Wheat stalks grow in a field in India. (Photo: Saad Akhtar)
Wheat scientists in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, led by the International Maize and Wheat Improvement Center (CIMMYT), presented a range of new research at the 2020 Borlaug Global Rust Initiative (BGRI) Technical Workshop in October, highlighting progress in spring wheat breeding, disease screening and surveillance and the use of novel genomic, physiological tools to support genetic gains.
Sridhar Bhavani, CIMMYT senior scientist and head of Rust Pathology and Molecular Genetics, delivered a keynote presentation on a “Decade of Stem Rust Phenotyping Network: Opportunities, Challenges and Way Forward,” highlighting the importance of the international stem rust phenotyping platforms established with national partners in Ethiopia and Kenya at the Ethiopian Institute for Agricultural Research station in Debre Zeit, and the Kenya Agricultural and Livestock Research Organization station in Njoro, respectively. These platforms support global wheat breeding, genetic characterization and pre-breeding, surveillance and varietal release, and will continue to be an important mechanism for delivering high performing material into farmers’ fields.
CIMMYT wheat breeder Suchismita Mondal chaired a session on breeding technologies, drawing on her expertise leading the trait delivery pipeline in AGG (including rapid generation cycling and speed breeding). She led a lively Q&A on the potential for genomics and data-driven approaches to support breeding.
In the session, CIMMYT Associate Scientist and wheat breeder Philomin Juliana presented a “Retrospective analysis of CIMMYT’s strategies to achieve genetic gain and perspectives on integrating genomic selection for grain yield in bread wheat,” demonstrating that phenotypic selection — making breeding selections based on physically identifiable traits — has helped increase the proportion of genes associated with grain yield in CIMMYT’s globally distributed spring wheat varieties. Her work demonstrates the efficiency of indirect selection for yield in CIMMYT’s Obregon research station, and the potential of genomic selection, particularly when incorporating environmental effects.
The use of Obregon as a selection environment was further explored by CIMMYT wheat breeder Leo Crespo presenting “Definition of target population of environments in India and their prediction with CIMMYT’s international nurseries.” This work confirms Obregon’s relevance as an effective testing site, allowing the selection of superior germplasm under distinct management conditions that correlate with large agroecological zones for wheat production in India. Similar analyses will be conducted in AGG with the support of the CGIAR Excellence in Breeding Platform to optimize selection conditions for eastern Africa.
A wheat field is fed by drip irrigation in Obregon, Mexico. (Photo: H. Gomez/CIMMYT)
Supporting future genetic gains
CIMMYT’s Head of Global Wheat Improvement Ravi Singh presented “Genetic gain for grain yield and key traits in CIMMYT spring wheat germplasm — progress, challenges and prospects,” highlighting the International Wheat Improvement Network as an important source of new wheat varieties globally. He described progress on the implementation of genomic selection and the use of state of the art tools to collect precise plant trait information, known as high-throughput phenotyping (HTP), in CIMMYT wheat breeding.
With partners, he is now conducting both genotyping (measuring the genetic traits of a plant) and phenotyping for all entries in the earliest stages of yield trials in Mexico. In addition, his team has succeeded in phenotyping a large set of elite lines at multiple field sites across South Asia. Looking forward, they aim to shorten generation advancement time, improve the parental selection for “recycling” (re-using parents in breeding), and adding new desirable traits into the pipeline for breeding improved varieties.
Following on from Ravi’s presentation, CIMMYT scientist Margaret Krause highlighted progress in HTP in her talk on “High-Throughput Phenotyping for Indirect Selection on Wheat Grain Yield at the Early-generation Seed-limited Stage in Breeding Programs.” This work highlights the potential of drones to capture highly detailed and accurate trait data, known as aerial phenotyping, to improve selection at the early-generation, seed-limited stages of wheat breeding programs.
This kind of physiological understanding will support future phenotyping and selection accuracy, as seen in the work that CIMMYT scientist Carolina Rivera shared on “Estimating organ contribution to grain-filling and potential for source up-regulation in wheat cultivars with contrasting source-sink balance.” Her research shows that a plant’s production of biomass is highly associated with yield under heat stress and that it is possible to achieve greater physiological resolution of the interaction between traits and environment to deliver new selection targets for breeding.
Overall, the talks by AGG scientists demonstrated tremendous progress in spring wheat breeding at CIMMYT and highlighted the importance of new tools and technologies to support future genetic gains.
