, one could expect that Africa would be spared from the consequences of unavailability and/or unaffordability of hired labor. However, a recent CIMMYT study shows that farming systems in Africa are far more dependent on hired labor than commonly thought, and that the quasi total dependence of smallholder farming on family labor is a myth. Depending on the farming system, a complete loss of hired labor could lead to a productivity decrease of up to 20% in Eastern and Southern Africa. Hired labor is also likely to be replaced by child labor.

Because most production on the continent is rainfed during a single season, most farmers only plant and harvest once per year, making the timing of each task critical. A delay in planting because of labor shortages — as will soon occur Ethiopia — could lead to dramatically reduced yields. A delay in harvesting — as is currently experienced in Zimbabwe — means a large fraction of the crop is likely to be spoilt in the field.

Jelle Van Loon: The situation is similar for Mexico and the general Central American corridor, although the main production cycle is only just starting. Proper land preparation and timely sowing are critical, not only in terms of food production and achieving proper yields, but also to ensure that farmers have a stable income at the end of the year. This is especially important now, as financial and food reserves are shrinking at a faster pace due to COVID-19 restrictions that heavily affect demand on informal markets.

An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)
An operator demonstrates the use of a reaper in Bangladesh. (Photo: CIMMYT)

Are you seeing a similar situation in South Asia?

Timothy Krupnik: Depending on the country, we’ve seen either abrupt interruptions in the movement of agricultural laborers — for example in India where millions of migrant laborers have not been able to travel home during lockdown — or an influx of people from urban areas who fled to their villages when lockdown began.

In the latter case, one might expect this to increase labor availability for farming, but we tended to observe the reverse. People remain largely frightened of coming out of their homes, so even in rural areas which saw an influx of people, labor availability has not necessarily increased. Where laborers are willing to work, our initial scan of the evidence indicates that daily wage labor costs have also increased considerably due to risks of infection spreading. In either situation, smallholder farmers who need to hire labor to assure crucial crop management activities like planting or harvesting are suffering. There are reports emerging also of increased child labor in the region as schools are closed and resource-poor farmers are allocating family members and children to work where they can’t afford to hire labor.

M.L. Jat: I would like to cite the specific example of intensive rice-wheat rotation in India’s breadbasket and the Green Revolution corridors in the western Indo-Gangetic plains, which provide the bulk of cereals to the national food basket. An ex-ante analysis on the consequences of the reverse migration of the agricultural workforce and social distancing due to COVID-19 revealed that a delay in the transplanting of rice seedlings by two weeks is likely, which will delay rice harvesting and consequently delay the planting of wheat. This will potentially lead to rice and wheat production losses of 10-25%, worth up to $1.5 billion.

In addition, the shorter turn around between harvesting rice and planting wheat may further increase the incidence of rice residue burning. This is a major problem which creates significant health issues and may exacerbate the threat of COVID-19 by increasing both infection rates and disease severity.

Krupnik: The situation has increased interest and policy to support use of scale-appropriate machinery for operations like harvesting. In Bangladesh, for example, there was a recent and very serious risk of losing much of the rice harvest as the monsoon has started early and flash flooding has been a concern. Without manual laborers to harvest the crop, CIMMYT-led projects like the Cereal Systems Initiative for South Asia – Mechanization and Extension Activity (CSISA-MEA) have played a key role in assisting the movement of combine harvesters and crop reapers to areas at risk of crop losses and helping to assure the rice crop is harvested on time.

An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)
An operator demonstrates the use of a starwheel planter in Zimbabwe. (Photo: Frederic Baudron/CIMMYT)

It sounds like these machines were instrumental in avoiding crop losses. Does this mean that mechanization has a key role to play in lessening the impact of these labor shortages?

Krupnik: During the COVID-19 crisis, scale-appropriate machinery has become even more important for mitigating labor shortages.  We work to facilitate the availability of scale-appropriate machinery not only so that farmers can buy and use equipment, but also by encouraging those who own machineries to become entrepreneurial service providers who offer efficient and mechanized land preparation, planting, irrigation, harvesting and post-harvesting to other farmers on an affordable fee-for-service basis.

This is a win-win situation for farmers who can’t access or afford the escalating costs of labor. In the COVID-19 crisis, these arrangements assist in responding to the labor crunch in locations where resource-poor farmers are most in need, and also allow farmers to get crucial work done while maintaining and encouraging social distancing.

Baudron: Over the past seven years, CIMMYT and its partners have fine-tuned technologies and developed delivery models — based on rural service providers supported by private sector companies — to scale the use of small machines in East and Southern Africa. These are profitable for both farmers and service providers and reduce labor requirements tremendously.

In Zimbabwe, we found that labor requirements were 15 times lower when establishing a maize field with a direct seeder pulled by a two-wheel tractor, and 23 times lower using a similar technology for establishing wheat in Rwanda, compared to the conventional method based on labor and draft power. A ton of maize that would take 12 people a full day to shell manually, can be shelled in one hour using a small double-cob sheller that costs about $300.

