Skip to main content

Unmanned aerial vehicles help wheat breeders

Authors of a recent Crop Science article leveraged unmanned aerial vehicles (UAVs) to record the normalized difference vegetation index (NDVI), a measure of plant health, at the seed increase stage of the International Maize and Wheat Improvement Center’s (CIMMYT) wheat breeding program.

Read more here: https://www.sciencecodex.com/unmanned-aerial-vehicles-help-wheat-breeders-655650

Building resistance in wheat: International collaboration fights Septoria tritici blotch disease

Phenotypic selection of resistant lines (Ms. H. Kouki Field technician and consultant A. Yahyaoui) at the Septoria Precision Phenotyping Platform at Kodia/INGC. (Photo: Septoria Precision Phenotyping Platform)

Tunisia has been a major durum wheat producer and consumer since Roman times, a crop used now for couscous, bread and pasta dishes throughout North Africa and the Mediterranean Basin.

However, a persistent disease known as Septoria tritici blotch (STB) has been threatening durum wheat harvests across the country thanks to its increasing resistance to fungicides and adaptability to harsher climatic conditions. The disease, which is caused by the fungus Zymoseptoria tritici, thrives under humid conditions and can cause up to 60% yield loss in farmers’ fields.

To help fight this disease, the International Maize and Wheat Improvement Center (CIMMYT) established the Septoria Precision Phenotyping Platform in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) in Tunisia in 2015.

The platform aims to accelerate the transfer of STB resistance genes into elite durum wheat lines from national and international breeding programs, particularly CIMMYT and ICARDA breeding programs. Researchers at the platform have tested an impressive diversity of durum wheat lines for resistance to the disease from research institutes across Tunisia, Morocco, Algeria, Mexico, France, Italy, the UK, USA and Canada.

STB field reactions showing typical necrotic symptoms containing pycnidia on an infected adult plant leaf of wheat. (Photo: Septoria Precision Phenotyping Platform)

“New and more virulent strains of the pathogen are constantly emerging, which results in previously resistant wheat varieties becoming more susceptible,” said Sarrah Ben M’Barek, head of the laboratory at the Septoria Precision Phenotyping platform.

Field phenotyping – the use of field-testing to identify desired plant traits — is the heart of the platform. Scientists can test as many as 30,000 plots each year for STB resistance.

Evaluations are conducted at two main field research stations managed by the Regional Field Crop Center (CRRGC) and the National Institute of Field Crops (INGC), based at two major hotspots for the disease in Beja and Kodia. This work is complemented by laboratory research at the National Agronomic Institute of Tunisia (INAT) at Tunis.

“The platform plays a critical role in identifying STB resistant wheat germplasm and characterizing the resistance genes they possess. These resistant sources be can further utilized in hybridization schemes by durum wheat breeders worldwide to develop durable resistant varieties,” explained CIMMYT consultant and platform coordinator Amor Yahyaoui.

With the help of data from the platform, breeders hope to combine multiple resistance genes in an individual variety to create a genetically complex “lock” whose combination the fungus will not easily break.

According to Ben M’Barek, the huge genetic diversity in wheat and its ancestors has helped breeders to develop new varieties for almost a century. However, the adoption of new varieties has typically been slow.

Farmers in Tunisia traditionally rely on fungicides to manage the disease. However, with the pathogen recently becoming more resistant to fungicides and more adaptive to harsher climatic conditions, interest in STB resistant varieties is increasing.

Field disease reactions of a susceptible wheat cultivar. (Photo: Septoria Precision Phenotyping Platform)

A hub for training and collaboration

The platform is also a hub for training and capacity development for national and international scientists, field research and lab. assistants, students and farmers. It brings together research staff and technicians from different institutions within Tunisia including the CRRGC, INGC, the National Institute of Agricultural Research of Tunisia (INRAT), INAT and the University of Jendouba.

Farmer’s organizations and regional extension services, as well as private organizations such as Comptoir Multiservices Agricoles (CMA), seed and chemical companies also collaborate with the platform. The result is a team effort that has generated a tremendous wealth of data, made only possible through the dedication of Yahyaoui, said Ben M’Barek.

“Spending a few days at the platform each year is a like a crash course on STB resistance. All subjects are covered and great experts around the world come together to discuss all details of this host-pathogen interaction,” said Filippo Bassi, senior durum wheat breeder at ICARDA.

“Sending young scientists to spend some time at the platform ensures that they learn all about the mechanisms of resistance and take them back to their home country to deploy them in their own breeding programs. It is like a true university for STB.”

Yet, the platform still has a lot of work to do, according to Ben M’Barek. Scientists at the platform are now working on raising awareness on crop and pest management such as integrated management approaches amongst farming communities, setting up on-farm field trials and developing disease early warning surveillance.

Next year the platform will provide a unique podium for students, academics and researchers to exchange ideas and research findings on cereal leaf blight diseases. The International Symposium on Cereal Leaf Blights will take place on May 19-21, 2021 in Tunisia. Details can be found here.

The Septoria Precision Phenotyping Platform is led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) and is supported by the CGIAR Research Program in Wheat (WHEAT).

Septoria Precision Phenotyping Platform at Oued Béja (CRRGC). (Photo: Gert Kema/Wageningen University)

Wheat researchers to gather for October virtual event

A global wheat conference originally scheduled to be held in June in Norwich, United Kingdom, now will take place virtually on Oct. 7-9.

The Borlaug Global Rust Initiative’s (BGRI) virtual technical workshop was postponed earlier this year due to the coronavirus (COVID-19) pandemic.