TheBorlaug Global Rust Initiativeis an international community of hunger fighters committed to sharing knowledge, training the next generation of scientists, and engaging with farmers for a prosperous and wheat-secure world. The BGRI is funded in part through the Delivering Genetic Gain in Wheat (DGGW) project from the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office.
After a 37-year career, Hans-Joachim Braun is retiring from the International Maize and Wheat Improvement Center (CIMMYT). As the director of the Global Wheat Program and the CGIAR Research Program on Wheat, Braun’s legacy will resonate throughout halls, greenhouses and fields of wheat research worldwide.
We caught up with him to capture some of his career milestones, best travel stories, and vision for the future of CIMMYT and global wheat production. And, of course, his retirement plans in the German countryside.
Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)
Major career milestones
Native to Germany, Braun moved to Mexico in 1981 to complete his PhD research at CIMMYT’s experimental station in Obrégon, in the state of Sonora. His research focused on identifying the optimum location to breed spring wheat for developing countries — and he found that Obrégon was in fact the ideal location.
His first posting with CIMMYT was in Turkey in 1985, as a breeder in the International Winter Wheat Improvement Program (IWWIP). This was the first CGIAR breeding program hosted by a CIMMYT co-operator, that later developed into the joint Turkey, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) winter wheat program. “In 1990, when the Commonwealth of Independent States was established, I saw this tremendous opportunity to work with Central Asia to develop better wheat varieties,” he said. “Today, IWWIP varieties are grown on nearly 3 million hectares.”
Although Braun was determined to become a wheat breeder, he never actually intended to spend his entire career with one institution. “Eventually I worked my entire career for CIMMYT. Not so usual anymore, but it was very rewarding. CIMMYT is at my heart; it is what I know.”
Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
“Make the link to the unexpected”
One of Braun’s standout memories was a major discovery when he first came to Turkey. When evaluating elite lines from outside the country — in particular lines from a similar environment in the Great Plains — his team noticed they were failing but nobody knew why.
Two of his colleagues had just returned from Australia, where research had recently identified micronutrient disorders in soil as a major constraint for cereal production. The team tried applying micro-nutrients to wheat plots, and it became crystal clear that zinc deficiency was the underlying cause. “Once aware that micro-nutrient disorders can cause severe growth problems, it was a minor step to identify boron toxicity as another issue. Looking back, it was so obvious. The cover picture of a FAO book on global soil analysis showed a rice field with zinc deficiency, and Turkey produces more boron than the rest of the world combined.”
“We tested the soil and found zinc deficiency was widespread, not just in the soils, but also in humans.” This led to a long-term cooperation with plant nutrition scientists from Cukurova University, now Sabanci University, in Istanbul.
But zinc deficiency did not explain all growth problems. Soil-borne diseases — cyst and lesion nematodes, and root and crown rot — were also widespread. In 1999, CIMMYT initiated a soil-borne disease screening program with Turkish colleagues that continues until today. Over the coming decade, CIMMYT’s wheat program will make zinc a core trait and all lines will have at least 25% more zinc in the grain than currently grown varieties.
After 21 years in Turkey, Braun accepted the position as director of CIMMYT’s Global Wheat Program and moved back to Mexico.
Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)
Partnerships and friendships
Braun emphasized the importance of “mutual trust and connections,” especially with cooperators in the national agricultural research systems of partner countries. This strong global network contributed to another major milestone in CIMMYT wheat research: the rapid development and release of varieties with strong resistance to the virulent Ug99 race of wheat rust. This network, led by Cornell University, prevented a potential global wheat rust epidemic.
CIMMYT’s relationship with Mexico’s Ministry of Agriculture and the Obregón farmers union, the Patronato, is especially important to Braun.
In 1955, Patronato farmers made 200 hectares of land available, free if charge, to Norman Borlaug. The first farm community in the developing world to support research, it became CIMMYT’s principal wheat breeding experimental station: Norman Borlaug Experimental Station, or CENEB. When Borlaug visited Obregón for the last time in 2009, the Patronato farmers had a big surprise.
“I was just getting out of the shower in my room in Obregón when I got a call from Jorge Artee Elias Calles, the president of the Patronato,” Braun recalls. “He said, ‘Hans, I’m really happy to inform you that Patronato decided to donate $1 million.’”