Jat: Rapid policy decisions by sub-national and national governments on facilitating more mechanized operations in labor intensive rice-wheat production regions will address labor availability issues while contributing to productivity enhancement of succeeding wheat crop in rotation, as well as overall system sustainability. Our ex-ante analysis on the implications of labor shortages in rice-wheat rotation in the western Indo-Gangetic plains due to COVID-19 indicates that adoption of scale-appropriate farm mechanization has the potential to stabilize the food production as well as reducing the income losses and air pollution surges in northwest India.

Harvesting maize in Mexico. (Photo: CIMMYT)
Harvesting maize in Mexico. (Photo: CIMMYT)

The situation in the regions each of you have mentioned is unique, but are there any global trends that you’ve noticed? And if so, can other regions learn from these localized experiences?

Krupnik: A huge part of what we do as a research and training institute is facilitate exchanges of information across continents and countries. Different types and designs of machinery that can be used in similar circumstances can be shared, as can business models supporting service providers.

Importantly, part of the concept of ‘scale-appropriate mechanization’ is also learning when and where machinery makes sense — where labor is not scarce and rural communities are highly dependent on income from labor to sustain their communities, some forms of mechanization may not be appropriate. We work to understand these dynamics and target the right machines in the right time and right places.

Van Loon: In addition to reducing pressure on available labor and alleviating drudgery, modern farm equipment tailored to the needs of smallholders can also increase competitiveness, as it allows for higher precision and efficiency.

In this sense, scale-appropriate mechanization can stimulate rural transformation incentivizing short and efficient value chains while ensuring stable food provision — aspects that have become essential to navigating the present crisis.

Has the current pandemic brought up any new perspectives in terms of how you consider labor and mechanization?

Baudron: We often look at yield and area planted in staple crops to assess the food security situation of a country during a particular year. This pandemic has shown us that we need to pay more attention to labor productivity. In many countries, policy-makers and development agents fear that mechanization will displace labor, but the dependency of staple crops on labor is a threat to food security, as we currently see in Africa and South Asia.

If the production of fruit, vegetables, cash crops, and so on will continue to depend on manual labor, it is essential in my view for critical tasks in the production of staples to be mechanized — particularly planting and harvesting. This will ensure the resilience of national food systems in the case of a future disruption similar to the COVID-19 pandemic.

Cover photo: Establishment of demo trial in Nyanga, Zimbabwe. (Photo: CIMMYT/ZRBF)

Fight against viruses, also in defense of maize and our food

A first outbreak of maize lethal necrosis was found in Kenya in 2011 and researchers immediately became active because they knew that timely action was needed to prevent irreparable damage. This viral disease was decimating maize fields and spreading rapidly in east Africa through contaminated insects and seeds.

Read more here: https://www.ledonnedelfood.it/lotta-ai-virus-anche-in-difesa-del-mais-e-del-nostro-cibo/

Breaking Ground: Yoseph Beyene breeds desirable maize varieties for smallholder farmers in sub-Saharan Africa

About 25 years ago, Yoseph Beyene first heard about the International Maize and Wheat Improvement Center (CIMMYT) from one of his professors, back when he was pursuing his undergraduate degree in Plant Science at Haramaya University in Ethiopia. “The professor, whom I regard as a great mentor, (…) always told me that if I ever got an opportunity to work at CIMMYT, I should not hesitate to take it up, as it was a great place to conduct maize breeding,” recollects Beyene, now a maize breeder at CIMMYT. He grew up in Alem Ketema, a village located 190 km north of Addis Ababa, Ethiopia’s capital.

In retrospect, he did not know this would change his perspective on how he viewed crops, especially maize, on smallholder farms. Like many other families in Alem Ketema, his family attended to their small farm to meet their food and nutritional needs. Most people practiced subsistence farming, intertwined with livestock keeping, on small plots that were typically less than 2 hectares. At the backyard of his family’s farm, different crops such as maize, sorghum and teff were grown. As a child, he never quite registered in his mind that farmers grew mainly recycled seed. “In hindsight, I can say that the yield of a crop such as maize was just about 1.5 tons per hectare at the time,” he reckons.

Such low yield potential meant feeding relatively large family sizes of about seven people was a tall order. It did not help that crops such as maize and wheat were frequently affected by diseases and pests and erratic rains, which diminished yields. It was not until his high school days when he had firsthand experience with high-yielding improved crop varieties. As part of the farm management class, he actively participated in the school’s farm management unit. He got to appreciate the yield variation between improved and local varieties, grown on the school plots. These improved seed, he quickly realized, were the ideal antidote to the low yield farmers obtained. 

Struck by an epiphany

“This was like a eureka moment for me. When I realized that it was possible to improve and deliver desirable seed varieties that could double farmers’ yields, I decided to study plant breeding at the university. If only the farmers back in my village knew about the improved seed and adopted them at the time, it could not only have helped solve the problems of food insecurity but also bettered their livelihoods,” he ponders.

When he enrolled for a PhD in Plant Breeding and Genetics at the University of Pretoria, he did his research in highland maize in collaboration with CIMMYT in Ethiopia. Upon completion, he was appointed as a senior cotton breeder at South Africa’s Agricultural Research Council (ARC), where he worked for one and a half years.

“One day, I saw an advertisement in which CIMMYT was looking for a maize breeder. I applied, went for the interview and was happy to get the position. That was in 2008,” he says.