Read more here: https://www.world-grain.com/articles/14150-wheat-researchers-to-gather-for-october-virtual-event

New publications: Power, agency and benefits among women and men maize farmers

For smallholder farmers in sub-Saharan Africa, new agricultural technologies such as improved maize varieties offer numerous benefits — increased incomes, lower workloads and better food security, among others. However, when new technologies are introduced, they can denaturalize and expose gender norms and power relations because their adoption inevitably requires women and men to renegotiate the rules of the game. The adoption of new varieties will often be accompanied by a number of related decisions on the allocation of farm labor, the purchase and use of inorganic fertilizers, switching crops between women- and men-managed plots, and the types of benefit household members expect to secure may change.

In an article published this month in Gender, Technology and Development, researchers from the International Maize and Wheat Improvement Center (CIMMYT) explore how women in Nigeria negotiate these new power dynamics to access and secure the benefits of improved maize varieties and, more broadly, to expand their decision-making space.

Using focus group and interview data collected as part of the GENNOVATE project, the authors draw on case studies from four villages — two in the northern states of Kaduna and Plateau; two in the southwestern state of Oyo — to develop an understanding of the relationship between gender norms, women’s ability and willingness to express their agency, and the uptake of agricultural technologies. “This is an important step toward improving the capacity of agricultural research for development to design and scale innovations,” say the authors. “Achieving this ambition is highly relevant to maize.”

The results were similar across all four sites. The authors found that women in each area were constrained by powerful gender norms which privilege male agency and largely frown upon women’s empowerment, thus limiting their ability to maximize the benefits from improved varieties or realize their agency in other domains.

All women respondents remarked that improved maize varieties were easy to adopt, have higher yields and mature quickly, which meant that income flows started earlier and helped them meet household expenditures on time. They prioritized the contribution of improved maize to securing household food security, which helped them meet their ascribed gender roles as food providers.

“At the same time though, women felt they could not maximize their benefits from improved maize varieties due to men’s dominance in decision-making,” the authors explain. “This was particularly the case for married women.”

“Men are meant to travel far – not women”

Woman selling white maize at Bodija market in Ibadan, Nigeria. (Photo: Adebayo O./IITA)
Woman selling white maize at Bodija market in Ibadan, Nigeria. (Photo: Adebayo O./IITA)

Embedded gender norms – particularly those relating to mobility – infuse the wider environment and mean that women’s access to opportunities is considerably more restricted than it is for men.

The findings demonstrate that both women and men farmers secure benefits from improved maize varieties. However, men accrue more benefits and benefit directly, as they have unfettered mobility and opportunity. They can access markets that are further away, and the maize they sell is unprocessed and requires no transformation. Additionally, men do not question their right to devote profits from maize primarily to their own concerns, nor their right to secure a high level of control over the money women make.

On the other hand, women respondents — regardless of age and income cohort — repeatedly stated that while it is hard to earn significant money from local sales of the processed maize products they make, it is also very difficult for them to enter large markets selling unprocessed, improved maize.

The difficulties women face in trying to grow maize businesses may be partly related to a lack of business acumen and experience, but a primary reason is limited personal mobility in all four communities. For example, in Sabon Birni village, Kaduna, women lamented that though the local market is not large enough to accommodate their maize processing and other agri-business ventures, they are not permitted travel to markets further afield where ‘there are always people ready to buy’.

“Women’s benefits relate to the fact that improved maize varieties increase the absolute size of the ‘maize cake’,” say the authors. “They expect to get a larger slice as a consequence. However, the absolute potential of improved varieties for boosting women’s incomes and other options of importance to women is hampered by gender norms that significantly restrict their agency.”

The implications for maize research and development are that an improved understanding of the complex relational nature of empowerment is essential when introducing new agricultural technologies.

Read the full paper:
Unequal partners: associations between power, agency and benefits among women and men maize farmers in Nigeria

Other recent publications from GENNOVATE:

Continuity and Change: Performing Gender in Rural Tanzania

Engaging men in gender-equitable practices in maize systems of sub-Saharan Africa

Cover photo: Maize and other food crops on sale at Ijaye market, Oyo State, Nigeria. (Photo: Adebayo O./IITA)

Read more recent publications by CIMMYT researchers:

  1. Phenotypic characterization of Canadian barley advanced breeding lines for multiple disease resistance. 2019. Osman, M., Xinyao He, Capettini, F., Helm, J., Singh, P.K. In: Cereal Research Communications v. 47, no. 3, pg. 484-495.
  2. Tillage and crop rotations enhance populations of earthworms, termites, dung beetles and centipedes: evidence from a long-term trial in Zambia. 2019. Muoni, T., Mhlanga, B., Forkman, J., Sitali, M., Thierfelder, C. In: Journal of Agricultural Science v. 157, no. 6, pg. 504-514.
  3. Genética de la resistencia a roya amarilla causada por Puccinia striiiformis f. sp. tritici W. en tres genotipos de trigo (Triticum aestivum L.) = Genetics of the resistance to yellow rust caused by Puccinia striiformis f. sp. tritici W. in three genotypes of wheat (Tritcum aestivum L.). 2019. Rodriguez-Garcia, M.F., Rojas Martínez, R.I., Huerta-Espino, J., Villaseñor Mir, H.E., Zavaleta Mejía, E., Sandoval-Islas, S., Crossa, J. In: Revista Fitotecnia Mexicana v. 42, no. 1, pg. 31-38.
  4. Mapping of maize storage losses due to insect pests in central Mexico. 2019. García-Lara, S., García-Jaimes, E., Bergvinson, D.J. In: Journal of Stored Products Research v. 84, art. 101529.
  5. Analysis of distribution systems for supply of synthetic grain protectants to maize smallholder farmers in Zimbabwe: implications for hermetic grain storage bag distribution. 2019. Govereh, J., Muchetu, R.G., Mvumi, B.M., Chuma, T. In: Journal of Stored Products Research v. 84, art. 101520.
  6. Agronomic performance and susceptibility of seven Ghanaian improved sweet potato varieties to the sweet potato weevil, Cylas spp. (Coleoptera: Brentidae) in Coastal Savanna zone of Ghana. 2019. Adom, M., Fening, K.O., Wilson, D.D., Adofo, K., Bruce, A.Y. In: African Entomology v. 27, no. 2, pg. 312-321.
  7. Validation of candidate gene-based markers and identification of novel loci for thousand-grain weight in spring bread wheat. 2019. Sehgal, D., Mondal, S., Guzman, C., Garcia Barrios, G., Franco, C., Singh, R.P., Dreisigacker, S. In: Frontiers in Plant Science v. 19, art. 1189.
  8. Genomic prediction and genome-wide association studies of flour yield and alveograph quality traits using advanced winter wheat breeding material. 2019. Kristensen, P.S., Jensen, J., Andersen, J.P., Guzman, C., Orabi, J., Jahoor, A. In: Genes v. 10, no. 9, art. 669.
  9. Identification of superior doubled haploid maize (Zea mays) inbred lines derived from high oil content subtropical populations. 2019. Silva-Venancio, S., Preciado-Ortiz, R.E., Covarrubias-Prieto, J., Ortíz-Islas, S., Serna-Saldivar, S.O., García-Lara, S., Terron Ibarra, A., Palacios-Rojas, N. In: Maydica v. 64, no. 1, pg. 1-11.
  10. Tillage and residue-management effects on productivity, profitability and soil properties in a rice-maize-mungbean system in the Eastern Gangetic Plains. 2019. Rashid, M.H., Timsina, J., Islam, N., Saiful Islam. In: Journal of Crop Improvement v. 33, no. 5, pg. 683-710.
  11. Mapping of genetic loci conferring resistance to leaf rust from three globally resistant durum wheat sources. 2019. Kthiri, D., Loladze, A., N’Diaye, A., Nilsen, K., Walkowiak, S., Dreisigacker, S., Ammar, K., Pozniak, C.J. In: Frontiers in Plant Science v. 10, art. 1247.
  12. Compost amended with N enhances maize productivity and soil properties in semi-arid agriculture. 2019. Shahid Iqbal, Arif, M., Khan, H.Z., Yasmeen, T., Thierfelder, C., Tang Li, Khan, S., Nadir, S., Jianchu Xu In: Agronomy Journal v. 111 no. 5, pg. 2536-2544.
  13. Simulation-based maize–wheat cropping system optimization in the midhills of Nepal. 2019. Laborde, J.P., Wortmann, C.S., Blanco-Canqui, H., McDonald, A., Lindquist, J.L. In: Agronomy Journal v. 111, no. 5, pg. 2569-2581.
  14. Affordability linked with subsidy: impact of fertilizers subsidy on household welfare in Pakistan. 2019. Ali, A., Rahut, D.B., Imtiaz, M. In: Sustainability v. 11, no. 19, art. 5161.
  15. Field-specific nutrient management using Rice Crop Manager decision support tool in Odisha, India. 2019. Sharma, S., Rout, K.K., Khanda, C.M., Tripathi, R., Shahid, M., Nayak, A.D., Satpathy, S.D., Banik, N.C., Iftikar, W., Parida, N., Kumar, V., Mishra, A., Castillo, R.L., Velasco, T., Buresh, R.J. In: Field Crops Research v. 241, art. 107578.
  16. Balanced nutrient requirements for maize in the Northern Nigerian Savanna: parameterization and validation of QUEFTS model. 2019. Shehu, B.M., Lawan, B.A., Jibrin, J. M., Kamara, A. Y., Mohammed, I.B., Rurinda, J., Shamie Zingore, Craufurd, P., Vanlauwe, B., Adam, A.M., Merckx, R. In: Field Crops Research v. 241, art. 107585.
  17. Factor analysis to investigate genotype and genotype × environment interaction effects on pro-      vitamin A content and yield in maize synthetics. 2019. Mengesha, W., Menkir, A., Meseka, S., Bossey, B., Afolabi, A., Burgueño, J., Crossa, J. In: Euphytica v. 215, no. 11, art. 180.
  18. Agricultural productivity and soil carbon dynamics: a bioeconomic model. 2019. Berazneva, J., Conrad, J.M., Güereña, D. T., Lehmann, J., Woolf, D. In: American Journal of Agricultural Economics v. 101, no.4, pg. 1021-1046.
  19. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. 2019. Dhaliwal, S.S., Naresh, R.K., Mandal, A., Walia, M.K., Gupta, R.K., Singh, R., Dhaliwal, M.K. In: Journal of Plant Nutrition v. 42, no. 2, pg. 2873-2900.
  20. Combined study on genetic diversity of wheat genotypes using SNP marker and phenotypic reaction to Heterodera filipjevi. 2019. Majd Taheri, Z., Tanha Maafi, Z., Nazari, K., Zaynali Nezhad, K., Rakhshandehroo, F., Dababat, A.A. In: Genetic Resources and Crop Evolution v. 66, no. 8, pg. 1791-1811.
  21. Characterization of QTLs for seedling resistance to tan spot and septoria nodorum blotch in the PBW343/Kenya Nyangumi wheat recombinant inbred lines population. 2019. Singh, P.K., Sukhwinder-Singh, Zhiying Deng, Xinyao He, Kehel, Z., Singh, R.P. In: International Journal of Molecular Sciences v. 20, no. 21, art. 5432.
  22. Rapid identification and characterization of genetic loci for defective kernel in bread wheat. 2019. Chao Fu, Jiuyuan Du, Xiuling Tian, He Zhonghu, Luping Fu, Yue Wang, Dengan Xu, Xiaoting Xu, Xianchun Xia, Zhang Yan, Shuanghe Cao In: BMC Plant Biology v. 19, no. 1, art. 483.
  23. Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. 2019. Pasley, H.R., Cairns, J.E., Camberato, J.J., Vyn, T.J. In: Nutrient Cycling in Agroecosystems v. 115, no. 3, pg. 373-389.
  24. Identification of a conserved ph1b-mediated 5DS–5BS crossing over site in soft-kernel durum wheat (Triticum turgidum subsp. durum) lines. 2019. Ibba, M.I., Mingyi Zhang, Xiwen Cai, Morris, C.F. In: Euphytica v. 215, art. 200.
  25. Optimum and decorrelated constrained multistage linear phenotypic selection indices theory. 2019. Ceron Rojas, J.J., Toledo, F.H., Crossa, J. In: Crop Science v. 59, no. 6, pg. 2585-2600.
  26. Comparison of weighted and unweighted stage-wise analysis for genome-wide association studies and genomic selection. 2019. Tigist Mideksa Damesa, Hartung, J., Gowda, M., Beyene, Y., Das, B., Fentaye Kassa Semagn, Piepho, H.P. In: Crop Science v. 59, no. 6, pg. 2572-2584.
  27. Effects of drought and low nitrogen stress on provitamin a carotenoid content of biofortified maize hybrids. 2019. Ortiz-Covarrubias, Y., Dhliwayo, T., Palacios-Rojas, N., Thokozile Ndhlela, Magorokosho, C., Aguilar Rincón, V.H., Cruz-Morales, A.S., Trachsel, S. In: Crop Science v. 59, no. 6, pg. 2521-2532.
  28. Designing interventions in local value chains for improved health and nutrition: insights from Malawi. 2019. Donovan, J.A., Gelli, A. In: World Development Perspectives v. 16, art. 100149.