The donation, in honor of Borlaug’s lifetime of collaboration and global impact, was given for CIMMYT’s research on wheat diseases.
“This relationship and support from the Obregón farmers is really tremendous,” Braun says. “Obregón is a really special place to me. I am admittedly a little bit biased, because Obregón gave me a PhD.”
Hans Braun (right) and colleagues in a wheat field in CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug (left), Ravi Singh (center) and Hans Braun stand in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Left to right: Sanjaya Rajaram, unknown, unknown, unknown, Norman E. Borlaug, unknown, Ken Sayre, Arnoldo Amaya, Rodrigo Rascon and Hans Braun during Norman Borlaug’s birthday celebration in March 2006. (Photo: CIMMYT)
Left to right: Hans Braun, Ronnie Coffman, Jeanie Borlaug-Laube, Thomas Lumpkin, Antonio Gándara, Katharine McDevitt and unknown during the unveiling of the Norman Borlaug statue at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico, in 2012. (Photo: Xochil Fonseca/CIMMYT)
Participants in the first technical workshop of the Borlaug Global Rust Initiative in 2009 take a group photo at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
A worldwide perspective
Braun’s decades of international research and travel has yielded just as many stories and adventures as it has high-impact wheat varieties.
He remembers seeing areas marked with red tape as he surveyed wheat fields in Afghanistan in the 1990s, and the shock and fear he felt when he was informed that they were uncleared landmine areas. “I was never more scared than in that moment, and I followed the footsteps of the guy in front of me exactly,” Braun recalls.
On a different trip to Afghanistan, Braun met a farmer who had struggled with a yellow rust epidemic and was now growing CIMMYT lines that were resistant to it.
“The difference between his field and his neighbors’ was so incredible. When he learned I had developed the variety he was so thankful. He wanted to invite me to his home for dinner. Interestingly, he called it Mexican wheat, as all modern varieties are called there, though it came from the winter wheat program in Turkey.”
Seeing the impact of CIMMYT’s work on farmers was always a highlight for Braun.
Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)
CIMMYT’s future
Braun considers wheat research to be still in a “blessed environment” because a culture of openly-shared germplasm, knowledge and information among the global wheat community is still the norm. “I only can hope this is maintained, because it is the basis for future wheat improvement.”
His pride in his program and colleagues is clear.
“A successful, full-fledged wheat breeding program must have breeders, quantitative genetics, pathology, physiology, molecular science, wide crossing, quality, nutrition, bioinformatics, statistics, agronomy and input from economists and gender experts,” in addition to a broad target area, he remarked at an acceptance address for the Norman Borlaug Lifetime Achievement award.
“How many programs worldwide have this expertise and meet the target criteria? The Global Wheat Program is unique — no other wheat breeding program has a comparable impact. Today, around 60 million hectares are sown with CIMMYT-derived wheat varieties, increasing the annual income of farmers by around $3 billion dollars. Not bad for an annual investment in breeding of around $25 million dollars. And I don’t take credit for CIMMYT only, this is achieved through the excellent collaboration we have with national programs.”
A bright future for wheat, and for Braun
General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)
After retirement, Braun is looking forward to settling in rural Inzlingen, Germany, and being surrounded by the beautiful countryside and mountains, alongside his wife Johanna. They look forward to skiing, running, e-biking and other leisure activities.
“One other thing I will try — though most people will not believe me because I’m famous for not cooking — but I am really looking into experimenting with flour and baking,” he says.
Despite his relaxing retirement plans, Braun hopes to continue to support wheat research, whether it is through CIMMYT or through long friendships with national partners, raising awareness of population growth, the “problem of all problems” in his view.
“We have today 300 million more hungry people than in 1985. The road to zero hunger in 2030 is long and will need substantial efforts. In 1970, Organization for Economic Co-Operation and Development (OECD) countries agreed to spend 0.7% of GDP on official development assistance. Today only 6 countries meet this target and the average of all OECD countries has never been higher than 0.4%. Something needs to change to end extreme poverty — and that on top of COVID-19. The demand for wheat is increasing, and at the same time the area under wheat cultivation needs to be reduced, a double challenge. We need a strong maize and wheat program. The world needs a strong CIMMYT.”
Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun stand for a photograph at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Former Director General of CIMMYT, Thomas Lumpkin (center), Hans Braun (next right) and Turkish research partners on a field day at a wheat landraces trial in Turkey. (Photo: CIMMYT)
Hans Braun (sixth from right) stands for a photograph with colleagues during a work trip to CIMMYT’s Pakistan office in 2020. (Photo: CIMMYT)
Hans Braun (seventh from left) visits wheat trials in Eskişehir, Turkey in 2014. (Photo: CIMMYT)
Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)
A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)
Climate change is a major challenge for India, which faces large-scale climate variability and is exposed to high risk. The country’s current development model reiterates the focus on sustainable growth and aims to exploit the benefits of addressing climate change alongside promoting economic growth.
The government has been heavily emphasizing the importance of solar power in India, and the Ministry of New and Renewable Energy (MNRE) recently launched an ambitious initiative to further this cause. The Pradhan Mantri-Kisan Urja Suraksha evam Utthaan Mahabhiyan (PM-KUSUM) scheme aims to support the installation of off-grid solar pumps in rural areas, and reduce dependence on the grid in grid-connected areas.
However, there has been a knowledge gap about the potential use of solar energy interventions in the context of climate change and their scalability. In an effort to bridge this gap, scientists from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) have comprehensively synthesized existing pilot initiatives on the deployment of solar powered irrigation systems (SPIS) across different agro-climatic zones in India and tried to assess their scalability. This in turn has led to the identification of efficient and effective models for sustainable development in accordance with the region’s socioeconomic and geopolitical situation.
Solar powered irrigation systems in India
A compendium has been developed as part of the research carried out by CCAFS, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ) and the International Water Management Institute (IWMI).
The main objectives for bringing forth this compendium are: to qualitatively document various deployment models of SPIS and to understand the factors impacting the scalability of SPIS in India. The authors collected detailed information about the process of installing SPIS, their use and maintenance, and documented the different approaches in the form of case studies developed through primary and secondary research. They aimed to capture the key technical, social, institutional and financial attributes of the deployment approaches to enable comparative analysis and synthesis.
In total, 16 case studies from across India were documented — 1 case for centralized SPIS, 2 distributed SPIS and 13 examples for decentralized systems. Though each of these was designed with unique objectives, detailed analysis reveals that all the cases revolve around the improvement of the three factors: accessibility, affordability and sustainability — the trinity against which all cases have been described. Grid-connected areas such as Gujarat and Maharashtra offer an immense scope of selling surplus energy being produced by SPIS, to energy-deficient electricity suppliers while areas such as Bihar and Jharkhand offer the potential for scaling the decentralized model of SPIS.
Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)
Assessing scalability
For inclusive and sustainable growth, it is important to consider the farm-level potential of solar energy use with multiple usages of energy. The compendium documents examples of the potential of solar irrigation systems in India for adaptation and mitigation benefits. It also assesses on the scalability of different deployment approaches such as solar pump fitted boats in Samastipur, Bihar, or the decentralized solar powered irrigation systems in Gujrat and West Bengal. Through the compendium, the authors study the five key stages of the scaling-up process to assess whether these initiatives are scalable and could reduce or replace fossil fuel dependence in agriculture.
While some of the documented cases are designed exclusively to address a very specific problem in a particular context, others are primarily designed as a proof-of-concept for wider applicability and policy implications — with or without suitable modifications at the time of scaling. In this compendium, both types of cases are included and assessed to understand their relevance and the potential contribution they can make in advancing the goal of solarizing irrigation and agriculture in a sustainable and effective way.
The authors conclude that all the cases have different technical, financial, and institutional aspects which complement each other, have been designed based on community needs and are in line with the larger objective of the intervention integrating three factors — accessibility, affordability and sustainability — to ensure secured availability of resources and to facilitate scalability.
Given that India is a diverse country with varied socioeconomic and geopolitical conditions, it is important to have set guidelines that lay out a plan for scaling while allowing agencies to adapt the SPIS model based on local context and realities in the field.
This article was originally published on the CCAFS website.
How do you create the largest market for stress-tolerant seed away from a major business center and attract over 1000 smallholder farmers in two days? Organize a seed fair to strengthen knowledge and information sharing.
The availability, access and use of climate-resilient seed by smallholder farmers in Zimbabwe is often hampered by transport costs, the distance between farming areas and viable seed markets, lack of public transport to business centers, and the inflated prices of seed and inputs by local agro-dealers. As a result, resource-poor farmers who cannot afford to purchase inputs resort to exchanging local seed retained or recycled from informal markets. This has devastating effects on farmers’ productivity, food and nutrition security.