The right tool for the right variety

Biotic and abiotic stresses are becoming more frequent and vicious because of climate change and there is growing urgency to tackle them to avert future potential food crises.

Beyene’s current research focuses on developing high-yielding and climate-resilient maize inbred lines and hybrids for sub-Saharan Africa. He uses  conventional and molecular breeding, including integration of novel tools and techniques, such as doubled haploid, and marker-assisted recurrent section and genomic selection. Over the years, he has developed at least 25 new drought-tolerant maize hybrids recommended for commercialization in Kenya, Mozambique, Uganda, South Africa and Tanzania. Currently, 23 seed companies have been engaged to produce and market the released hybrids through sub-licensing.

Presently, as the Regional Breeding Coordinator for Africa, he is responsible for assessing the progress of implementing product profile-based breeding, appropriate germplasm exchange within and across regional breeding hubs, and ascertaining the progress on new initiatives by regional breeding teams.

A long-term endeavor

Breeding is a costly, time consuming and complex exercise. “It takes at least 10 years from crossing to release using pedigree breeding because the hybrids should be evaluated in multiple years and tested in multiple locations, which increases costs and time of the breeding cycle. You have to appreciate the fact that you are not breeding for now but for the future,” he says.

“As a breeder, you have to keep testing new tools and techniques to make breeding more efficient. Yet, resources are not always constant but inadequate. Stresses are becoming more urgent and vicious, despite increased urgency in tackling them to avert a potential food crises,” he says.

To reduce the time and accelerate genetic gains, Beyene and his colleagues at CIMMYT are currently applying the genomic selection technique for maize breeding, using it to predict the performance of un-phenotyped genotypes at early stage of testing. He and his colleagues recently published their research comparing genomic selection with phenotypic selection, as used by CIMMYT’s maize breeding program in sub-Saharan Africa. They found that the use of genomic selection for yield under optimum and drought conditions in tropical maize can produce selection candidates with similar performance as those generated from conventional phenotypic selection, but at a lower cost. They concluded that this strategy should be effectively incorporated into maize breeding pipelines to enhance breeding program efficiency.

Breeding challenges notwithstanding, Beyene feels fulfilled whenever he sees a farmer has planted a variety that he helped breed. “The epitome of my inspiration is when there is a smile on their face because of the variety’s good performance on their farm,” he says.

Interacting with the farmers and seed companies provides an opportunity for him to learn, understand their varietal preferences as well as appreciate the impact that his work has on their operations. He is also actively engaged in building the capcity of public and private partners, and supervising master’s and doctoral students from various countries. He has published more than 50 articles in journals.

The life of a breeder is not as lonely and boring as some would think. Beyene creates time to be with his three children, playing with them and helping with their homework, taking them out for social events. He also dedicates time to watch football, reality television, comedy and drama with his family.

Battling devastating viral diseases, also in plants

When a maize lethal necrosis (MLN) outbreak happened in Kenya in 2011, scientists knew they needed to act fast. This viral disease, new to Kenya, was decimating maize fields. Within a few years, the viral disease spread rapidly in eastern Africa, through both insect vectors and contaminated seeds. If the virus were to spread into southern or West Africa, it would spell disaster for the smallholder farmers across the continent who depended on maize as a staple crop and for their family’s income and livelihoods.

The International Maize and Wheat Improvement Center (CIMMYT) and its partners immediately took action to impose a strict seed quarantine and restrict the movement of seed between eastern Africa and other regions in Africa. In addition, they worked intensively on developing and disseminating improved maize cultivars with tolerance or resistance to MLN, undertook extensive surveillance efforts, and sensitized partners on the importance of producing and commercializing MLN-free seed.

Due to these efforts, in the last nine years MLN has not been reported in sub-Saharan Africa outside of eastern Africa.

On the occasion of a recent publication on Virus Research about how MLN was contained, we interviewed B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE), to discuss the MLN success story, the global COVID-19 crisis, and the similarities in the challenge to tackle plant and human viral diseases.

B.M. Prasanna, Director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE). (Photo: Alfonso Cortés/CIMMYT)
B.M. Prasanna, Director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE). (Photo: Alfonso Cortés/CIMMYT)

What were some of the extreme measures CIMMYT had to take to stop the spread of MLN?

The first step that we had to take in the fight against MLN was to rigorously analyze seed for any possible contamination with MLN-causing viruses and restrict movement of seed from eastern Africa to southern Africa.

The second most important step was to sensitize the national partners and the commercial seed sector about the danger of seed contamination with MLN-causing viruses, and how seed contamination can lead to the proliferation or spread of the disease.

The third important step was to build a new MLN quarantine facility in Zimbabwe, in partnership with the National Plant Quarantine Institute. Only when that quarantine facility was functional in 2017, we reinitiated transfer of research material from CIMMYT’s breeding hub in Kenya to CIMMYT in Zimbabwe. Only when the materials were certified to be MLN-free both in Kenya and Zimbabwe, through plant-by-plant analysis using immunodiagnostic kits, the seed was multiplied and further distributed to partners. So, the principle of containment and effective management is extremely important, whether it is a plant viral disease or a human viral disease.

We must note here that in terms of scale and intensity, as well as global effects and implications, any plant disease, including MLN, cannot be compared with a pandemic like COVID-19, which has affected every aspect of our lives.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

How do you think the COVID-19 pandemic is going to impact our food systems?