Unique partnership to transform maize breeding and production in Africa

Scientists part of the Seed Production Technology for Africa (SPTA) and the Maize Lethal Necrosis Gene Editing projects are leveraging innovative technologies to transform seed production systems and speed up the delivery of disease resistance in elite new hybrids. This research is helping smallholder farmers in sub-Saharan Africa to access high-quality seed of new hybrids that were bred to perform under stressful low-input, drought-prone conditions, including farming regions impacted by maize lethal necrosis (MLN).

Fast delivery of MLN-tolerant varieties

The fight against maize lethal necrosis (MLN) has persisted for almost ten years now.

Collaborative efforts in diagnostics, management and systematic surveillance have limited its spread and confined the disease to the eastern Africa region. However, ongoing work is required to efficiently develop MLN-tolerant varieties for smallholders in endemic areas and prepare for the potential further movement of the disease.

“Maize lethal necrosis still exists. It has not been eradicated. Even though it has reduced in its prevalence and impact, it is still present and is a latent threat in Ethiopia, Kenya, Rwanda, Tanzania and Uganda, with potential to spread further,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

“That is why the work of the gene editing project is critical to rapidly change the genetic component of those susceptible parent lines of popular hybrids into MLN-tolerant versions,” said Prasanna. Scientists will edit the four parent lines of two popular hybrids, currently grown by farmers in Kenya and Uganda, which are susceptible to MLN. The edited MLN-tolerant lines will be used to make MLN-tolerant versions of these drought-tolerant hybrids.

Through gene editing technology, the time it takes to develop hybrids using traditional breeding methods will be cut in half. By 2025, the edited MLN-tolerant hybrids will be available for planting on approximately 40,000 hectares by about 20,000 Kenyan farmers.

A non-pollen-producing maize plant (on the left) on farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)
A non-pollen-producing maize plant (on the left) on farm trial in Zimbabwe. (Photo: Jill Cairns/CIMMYT)

Business as unusual

The unique seed production technology developed by Corteva Agriscience seeks to transform the seed production process in sub-Saharan Africa. This technology utilizes a dominant non-pollen producing maize gene to create female plants that are unable to produce pollen.

Seed companies that use seed production technology eliminate the need to detassel the female parent: a manual process through which tassels are removed from plants to prevent self-pollination and ensure that the intended male parent is the only source of pollen in the hybrid seed production field. Targeted small and medium-size seed companies could make significant savings to the cost of production if they were to eliminate manual detasseling. The method also helps to ensure the purity of the hybrid seed by removing the risk of unintentional self-pollination.

Hybrids produced using the seed production technology, characterized as 50 percent non-pollen producing (FNP), are unique since only half of the plants will produce pollen in the field. FNP hybrids re-allocate energy from the tassel and pollen production to grain formation, thus delivering an additional 200 kilograms per hectare yield advantage to the farmer. This represents a 10 percent productivity boost for farmers who will harvest approximately 2 tons per hectare, the average maize yield across sub-Saharan Africa. Farmers engaged in participatory research have demonstrated preference for FNP hybrids and associate the trait with higher yield and larger ear size.

As the first phase of Seed Production Technology for Africa (SPTA) wraps up, the collaborators are preparing for the next phase that will focus on commercializing, scaling up and increasing smallholders’ access to FNP. “This is among the unique partnerships funded by the foundation and I am hopeful that this incredible work will continue through the next phase,” said Gary Atlin, program officer at the Bill & Melinda Gates Foundation.