Under the Zambuko/R4 Rural Resilience Initiative, the International Maize and Wheat Improvement Center (CIMMYT) is promoting climate-smart technologies and appropriate seed varieties alongside conservation agriculture (CA) systems in Masvingo district, Zimbabwe. Since 2018, mother and baby trials have successfully yielded results for smallholders in Ward 17 and additional mother trials have been introduced in Ward 13.
To overcome the challenges of seed access, CIMMYT partnered with eight seed companies — including Agriseeds, Mukushi and SeedCo — to host two seed fairs in October, targeting farmers in Wards 13 and 17. The intervention sought to address seed insecurity while reducing the knowledge gap on available stress-tolerant seed varieties by smallholder farmers.
Groundwork preparations led by the Department of Agriculture and Extension Services (AGRITEX) mobilized farmers from the host wards as well as farmers from neighboring wards 15, 19 and 25. In light of the ongoing COVID-19 pandemic, regulations relating to social distancing, the use of masks and sanitization were adhered to throughout the events.
Climate-smart seed choices
A key message delivered to the more than 1000 farmers who attended the seed fairs was the importance of their preference when selecting the right seed for their field. “Farmers must be critical when selecting seed and ensure that their preferred seed will perform well under the prevailing climatic conditions to give a good harvest,” said CIMMYT seed systems specialist Peter Setimela.
Seed company representatives were offered a platform to market their varieties and explain the benefits of each product on the market while leaving it to the farmers to decide on the most suitable variety for their own needs. “Farmers came early for the seed fairs and showed interest in our products,” said Norman Chihumo, a regional agronomist at Syngenta Distributors. “We recorded fairly good sales of seed and chemicals through cash purchases and vouchers.”
Later in the day, farmers toured the seed company stands to see the diverse maize varieties and small grains on offer — including millet and sorghum, cowpeas and groundnuts — and heard testimonials from participants in the mother and baby trials. “Listening to a success story from a farmer I know gives me the confidence to follow suit and buy seed that works in this harsh climate of ours,” said Joice Magadza, a farmer from Ward 17.
Local farmer Happison Chitono agreed. “I never used to grow cowpeas on my plot,” he explained, “but after learning about the ability it has to fix nitrogen into my soil and possibility of rotating the legume with maize, I am now gladly adding it to my seed input package.”
Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
A seed fair is also a knowledge market
A key highlight of the seed fair was the learning platform promoting CIMMYT’s ongoing activities under the Zambuko/R4 Rural Resilience Initiative. Here, cropping systems agronomist Christian Thierfelder shared the objectives of this initiative with participating farmers.
“We know how good this seed is, but we also have to grow it in a sustainable way, so we make best use of the limited rainfall we receive in this area while we improve our soils,” he explained to farmers. “Cropping systems such as conservation agriculture combine no-tillage, mulching and crop rotation in a climate-smart agriculture way which enables farmers to harvest enough, even under heat and drought stress.”
Thierfelder also demonstrated the use of farm equipment promoted by CIMMYT in collaboration with Kurima Machinery, explaining how these can help reduce drudgery and save time on planting, transport and shelling.
Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Vouchers for transparent seed access
The seed fairs culminated in the distribution of seed and input vouchers. One hundred farmers were selected through a transparent raffle and redeemed their vouchers at their preferred seed company stands. They then also had the option to purchase additional seed, fertilizer and chemicals using their own cash.
Particularly high sales were recorded for Provitamin A orange maize, which sold out on both seed fair days. Stress-tolerant varieties such as ZM 309 and ZM 523 from Zimbabwe Super Seeds, ZM521 from Champion Seeds, and MRI 514 from Syngenta were also favorites among the farmers, while white sorghum and cowpea varieties such as CBC2 also sold well. Most of these varieties were already known to farmers as they had seen them growing for two years in CIMMYT’s mother trials of Ward 17.
The seed fairs ended on a high note with a total of 1.2 tons of seed sold to farmers on both days and agro-dealers hailed the fairs as a timely business venture for creating linkages and bringing seed suppliers on-site to assess their shops. A post-seed fair monitoring exercise will soon follow up on farmers’ use of the seed and the performance of demo packs and purchased varieties.
The Zambuko/R4 Rural Resilience Initiative supported by the United States Agency for International Aid (USAID), Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP) aims to increase farmer resilience and capacity to withstand climatic shocks and stresses in rural communities of Masvingo, Mwenezi and Rushinga in Zimbabwe.