We are indeed in a grim situation. The pandemic will undoubtedly have a serious effect on food security.

Many countries which do not have enough food reserves or those where the food systems are vulnerable to shocks like this are suffering. The people’s capacity to procure inputs for agriculture, including seed, is going to be affected too, as the markets are affected. This is really a serious situation that we all should be concerned about. The CGIAR has an important role to play, in terms of working closely with national partners and mitigating the impact of COVID-19 on agriculture.

We should be particularly worried about farmers, especially smallholder farmers, who are quite vulnerable to the ongoing challenge. Even without COVID-19, agriculture in many developing countries worldwide has been already under distress. Small and marginal farmers were often unable to find a market for their produce and earn sufficient income to support their families. Their livelihoods are fragile, and vulnerable to climate change and volatile market prices. The ongoing COVID-19 crisis is unfortunately compounding the crisis.

L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)

What lessons can agricultural research learn from this pandemic?

What do these pandemics or epidemics teach us? They remind us that systems need to be in place to prevent the proliferation of such diseases, whether it is plant diseases or animal diseases or human diseases. No country can be considered completely safe, and such diseases do not discriminate between a developed and a developing country, or the rich and the poor.

The second most important lesson is emergency preparedness. Whenever such devastating transboundary viral diseases show up, how quickly the country can respond — containing that infected area and not allowing the disease to spread, and then mitigating the damage systematically and quickly — is key. This is not the first time that a disease like MLN has emerged. There could be more serious viral or fungal diseases that could emerge in the future due to various reasons, including changing climates, international trade, movement of human beings, air currents, etc.  There are multiple ways that diseases can go across continents, across countries within a continent, and within countries. Therefore, the key is how well we can capacitate the national systems to be able to proactively prevent, detect, and intervene very fast.

Another big lesson here for agricultural systems is that a problem that happens in some other continent cannot be ignored because you work in a different continent. What COVID-19 shows is that the world is far more connected than we think.

CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

For you, what is the biggest takeaway from the MLN success story?

I won’t say it is still a complete success. Through intensive partnerships and efforts, we were able to prevent the disease from devastating maize production in millions of smallholder farmers’ fields in sub-Saharan Africa. Since 2014, there has been no new country in Africa — outside eastern Africa — that has reported an outbreak of MLN. That, to me, is a tremendous success.

The work is still not over. The journey has to continue. And we still need to make sure that countries are continuously protected from devastating diseases like MLN. MLN is still not eradicated from eastern Africa. It may not be even possible to completely eradicate this disease, as the two viruses that together cause it can survive not just on maize but on multiple grasses. We can however contain the disease and limit its impact through continued efforts, like what we have done for the past 7 or 8 years. But if we lower our guard, there is a very high likelihood that the disease can still spread to other countries in sub-Saharan Africa, especially the major maize-growing countries in southern Africa or West Africa. Efforts need to continue. So, let us continue to maintain a high vigil to protect the smallholders in Africa from transboundary diseases like MLN.

Read the full article on Virus Research:
Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa

Stripe rust hits wheat crop in Nepal

Nepalese and CIMMYT wheat scientists, working at the Nepal Agricultural Research Council (NARC) and the International Maize and Wheat Improvement Centre (CIMMYT) suspect new races of stripe and leaf rust infected the wheat crop in the Nepal hills and terai in the recent 2020 wheat season. This was reported after detailed survey and surveillance activities of rust diseases in the terai and hill regions were carried out during March and April, before the COVID-19 pandemic forced the cessation of many field activities.

Read more here: https://www.seedquest.com/news.php?type=news&id_article=117729&id_region=&id_category=&id_crop=

CIMMYT for Mexico in times of a global pandemic

Mexico has always been there for CIMMYT.

Not only is it the origin of maize – one of CIMMYT’s focus crops – it also inspired the birth of its headquarters, which has served as the institute’s mothership since its establishment in 1966.

CIMMYT’s crop-breeding research begins with its genebank, a remarkable living catalog of genetic diversity comprising over 28,000 unique seed collections of maize and over 150,000 of wheat. The genebank was established at CIMMYT’s headquarters in 1986 and to date is the world’s largest and most diverse collection of maize and wheat. Like clockwork, every year, more than 1,500 maize and wheat seed shipments leave Mexico to reach as many as 800 recipients in over 100 countries.

In one way or another, the world’s maize and wheat have a link back to Mexico: be it through pest-resistance trials in the Agua Fria or Tlaltizapan hub or heat-resilient wheat trials in the scorching fields of Obregon. The country’s diverse ecosystems which allowed for Norman Borlaug’s shuttle breeding in the 1940s remain instrumental for today’s researchers’ work to develop innovative crops and sustainable farming systems worldwide.

Field worker bagging maize ears at CIMMYT’s Agua Fría experimental station. (Photo: CIMMYT/Alfonso Cortés)
Field worker bagging maize ears at CIMMYT’s Agua Fría experimental station. (Photo: CIMMYT/Alfonso Cortés)

CIMMYT has been working hand in hand with Mexico’s Secretariat of Agriculture and Rural Development (SADER) on MasAgro, a project that promotes the sustainable production of maize and wheat in Mexico.