Resistant hybrid (on the right) grows beside a susceptible commercial check at the Kenya Plant Health Inspectorate Services' (KEPHIS) National Performance Trial. (Photo: CIMMYT)
Resistant hybrid (on the right) grows beside a susceptible commercial check at the Kenya Plant Health Inspectorate Services’ (KEPHIS) National Performance Trial. (Photo: CIMMYT)

A win-win collaboration

Research and development work under the SPTA and the MLN Gene Editing projects has immensely benefited from the support of public and private partners. Seed companies and national institutions have contributed to improving access to and knowledge of these technologies as well as creating a crucial link with farmers. Ongoing engagement with regulatory agencies through the different stages of the projects ensures transparency and fosters understanding.

In order to assess the progress of these two initiatives, representatives from regulatory agencies, seed trade associations, seed companies, national agricultural institutions and funders came together for a virtual meeting that was hosted on July 29, 2020.

“KALRO embraces partnerships such as those that are delivering these two projects. That synergy helps us to resolve challenges faced by farmers and other actors in various agricultural value chains,” observed Felister Makini, deputy director general of Crops at KALRO.

As the primary technology provider, Corteva Agriscience provides the seed production technology system on a royalty-free basis and grants access to key gene editing technologies, which are the foundation for the two projects. Corteva Agriscience is also actively involved in project execution through collaborative scientific support.

“We have appreciated the opportunity to work with CIMMYT, KARLO, Agricultural Research Council (ARC) of South Africa and the Bill & Melinda Gates Foundation to bring some of the technologies and tools from Corteva to address significant challenges facing smallholder farmers in Africa. We could not have done this alone, it requires the partnerships that exist here to bring forth these solutions,” said Kevin Diehl, director of the Global Seed Regulatory Platform at Corteva Agriscience.

Breaking Ground: Erick Ortiz Hernández innovates regional solutions for greater impact

The International Maize and Wheat Improvement Center (CIMMYT) operates 11 hubs — nodes of innovation — in Mexico, supported by a portfolio of projects including MasAgro. These hubs are perfectly defined by the agro-ecological conditions of the territory in which they are located, and their main aim is innovation management focused on sustainable and resilient agri-food systems.

The Bajío Hub — which includes the central states of Guanajuato, Michoacán and Querétaro — is directed by Erick Ortiz Hernández, who through integrated management, seeks to improve farmers’ livelihoods working hand in hand with a large network of stakeholders, promoting and validating sustainable and scalable technologies.

Ortiz Hernández joined CIMMYT in 2010 as a collaborator in the state of Michoacán, where he trained and certified technicians, and managed the first modules and platforms of the MasAgro project. That experience allowed him to become the manager of the Yucatan Peninsula Hub, in southeastern Mexico, in 2015. After three years of serving in the state of Guanajuato, he has recently taken a management position at the Bajío Hub.

Growing up in a rural community of less than a thousand people in the state of Puebla, Ortiz Hernández was familiar with agriculture from a young age. However, he considers that his decision to pursue a career in agronomy was unplanned. It was when he got into the agronomy-engineering program at the Chapingo Autonomous University — one of the most prestigious institutions in agricultural studies in Mexico — that he realized how drawn he was to plant production, choosing it as his specialty.

“As a Chapingo student, you know that CIMMYT is one of the most relevant research institutions not only in Mexico, but internationally,” says Ortiz Hernández. “To be honest, when I graduated, I would never have imagined that I could be part of this great team.”

Tailored sustainability

Currently, he coordinates and manages the operation of different projects at the Bajío Hub, working with both the public and private sectors. All of them operate under the same objectives: to monitor and address activities in the value chain to improve production systems, produce more with less through conservation agriculture and precision farming practices, and achieve a successful association with the market.

One of these projects is Cultivando un México Mejor [Cultivating a Better Mexico], in partnership with Heineken Mexico. Through CIMMYT’s research and the implementation of improved management practices, experts explore the requirements for the sustainable management of water used in the daily cultivation process.

These actions are of utmost importance, since every year the region’s water tables are affected by the excessive use of water. Around 80% of the consumption of this natural resource is used for farming activities.

Ortiz Hernández explains that the production of 2.2 pounds of wheat in the region can require 1,500 liters of water on average. However, he and his team have shown that water consumption can be reduced by 30-50% by implementing practices that save water without decreasing yields and, ideally, with low production costs.

Ortiz Hernández in a wheat field in Guanajuato where sustainable and climate-smart practices are implemented. (Photo: Francisco Alarcón/CIMMYT)
Ortiz Hernández in a barley field in Guanajuato where sustainable and climate-smart practices are implemented. (Photo: Francisco Alarcón/CIMMYT)

Linking for success

The Bajío Hub also manages MasAgro Guanajuato, a collaboration project between the government of state of Guanajuato and CIMMYT. Its aim is to support the technological improvement of conventional agri-food production, in order to implement actions of diagnosis, design, validation, demonstration and induction to the use of sustainable technological innovations.

One of the current situations faced by this program is that farmers in the area either broadcast or leave the fertilizer on the surface, resulting in an inefficient use. The technical team identified this problem and the possibility of mitigating it, by creating collaborative links with leading companies in the manufacture of agricultural machinery in the state, to design and produce a tool that meets this purpose.

“By working on a territorial innovation management approach, we get stakeholders to provide what is needed for farmers to access and adopt appropriate technology,” explains Ortiz Hernández. “What we expect from this type of project is not only to benefit the 500 or 1,000 farmers with whom we work directly, but to scale up and multiply those numbers generating an impact in the region through partnerships and alliances.”

Ortiz Hernández sees his management role as a strategic one, in which he has the flexibility to innovate by working with his team to generate efficient models, processes and tools. He can also propose and manage activities with different stakeholders in the region, so they can join in or align common objectives.

“There is no better moment than when farmers are harvesting and you see a smile on their faces due to the good results. When you know you contributed, even a little, you feel good and you come home happy,” says Ortiz Hernández.