Four scientists working with the International Maize and Wheat Improvement Center (CIMMYT) have been recognized as 2020 recipients of the Clarivate™ Highly Cited Researchers list.
The honor recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1% by citations for field and year, according to the Web of Science citation indexing service.
Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information™ at Clarivate.
The 2020 CIMMYT honorees include:
José Luis Francisco Crossa: CIMMYT Distinguished Scientist.
Julio Huerta: CIMMYT-seconded wheat breeder and rust geneticist with Mexico’s Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).
Matthew Reynolds: CIMMYT Distinguished Scientist, wheat physiologist and member, Mexican Academy of Sciences.
Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement.
“I congratulate my colleagues in the Global Wheat Program for this excellent recognition of their important work,” said incoming CIMMYT Global Wheat Program Director Alison Bentley.
The Government of Ethiopia has consistently prioritized agriculture and sees it as a core component of the country’s growth. However, despite considerable efforts to improve productivity, poor management of soil health and fertility has been an ongoing constraint. This is mainly due to a lack of comprehensive site-and context-specific soil health and fertility management recommendations and dissemination approaches targeted to specific needs.
The government envisions a balanced soil health and fertility system that helps farmers cultivate and maintain high-quality and fertile soils through the promotion of appropriate soil-management techniques, provision of required inputs, and facilitation of appropriate enablers, including knowledge and finance.
So far, a plethora of different research-for-development activities have been carried out in support of this effort, including the introduction of tools which provide location-specific fertilizer recommendations. For example, researchers on the Taking Maize Agronomy to Scale in Africa (TAMASA) project, led by the International Maize and Wheat Improvement Center (CIMMYT), have created locally calibrated versions of Nutrient Expert® (NE) — a tool for generating fertilizer recommendations — for maize farmers in Ethiopia, Nigeria and Tanzania.
Nutrient Expert® is only one of the many fertilizer recommendation tools which have been developed in recent years covering different levels of applicability and accuracy across spatial scales and users, including smallholder farmers, extension agents and national researchers. However, in order to make efficient use of all the resources available in Ethiopia, there is a need to systematically evaluate the merits of each tool for different scales and use cases. To jump start this process, researchers from the TAMASA project commissioned an assessment of the tools and frameworks that have been developed, adapted and promoted in the country, and how they compare with one another for different use-cases. Seven tools were assessed, including Nutrient Expert®, the Ethiopian Soil Information System (EthioSIS) and RiceAdvice.
For each of these, the research team asked determined how the tool is currently being implemented — for example, as an app or as a generic set of steps for recommendation generation — and its data requirements, how robust the estimates are, how complicated the interface is, how easy it is to use, the conditions under which it performs well, and the spatial scale at which it works best.
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Combining efforts and information
The results of this initial assessment indicate that the type of main user and the scale at which decisions are made varied from tool to tool. In addition, most of the tools considered have interactive interfaces and several — including Nutrient Expert® and RiceAdvice — have IT based platforms to automate the optimization of fertilizer recommendations and/or analyze profit. However, the source codes for all the IT based platforms and tools are inaccessible to end-users. This means that if further evaluation and improvements are to be made, there should be a means of collaborating with developers to share the back-end information, such as site-specific response curves and source codes.
Because most of the tools take different approaches to making fertilizer application site-specific, each of them renders unique strengths and trade-offs. For example, Nutrient Expert® may be considered strong in its approach of downscaling regionally calibrated responses to field level recommendations based on a few site-specific responses from farmers. By contrast, its calibration requires intensive data from nutrient omission trials and advice provision is time consuming.
Overall, the use of all the Site-Specific Decision-Support Tools (SSDST) has resulted in improved grain yields compared to when farmers use traditional practices, and this is consistent across all crops. On average, use of Nutrient Expert® improved maize, rice and wheat yields by 5.9%, 8.1% and 4.9%, respectively. Similarly, the use of RiceAdvice resulted in a 21.8% yield advantage.
The assessment shows that some of the tools are useful because of their applicability at local level by development agents, while others are good because of the data used to develop and validate them. However, in order to benefit the agricultural system in Ethiopia from the perspective of reliable fertilizer-use advisory, there is a need to develop a platform that combines the merits of all available tools. To achieve this, it has been suggested that the institutions who developed the individual tools join forces to combine efforts and information, including background data and source codes for IT based tools.