In the conversation below, Martin Kropff, Director General of CIMMYT, and Bram Govaerts, CIMMYT Representative for the Americas and Director of the Integrated Development Program, explore topics such as Mexico’s food security and agriculture while COVID-19 disrupts the nation’s status quo.

Has the COVID-19 pandemic exposed any vulnerabilities in Mexican food security?

Kropff: Albeit Mexico produces a lot of food – in fact, I believe that it currently ranks 11th in food production globally – it still imports food from other countries, particularly staples such as maize, wheat and rice from the U.S. The current pandemic poses a threat to open trade, and Mexico could also be affected by trade restrictions that other countries impose to protect their people and internal markets from food shortages.

Govaerts: At the same time, the pandemic is reducing economic activities everywhere to minimum levels. This poses a threat to food production given that farmers and agricultural workers in Mexico, and most of the northern hemisphere, are just about to begin the growing spring/summer season. Mexico’s fields need to be prepared for sowing and farmers need certainty as they take risks by investing today for a harvest that will come within several months.

How is CIMMYT helping to reduce these vulnerabilities?

Govaerts: CIMMYT is working with Mexico’s Agriculture Department (SADER) and the private and social sector to address these threats.

Kropff: In fact, we see that Mexico is already answering to a CIMMYT-endorsed Call to Action For World Leaders, which was published on the Food and Land Use Coalition website. This call to action urges countries to implement three key measures to avert a global food crisis that could increase the number of people suffering from chronic hunger by millions: keep the supply of food flowing across the world; scale support to the most vulnerable; and invest in sustainable, resilient food systems.

Seed collection during the harvest at CIMMYT’s experimental station located in Cuidad Obregón, Sonora. (Photo: CIMMYT/Peter Lowe)
Seed collection during the harvest at CIMMYT’s experimental station located in Cuidad Obregón, Sonora. (Photo: CIMMYT/Peter Lowe)

What is the role of CIMMYT’s collaboration with Mexican government bodies in this process?

Govaerts: In the fields there is potential to respond and avoid that today’s health crisis becomes tomorrow’s food crisis. CIMMYT is working with SADER and Mexico’s National Research System (INIFAP) to contribute to a stable supply of basic grains grown sustainably in Mexico by offering technical advice to the more than 300,000 farmers that participate in MasAgro, CIMMYT’s bilateral collaboration project with Mexico for sustainable maize and wheat production.

Currently, MasAgro technicians and extension agents are working with smallholder farmers in the center and south of the country to prepare soils for sowing, advising on optimal sowing densities and use of high-yielding improved varieties, agro-ecological pest management, fertilization, irrigation, among other activities that are essential to begin the crop production cycle in time.

Mexico and CIMMYT are also working with the agri-food sector to build farmers’ capacities to increase grain production sustainably and to sell the surplus to local and multi-national agri-food companies in Mexico. This is part of wider country plans which are called Maize for Mexico and Wheat for Mexico.

Kropff: These plans are very much in line with the call for governments to work with the philanthropic and private sectors to strengthen and scale out targeted food programs by linking them to foods that promote health and sustainable production. Currently we work with Nestlé, The Kellogg Company, Grupo Bimbo, and Walmart Foundation, among others, to create a pull from the market for sustainable agriculture for smallholder farmers. We call this sustainable sourcing.

How can we strengthen Mexico as a country of agricultural crops research and design activities?

Kropff: CIMMYT has been instrumental to public policy formulation in Mexico and has been positioned as one of Mexico’s most trusted partners over the past 10 years.

Govaerts: Exactly, and the numbers speak for themselves. As a result of the collaboration with more than 150 collaborators from the public, private and social sector, MasAgro has had a positive impact in the lives of more than 300 thousand farmers who have adopted conservation agriculture, improved seeds and sustainable farming technologies on more than 1 million hectares across Mexico.

Kropff: It would be great if Mexico continued investing in integrated development projects like MasAgro, and scaled out sustainable farming practices and technologies with innovative approaches like responsible local sourcing, which I mentioned just before while it promotes the replication of the MasAgro model in other countries.

The Rodríguez family, milpa farmers, in Cristóbal Colón, Campeche. (Photo: CIMMYT/Peter Lowe)
The Rodríguez family, milpa farmers, in Cristóbal Colón, Campeche. (Photo: CIMMYT/Peter Lowe)

How can we strengthen farmer’s access to better crops and better farming techniques?

Kropff: It is imperative to CIMMYT to improve farmers’ economic opportunity. This cannot be done without essential ingredients such as access to markets, capacity development, technology, and inputs like seeds and fertilizer. And most importantly, better crops and farming technologies are worthless without the national agricultural research systems’ buy in and trust.

Govaerts: This is very much at the heart of what we do together with maize farmers in Mexico in MasAgro. CIMMYT breeds maize hybrids with conventional technologies and improves native maize seed in collaborative projects with farmers. Then this improved maize seed is tested in collaboration with the local seed sector that, in turn, commercializes the best adapted materials in Mexico’s growing regions. These seed companies are small and medium enterprises that generate economic development in the center and south of the country.