One of his personal goals, and something he tries to incorporate into any project, is to create awareness of farmers’ major role in global food security. “We have to see farmers for what they really are: the people who ensure that food reaches our tables and who guarantee its quantity and quality. It is vital to recognize their daily efforts.”

The missing link between maize seeds and trust

The world population is expected to rise to almost 10 billion by 2050. To feed this number of people, we need to increase food production while using fewer resources. Biofortification, the process of fortifying staple crops with micronutrients, could help to solve this problem.

However, it is not that easy to identify biofortified seeds.

Often, the process of biofortification does not change a seed in a visible way, opening the possibilities for counterfeit products. Farmers cannot verify that the seeds they buy are as advertised. Unsurprisingly, fake seeds are a major obstacle to the adoption of biofortified crops. Similarly, in the process from farm to fork, traceability of biofortified food is equally difficult to achieve.

Picture Aisha, a smallholder farmer in Nigeria. She’s in the market for biofortified maize seeds for her farm. How does she know which seeds to pick, and how can she be sure that they are actually biofortified?

One solution is blockchain technology.

Quality protein maize looks and tastes just like any other maize, but has increased available protein that can stem or reverse protein malnutrition, particularly in children with poor diets. (Photo: Xochiquetzal Fonseca/CIMMYT)
Quality protein maize looks and tastes just like any other maize, but has increased available protein that can stem or reverse protein malnutrition, particularly in children with poor diets. (Photo: Xochiquetzal Fonseca/CIMMYT)
Researchers consult smallholders to test demand for vitamin A-enriched maize in Kenya. (Photo: CIMMYT)
Researchers consult smallholders to test demand for vitamin A-enriched maize in Kenya. (Photo: CIMMYT)
Natalia Palacios, CIMMYT maize nutrition quality specialist, works on breeding maize rich in beta-carotene, a provitamin that is converted to vitamin A within the human body. (Photo: CIMMYT)
Natalia Palacios, CIMMYT maize nutrition quality specialist, works on breeding maize rich in beta-carotene, a provitamin that is converted to vitamin A within the human body. (Photo: CIMMYT)

What is blockchain?

Blockchain is a shared digital ledger for record keeping, where data is decentralized and allocated to users. Digital information, or blocks, is stored in a public database, or chain.

This technology platform helps in situations of lack of trust. It provides an unhackable, unchangeable and transparent record of events where users place trust in computer code and math, instead of a third party. This code writes the rules of the system and the software is peer-reviewed, so rules and data are resilient against corruption. When new data is added to the database, actors in then network verify and timestamp the data before adding it to the blockchain. After input, no one can change the information. No single entity owns or controls the database, allowing actors to trust in the system without having to trust any other actors.

While often associated with bitcoin and cryptocurrencies, blockchain technology has many other uses in traditional industries, including the potential to transform agri-food systems. The Community of Practice on Socio-economic Data, led by the International Maize and Wheat Improvement Center (CIMMYT), produced a report detailing the role blockchain can play in agri-food systems and biofortified seeds.

Blockchain for agri-food systems

Agri-food systems consist of complex networks that often mistrust each other. Blockchain technology can enhance transparency, traceability and trust. It could have a significant role to play in closing the yield gap and reducing hunger.

Many transactions done in the agri-food sector have paper records. Even when records are digital, disconnected IT systems create data silos. Blockchain enables stakeholders to control, manage and share their own data, breaking down silos.

For example, blockchain technology can help solve issues of land governance, unclear ownership and tenure by providing an accurate land registration database. It can help with compliance to standards from governments or private organizations. This technology could make financial transactions more efficient, limit corruption, and provide provenance, traceability and recall of products.

Verifying biofortified maize seeds

HarvestPlus conducted a study to understand the barriers to widespread adoption of biofortified seeds. The team interviewed 100 businesses and 250 individuals from farmers to global brands about their experiences with biofortification. Unsurprisingly, they found that a big barrier to adoption is the inability to distinguish biofortified crops from standard ones.

Therefore, it is crucial to have a system to verify biofortified seeds. HarvestPlus collaborated with The Fork to investigate solutions.

One solution is a public blockchain. The result could look like this: Aisha, our smallholder farmer in Nigeria wants to buy biofortified maize seeds for her farm. At the store, she takes a phone out of her pocket and scans a QR code on a bag to see a trustworthy account of the seeds’ journey to that bag. Satisfied with the account, she brings verified biofortified maize seeds home, improving nutrition of her family and community.

Contingent on farmers having access to smartphones, this situation could be possible. However, blockchain technology will not solve everything, and it is important we test and study these solutions while considering other challenges, such as access to technology and human behavior.

The Community of Practice on Socio-economic Data report, Blockchain for Food, gives principles of digital development of blockchain. It is crucial to understand the existing ecosystem, design for scale, build for sustainability and design the technology with the user. These are crucial points to consider when developing blockchain solutions for agri-food systems.

As the global food system is beginning to transition towards more transparency, circularity and customization, blockchain technology could play a major role in how this shift evolves. A new testing and learning platform for digital trust and transparency technologies in agri-food systems, including blockchain technology, was launched in February 2020. The platform will build capacity of the potential of this technology and ensure that it is usable and inclusive.

Read the report:
Blockchain for Food: Making Sense of Technology and the Impact on Biofortified Seeds.

Cover photo: Close up of a quality protein maize cob. (Photo: Alfonso Cortés/CIMMYT)

The future of agriculture in sub-Saharan Africa

The theme for International Youth Day 2020, Youth Engagement for Global Action, highlights the various ways in which the engagement of young people at local, national and global levels enriches national and multilateral institutions and processes.