Kropff: Similarly, in a project that started in 2019 in eastern and southern Africa, we reach farmers in Malawi, and soon in Rwanda and Tanzania, with our improved seeds through small seed companies which play the key role of ‘connector’ in intricate and complicated markets which often are ignored by large seed companies. Then, CIMMYT researchers undertake varietal trials and track genetic gains in farmers’ fields and share the findings with the broader agricultural community.

What changes can we expect in the nation’s food supply chain management after COVID-19?

Kropff: All crises bring challenges and opportunities. I believe that Mexico could take this opportunity to make its supply and value chains more integrated, resilient and flexible.

Govaerts: Mexico can become the leader of innovation that integrates traditional and scientific knowledge.

What role does CIMMYT want to play in the future?

Kropff: I see CIMMYT working even closer to the farming communities but especially along the whole value chain with science and data towards improved decision-making.

Govaerts: CIMMYT can be a catalyst of integrated programs. We want to keep discovering and helping to implement new solutions for the world’s poor and food insecure and work toward achieving the Sustainable Development Goals.

Kropff: We have a lot of work to do.

Plant-based materials catch on with home-goods designers

“What my project tries to do is visualize the diversity of corn that we have in my home country,” said Mexican designer Fernando Laposse. He partnered with CIMMYT, working with a village of Mixtec farmers and herders to transform waste from these plants into furniture. The corn’s kernels and husks come in hues of cream, deep red, pink, black and purple.

Read more here: https://www.manilatimes.net/2020/05/26/business/real-estate-and-property/plant-based-materials-catch-on-with-home-goods-designers/727270/ 

Africa’s smallholders to bear the brunt of COVID-19

“COVID-19 will make African governments identify agriculture as an essential sector that deserves maximum support and protection,” explains Stephen Mugo, Africa regional representative at the International Maize and Wheat Improvement Center, Kenya. “Urgent action is needed to ensure that adequate credit and other support are available when and where needed to strengthen farmers’ ability to deliver.”

Read more here.

Scaling up research for development in CGIAR

An overview of the proposed ILRI scaling process. (Graphic: ILRI)
An overview of the proposed ILRI scaling process. (Graphic: ILRI)

“Agricultural research for development is increasingly being held accountable to demonstrate that research goes beyond successful pilots,” said Iain Wright, deputy director general of research and development at the International Livestock Research Institute (ILRI).

In a bid to scale impact of its research outputs, ILRI has recently undertaken a systematic review of the scaling tools and processes available to help guide and improve the organization’s efforts.

The Scaling Scan has been incorporated into a new scaling framework for ILRI projects and for the CGIAR Research Program on Livestock (Livestock CRP). The Scaling scan, developed in 2017 by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with PPPLab at SNV, is one of three tools that have been identified as most suitable for the ILRI and CGIAR operational contexts.

“ILRI’s scaling framework applies the Scaling Scan and the USAID Scaling Pathway methodology before diving deep using the RTB/Wageningen Scaling Readiness methodology,” explained CIMMYT Scaling Coordinator Maria Boa. “It’s exciting because it aligns some of the best available tools to scale impact with a systems view.”

Designed for use by anyone involved in pro-poor and sustainable development programs looking to scale impact, the CIMMYT Scaling scan is found to be user-friendly and quick to help project implementation teams understand and define their scaling ambitions and asses their scaling environment. Though it is often applied as part of annual project review meetings, the tool can in fact be used at any stage of a project’s lifecycle. This helps stakeholders understand the multiple dimensions of scaling and the significant role nontechnical factors play in a scaling mindset.

CIMMYT shared lessons on how the methodology can be applied in a workshop setting and the Livestock CRP team has already used these to organize two workshops around improving productivity and incomes in Uganda’s pig value chain. The workshops, held in November 2019 and February 2020, brought together value chain actors, CRP researchers and project staff to better understand the multiple dimensions of scaling, develop realistic scaling goals, and identify key bottlenecks and opportunities using the Scaling Scan.

Read more on ILRI’s website:
ILRI adopts new framework for scaling up livestock research for development

New Publications: Cropping pattern zonation of Pakistan

The tremendous diversity of crops in Pakistan has been documented in a new publication that will foster more effective and targeted policies for national agriculture.

Using official records and geospatial modeling to describe the location, extent, and management of 25 major and minor crops grown in 144 districts of Pakistan, the publication “Cropping Pattern Zonation of Pakistan” offers an invaluable tool for resource planning and policymaking to address opportunities, challenges and risks for farm productivity and profitability, according to Muhammad Imtiaz, crop scientist and country representative in Pakistan for the International Maize and Wheat Improvement Center (CIMMYT).

“With rising temperatures, more erratic rainfall and frequent weather extremes, cropping pattern decisions are of the utmost importance for risk mitigation and adaptation,” said Imtiaz, a co-author of the new publication.

Featuring full-color maps for Pakistan’s two main agricultural seasons, based on area sown to individual crops, the publication was put together by CIMMYT and the Climate, Energy and Water Research Institute (CEWRI) of the Pakistan Agricultural Research Council (PARC), with technical and financial support from the Agricultural Innovation Program (AIP) for Pakistan, which is funded by the U.S. Agency for International Development (USAID).