Up to 60% of Africa’s youth face challenges such as limited employment opportunities, financial constraints to access land and adequate technical equipment. However, agriculture is increasingly providing options. Through it, young people are participating and leveraging on new technologies that can optimize farming systems and create employment.

This photo essay depicts youth in on-farm and off-farm activities across East and Southern Africa. These young men and women are innovators and adopters of improved technologies such as small scale mechanization, appropriate farming practices, employment opportunities and research innovations implemented by the International Maize and Wheat Improvement Center (CIMMYT).

In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
In Embu County, Kenya, 25-year-old Jackline Wanja stands in a demonstration plot of high-yielding, drought-resilient and fast-maturing maize varieties. (Photo: Joshua Masinde/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (28) is a two-wheel tractor technology service provider based in Meki, Ethiopia. In 2016, with the support of CIMMYT, he started providing repair and maintenance services to service providers in different areas. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Beyene Chufamo (center, in green t-shirt) provides technical training on operation, safety, repair and maintenance to machinery hire service providers in different CIMMYT operation sites. His participation in small mechanization supply chain enables service providers and farmers to effectively use their machinery and significantly reduce the downtime of their machinery. (Photo: Ephrem Tadesse/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Nancy Wawira (29) stands among ripening maize cobs of high yielding, drought-tolerant maize varieties on a demonstration farm in Embu County, Kenya. Involving young people like Wawira helps to accelerate the adoption of improved stress-tolerant maize varieties. (Photo: Joshua Masinde/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Rose Salimanja (34) from Nyanga District, Zimbabwe, operates a two-wheel tractor and trailer during a trailer operations training course. Under the Zimbabwe Building Resilience Fund (ZRBF), CIMMYT is implementing appropriate small-scale mechanized solutions and services for smallholder farmers and service providers. (Photo: Dorcas Matangi/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Targeting youth in interventions such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project provides pathways for training in appropriate mechanized solutions to support farmers in rural areas. The enterprising Mwanga Youth Group members Pinnot Karwizi (28), Shepherd Karwizi (26) and Masimba Mawire (32) provide grain shelling services to farmers in Makonde District, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)
Zvikomborero Karimudengu skillfully operates a two-wheel tractor and trailer during a training session in Nyanga South district, Zimbabwe. Small scale mechanization services are proving to be immensely useful during the COVID-19 pandemic as services can be provided while adhering to social distancing regulations and without requiring additional labour. (Photo: Dorcas Matangi/CIMMYT)

Agency unveils seed resistant to disease

For more than a decade, Maize Lethal Necrosis Disease (MLND) has ravaged crops causing farmers to incur huge losses and threatening food security.

Kenya Seed Company (KSC) researchers through partnerships have developed a superior maize variety that can withstand the disease.

Read more here:

https://www.standardmedia.co.ke/farmkenya/article/2001382769/agency-unveils-seed-resistant-to-disease

Alison Bentley to be new Global Wheat Program director

Alison Bentley (right) and Martin Jones inspect wheat in a glasshouse. (Photo: Toby Smith/Gloknos)
Alison Bentley (right) and Martin Jones inspect wheat in a glasshouse. (Photo: Toby Smith/Gloknos)

In November 2020, Alison Bentley will be joining the International Maize and Wheat Improvement Center (CIMMYT) as the new program director of the Global Wheat Program. She will be succeeding Hans Braun, who has steered the program for the last 16 years.

Bentley is thrilled to join CIMMYT and excited about the opportunity to harness science and breeding to improve livelihoods. She believes in a collective vision for equitable food supply and in science-led solutions to deliver impact.

“It really is an exciting time for wheat research: the international community has worked together to produce sequence and genomic resources, new biological and physiological insights, a wealth of germplasm and tools for accelerating breeding. This provides an unparalleled foundation for accelerating genetic gains and connecting ideas to determine how we can practically apply these tools and technologies with partners to deliver value-added outputs,” she said.

Bentley has worked on wheat — wheat genetics, wheat genetic resources and wheat pre-breeding — her entire career. She is the UK’s representative on the International Wheat Initiative Scientific Committee, and is a committee member for the Genetics Society, the UK Plant Sciences Federation, the Society of Experimental Botany, and the Editorial Board of Heredity.

Bentley obtained her PhD from the University of Sydney, Australia, in 2007. She then joined the National Institute of Agricultural Botany (NIAB) in the UK, where she progressed from Senior Research Scientist (2007) to Program Leader for Trait Genetics (2013), and Director of Genetics and Breeding (since 2016).

Currently, Bentley is involved in international research projects in Ethiopia, The Gambia, Ghana, India and Pakistan. She leads a number of UK-India projects with partners including Punjab Agricultural University, the Indian National Institute of Plant Genome Research and the University of Cambridge, studying variation and developing wheat and other cereal germplasm with enhanced resource use efficiency.

Heat and drought watch out. One-of-a-kind network launched in Berlin

Wheat crop losses due to heat and drought affect food availability and increase the costs for billions of consumers around the world. The Alliance for Wheat Adaptation to Heat and Drought (AHEAD) is an international network that hosts initiatives and projects dedicated to addressing scientific gaps and builds synergies to support the development of new wheat varieties that are resilient to heat and drought.

Read more here.

Plan to improve wheat output under works

CIMMYT Country Representative in Pakistan Dr Muhammad Imtiaz briefed National Food Security Minister Fakhr Imam on the potential strategy to increase use of high-yielding, climate resilient and rust-resistant seed varieties; closing the yield gap by timely sowing and optimal use thereby formulating and applying the right policy; and ensuring good support price in place.