Pakistan’s main crops–wheat, rice, cotton and sugarcane—account for nearly three-quarters of national crop production. Various food and non-food crops are grown in “Rabi,” the dry winter season, October-March, and “Kharif,” the summer season characterized by high temperatures and monsoon rains.

Typically, more than one crop is grown in succession on a single field each year; however, despite its intensity, farming in Pakistan is largely traditional or subsistence agriculture dominated by the food grains, according to Ms. Rozina Naz, Principal Scientific Officer, CEWRI-PARC.

“Farmers face increasing aridity and unpredictable weather conditions and energy shortage challenges that impact on their decisions regarding the type and extent of crops to grow,” said the scientist, who is involved in executing the whole study. “Crop pattern zoning is a pre-requisite for the best use of land, water and capital resources.”

The study used 5 years (2013-14 to 2017-18) of data from the Department of Agricultural Statistics, Economics Wing, Ministry of National Food Security and Research, Islamabad. “We greatly appreciate the contributions of scientists and technical experts of Crop Science Institute (CSI) and CIMMYT,” Imtiaz added.

View or download the publication:
Cropping Pattern Zonation of Pakistan. Climate, Energy and Water Research Institute, National Agricultural Research Centre, Pakistan Agricultural Research Council, and the International Maize and Wheat Improvement Center. 2020. CDMX: CEWRI, PARC, and CIMMYT.

See more recent publications from CIMMYT researchers:

1. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. 2019. Barba‐Escoto, L., Ponce-Mendoza, A., García-Romero, A., Calvillo-Medina, R.P. In: Journal of Vegetation Science v. 30, no. 2, pag. 375-385.

2. New QTL for resistance to Puccinia polysora Underw in maize. 2019. Ce Deng, Huimin Li, Zhimin Li, Zhiqiang Tian, Jiafa Chen, Gengshen Chen, Zhang, X, Junqiang Ding, Yuxiao Chang In: Journal of Applied Genetics v. 60, no. 2, pag. 147-150.

3. Hybrid wheat: past, present and future. 2019. Pushpendra Kumar Gupta, Balyan, H.S., Vijay Gahlaut, Pal, B., Basnet, B.R., Joshi, A.K. In: Theoretical and Applied Genetics v. 132, no. 9, pag. 2463-2483.

4. Influence of tillage, fertiliser regime and weeding frequency on germinable weed seed bank in a subhumid environment in Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Gandiwa, E., Thierfelder, C., Muposhi, V.K., Svotwa, E.In: South African Journal of Plant and Soil v. 36, no. 5, pag. 319-327.

5.  Identification and mapping of two adult plant leaf rust resistance genes in durum. 2019. Caixia Lan, Zhikang Li, Herrera-Foessel, S., Huerta-Espino, J., Basnet, B.R., In: Molecular Breeding v. 39, no. 8, art. 118.

6. Genetic mapping reveals large-effect QTL for anther extrusion in CIMMYT spring wheat. 2019. Muqaddasi, Q.H., Reif, J.C., Roder, M.S., Basnet, B.R., Dreisigacker, S. In: Agronomy v. 9 no. 7, art. 407.

7. Growth analysis of brachiariagrasses and ‘tifton 85’ bermudagrass as affected by harvest interval. 2019. Silva, V. J. da., Faria, A.F.G., Pequeno, D.N.L., Silva, L.S., Sollenberger, L.E., Pedreira, C. G. S. In: Crop Science v. 59, no. 4, pag. 1808-1814.

8. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. 2019. Chunqin Zou, Yunfei Du, Rashid, A., Ram, H., Savasli, E., Pieterse, P.J., Ortiz-Monasterio, I., Yazici, A., Kaur, C., Mahmood, K., Singh, S., Le Roux, M.R., Kuang, W., Onder, O., Kalayci, M., Cakmak, I. In: Journal of Agricultural and Food Chemistry v. 67, no. 29, pag. 8096-8106.

9. Economic impact of maize stem borer (Chilo partellus) attack on livelihood of maize farmers in Pakistan. 2019. Ali, A., Issa, A.B. In: Asian Journal of Agriculture and Biology v. 7, no. 2, pag. 311-319.

10. How much does climate change add to the challenge of feeding the planet this century?. 2019. Aggarwal, P.K., Vyas, S., Thornton, P.K., Campbell, B.M. In: Environmental Research Letters v. 14 no. 4, art. 043001.

11. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. 2019. Ming Hao, Lianquan Zhang, Laibin Zhao, Shoufen Dai, Aili Li, Wuyun Yang, Die Xie, Qingcheng Li, Shunzong Ning, Zehong Yan, Bihua Wu, Xiujin Lan, Zhongwei Yuan, Lin Huang, Jirui Wang, Ke Zheng, Wenshuai Chen, Ma Yu, Xuejiao Chen, Mengping Chen, Yuming Wei, Huaigang Zhang, Kishii, M, Hawkesford, M.J, Long Mao, Youliang Zheng, Dengcai Liu In: Theoretical and Applied Genetics v. 132, no. 8, pag. 2285-2294.

12. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. 2019. Hassine, M., Siah, A., Hellin, P., Cadalen, T., Halama, P., Hilbert, J.L., Hamada, W., Baraket, M., Yahyaoui, A.H., Legreve, A., Duvivier, M. In: Fungal Biology v. 123, no. 10, pag. 763-772.

13. Influence of variety and nitrogen fertilizer on productivity and trait association of malting barley. 2019. Kassie, M., Fantaye, K. T. In: Journal of Plant Nutrition v. 42, no. 10, pag. 1254-1267.

14. A robust Bayesian genome-based median regression model. 2019. Montesinos-Lopez, A., Montesinos-Lopez, O.A., Villa-Diharce, E.R., Gianola, D., Crossa, J. In: Theoretical and Applied Genetics v. 132, no. 5, pag. 1587-1606.

15. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. 2019. Jin Sun, Poland, J.A., Mondal, S., Crossa, J., Juliana, P., Singh, R.P., Rutkoski, J., Jannink, J.L., Crespo-Herrera, L.A., Velu, G., Huerta-Espino, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 132, no. 6, pag. 1705-1720.

16. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. 2019. Varshney, R.K., Thudi, M., Roorkiwal, M., Weiming He, Upadhyaya, H., Wei Yang, Bajaj, P., Cubry, P., Abhishek Rathore, Jianbo Jian, Doddamani, D., Khan, A.W., Vanika Garg, Annapurna Chitikineni, Dawen Xu, Pooran M. Gaur, Singh, N.P., Chaturvedi, S.K., Nadigatla, G.V.P.R., Krishnamurthy, L., Dixit, G.P., Fikre, A., Kimurto, P.K., Sreeman, S.M., Chellapilla Bharadwaj, Shailesh Tripathi, Jun Wang, Suk-Ha Lee, Edwards, D., Kavi Kishor Bilhan Polavarapu, Penmetsa, R.V., Crossa, J., Nguyen, H.T., Siddique, K.H.M., Colmer, T.D., Sutton, T., Von Wettberg, E., Vigouroux, Y., Xun Xu, Xin Liu In: Nature Genetics v. 51, pag. 857-864.

17. Farm typology analysis and technology assessment: an application in an arid region of South Asia. 2019. Shalander Kumar, Craufurd, P., Amare Haileslassie, Ramilan, T., Abhishek Rathore, Whitbread, A. In: Land Use Policy v. 88, art. 104149.

18. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. 2019. Radhakrishnan, G.V., Cook, N.M., Bueno-Sancho, V., Lewis, C.M., Persoons, A., Debebe, A., Heaton, M., Davey, P.E., Abeyo Bekele Geleta, Alemayehu, Y., Badebo, A., Barnett, M., Bryant, R., Chatelain, J., Xianming Chen, Suomeng Dong, Henriksson, T., Holdgate, S., Justesen, A.F., Kalous, J., Zhensheng Kang, Laczny, S., Legoff, J.P., Lesch, D., Richards, T., Randhawa, H. S., Thach, T., Meinan Wang, Hovmoller, M.S., Hodson, D.P., Saunders, D.G.O. In: BMC Biology v. 17, no. 1, art. 65.

19. Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat. 2019. Bhatta, M.R., Morgounov, A.I., Belamkar, V., Wegulo, S.N., Dababat, A.A., Erginbas-Orakci, G., Moustapha El Bouhssini, Gautam, P., Poland, J.A., Akci, N., Demir, L., Wanyera, R., Baenziger, P.S. In: International Journal of Molecular Sciences v. 20, no. 15, art. 3667.

20.  Genetic diversity and population structure analysis of synthetic and bread wheat accessions in Western Siberia. 2019. Bhatta, M.R., Shamanin, V., Shepelev, S.S., Baenziger, P.S., Pozherukova, V.E., Pototskaya, I.V., Morgounov, A.I. In: Journal of Applied Genetics v. 60, no. 3-4, pag. 283-289.

21. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. 2019. Jing Li, Gou-Bo Chen, Rasheed, A., Delin Li, Sonder, K., Zavala Espinosa, C., Jiankang Wang, Costich, D.E., Schnable, P.S., Hearne, S., Huihui Li In: Molecular Ecology v. 28, no. 15, pag. 3544-3560.

22. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: evidence from Uganda. 2019. Simtowe, F.P., Amondo, E., Marenya, P. P., Rahut, D.B., Sonder, K., Erenstein, O. In: Land Use Policy v. 88, art. 104091.

23. Do market shocks generate gender-differentiated impacts?: policy implications from a quasi-natural experiment in Bangladesh. 2019. Mottaleb, K.A., Rahut, D.B., Erenstein, O. In: Women’s Studies International Forum v. 76, art. 102272.

24. Gender differences in the adoption of agricultural technology: the case of improved maize varieties in southern Ethiopia. 2019. Gebre, G.G., Hiroshi Isoda, Rahut, D.B., Yuichiro Amekawa, Hisako Nomura In: Women’s Studies International Forum v. 76, art. 102264.

25. Tracking the adoption of bread wheat varieties in Afghanistan using DNA fingerprinting. 2019. Dreisigacker, S., Sharma, R.K., Huttner, E., Karimov, A. A., Obaidi, M.Q., Singh, P.K., Sansaloni, C.P., Shrestha, R., Sonder, K., Braun, H.J. In: BMC Genomics v. 20, no. 1, art. 660.