Read more here: https://www.dawn.com/news/1572865

 

 

Cultivation of outdated wheat varieties causing 50pc yield gap, minister told

CIMMYT country representative Muhammad Imtiaz briefed National Food Security and Research Minister Syed Fakhar Imam on the Wheat Productivity Enhancement Programme (WPEP) and Agricultural Innovation Programme for Pakistan (AIP) and how these interventions had a positive impact on the country’s productivity.

Read more here: https://profit.pakistantoday.com.pk/2020/08/05/cultivation-of-outdated-wheat-varieties-causing-50pc-yield-gap-minister-told/

 

AGG project to ramp up genetic gains in maize for better livelihoods

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Read more here: https://africabusinesscommunities.com/agribusiness/news/agg-project-to-ramp-up-genetic-gains-in-maize-for-better-livelihoods/

Historic wheat research station poised to host cutting-edge research

It was the site where International Maize and Wheat Improvement Center (CIMMYT) scientist Norman Borlaug famously received news of his 1970 Nobel Peace Prize win. Now, Toluca station will become CIMMYT’s new testing site for rapid generation advancement and speed breeding in wheat – a method that accelerates generation advancement of crops and shortens the breeding cycle using tools like continuous lighting and temperature control.

Recent progress of the rapid generation advancement facility under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
Recent progress of the 2-hectare rapid generation advancement screenhouse under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)

The Toluca wheat experimental station is one of CIMMYT’s five experimental stations in Mexico, located in a picturesque town on the outskirts of Mexico’s fifth largest city, Toluca, about 60 kilometers southwest of Mexico City. The station was strategically chosen for its cool, humid conditions in summer. These conditions have made it an ideal location for studying wheat resistance to deadly diseases including yellow rust and Septoria tritici blotch.

Since its formal establishment in 1970, Toluca has played a key role in CIMMYT’s wheat breeding program. The site is also of significant historical importance due to its origins as a testing ground for Borlaug’s shuttle breeding concept in the 1940s, along with Ciudad Obregón in the Sonora state of northern Mexico. The breeding method allowed breeders to plant at two locations to advance generations and half the breeding cycle of crops.

Applying this unorthodox breeding method, Borlaug was able to advance wheat generations twice as fast as standard breeding programs. Planting in contrasting environments and day lengths — from the cool temperatures and high rainfall of Toluca to the desert heat of Ciudad Obregón — also allowed Borlaug and his colleagues to develop varieties that were more broadly adaptable to a variety of conditions. His shuttle breeding program was so successful that it provided the foundations of the Green Revolution.

Toluca was also the site where the first sexual propagation of the destructive plant pathogen Phytophtora infestans was reported. The deadly pathogen is best known for causing the potato late blight disease that triggered the Irish potato famine.

Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)

New life for the historic station

More than 50 years since its establishment, the station will once again host cutting-edge innovation in wheat research, as the testing ground for a new speed breeding program led by wheat scientists and breeders from Accelerating Genetic Gains in Maize and Wheat (AGG).

Funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties.

While most breeding programs typically take between 7-8 years before plants are ready for yield testing, shuttle breeding has allowed CIMMYT to cut the length of its breeding programs in half, to just 4 years to yield testing. Now, AGG wheat breeders are looking to shorten the breeding cycle further, through rapid generation advancement and speed breeding.

Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)

“The AGG team will use a low-cost operation, in-field screenhouse, spanning 2 hectares, to grow up to 4 generations of wheat per year and develop new germplasm ready for yield testing within just 2 years,” said Ravi Singh, CIMMYT distinguished scientist and head of wheat improvement. “This should not only save on cost but also help accelerate the genetic gain due to a significant reduction in time required to recycle best parents.”

Construction of the new rapid generation advancement and speed breeding facilities is made possible by support from the Bill and Melinda Gates Foundation and DFID through Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year. It is expected to be complete by September.

 

Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Wheat fields at Toluca station. (Photo: Fernando Delgado/CIMMYT)
Wheat fields at Toluca station. (Photo: Fernando Delgado/CIMMYT)
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
Early photo of Toluca station. (Photo: Fernando Delgado/CIMMYT)
Wheat fields at Toluca station. Nevado de Toluca features in the background. (Photo: Fernando Delgado/CIMMYT)
Wheat fields at Toluca station. Nevado de Toluca features in the background. (Photo: Fernando Delgado/CIMMYT)
Early landscape of wheat fields at Toluca station (Photo: Fernando Delgado/CIMMYT)
Early landscape of wheat fields at Toluca station (Photo: Fernando Delgado/CIMMYT)
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Rapid generation advancement screenhouse under construction at Toluca station in October 2019. (Photo: Alison Doody/CIMMYT)
Recent progress of the rapid generation advancement facility under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
Recent progress of the rapid generation advancement screenhouse under construction at Toluca station. (Photo: Suchismita Modal/CIMMYT)
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)
Speed breeding room at Toluca station. The Heliospectra lights support the faster growth of plants. (Photo: Suchismita Mondal/CIMMYT)

The concept of speed breeding is not new. Inspired by NASA’s efforts to grow crops in space, scientists at the University of Sydney, the University of Queensland (UQ) and the John Innes Centre developed the technique to accelerate the development of crops and improve their quality. The breeding method has been successfully used for crops like spring wheat, barley, pea, chickpea, radish and canola.

CIMMYT Global Wheat Program Director Hans Braun highlighted the importance of testing the new breeding scheme. “Before completely adopting the new breeding scheme, we need to learn, optimize and analyze the performance results to make necessary changes,” he said.

If all goes well, Toluca could once again be on the vanguard of wheat research in the near future.

“We plan to use the speed breeding facility for rapid integration of traits, such as multiple genes for resistance, to newly-released or soon to be released varieties and elite breeding lines,” said CIMMYT Wheat Breeder Suchismita Mondal, who will lead the work in these facilities. We are excited to initiate using the new facilities.”