While the COVID-19 pandemic has disrupted efforts to convene discussions around this work, CIMMYT has and will continue to play an active advocacy role in supporting collaborative efforts to inform evidence-based reforms to fertilizer recommendations and other agronomic advice in Ethiopia and the wider region. CIMMYT is currently undertaking a more rigorous evaluation of these tools and frameworks as a follow up on the initial stocktaking activity.
The International Maize and Wheat Improvement Center (CIMMYT) is proud to partner with the Whole Grain Initiative in celebrating International Whole Grain Day on November 19, 2020.
In terms of diet and nutrition, ours is an age of contradiction. While populations in wealthy countries are faced with unprecedented levels of diet-related disease, close to 2 billion people globally remain food insecure. At the same time, global agriculture has an enormous role to play in the transition towards an environmentally sustainable future.
International Whole Grain Day 2020 is a good day to step back and consider the continued role of whole grains in the healthy, sustainable diets of today and tomorrow. Explore our content to learn what whole grains are, how we’re working to make whole grain wheat and maize even more nutritious, and discover some our favorite recipes.
For a deeper dive into the subject, check out our explainer on whole grains: What they are, why they are important for your health, and how to identify them.
The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)
CIMMYT’s “A Grain a Day” cookbook highlights the big role maize and wheat play in diets around the world, and brings global cuisine to your own kitchen. (Note: not all recipes call for whole grains.) Learn more.
Join members of the Whole Grain Initiative, the FAO and global leaders on November 19 as they discuss the role of whole grains in meeting the “triple challenge” of ensuring global food security and improving the livelihoods of agri-food workers in an environmentally sustainable manner. Join the webinar: Building Healthy, Sustainable and Resilient Food Systems.
Interested in learning more about how CIMMYT is working to make grain-based diets healthier and more nutritious? Check out our archive of health and nutrition content.
Featured image: Little girl eating roti, Bangladesh (S. Mojumder/Drik/CIMMYT)
Where agriculture relies heavily on manual labor, small-scale mechanization can reduce labor constraints and contribute to higher yields and food security. However, demand for and adoption of labor-saving machinery remains weak in many areas. Paradoxically, this includes areas where women face a particularly high labor burden.
“How do we make sense of this?” asks Lone Badstue, a rural development sociologist at the International Maize and Wheat Improvement Center (CIMMYT). “What factors influence women’s articulation of demand for and use of farm power mechanization?”
To answer this question, an international team of researchers analyzed data from four analytical dimensions — gender division of labor; gender norms; gendered access to and control over resources like land and income; and intra-household decision-making — to show how interactions between these influence women’s demand for and use of mechanization.
“Overall, a combination of forces seems to work against women’s demand articulation and adoption of labor-saving technologies,” says Badstue. Firstly, women’s labor often goes unrecognized, and they are typically expected to work hard and not voice their concerns. Additionally, women generally lack access to and control over a range of resources, including land, income, and extension services.
This is exacerbated by the gendered division of labor, as women’s time poverty negatively affects their access to resources and information. Furthermore, decision-making is primarily seen as men’s domain, and women are often excluded from discussions on the allocation of labor and other aspects of farm management. Crucially, many of these factors interlink across all four dimensions of the authors’ analytical framework to shape women’s demand for and adoption of labor-saving technologies.
A diagram outlines the links between different factors influencing gender dynamics in demand articulation and adoption of laborsaving technologies. (Graphic: Nancy Valtierra/CIMMYT)
Demand articulation and adoption of labor-saving technologies in the study sites are shown to be stimulated when women have control over resources, and where more permissive or inclusive norms influence gender relations. “Women’s independent control over resources is a game changer,” explains Badstue. “Adoption of mechanized farm power is practically only observed when women have direct and sole control over land and on- or off-farm income. They rarely articulate demand or adopt mechanization through joint decision-making with male relatives.”
The study shows that independent decision-making by women on labor reduction or adoption of mechanization is often confronted with social disapproval and can come at the cost of losing social capital, both within the household and in the community. As such, the authors stress the importance of interventions which engage with these issues and call for the recognition of technological change as shaped by the complex interplay of gender norms, gendered access to and control over resources, and decision-making.
“I wonder why I never considered using drip irrigation for all these years,” says Michael Duri, a 35-year-old farmer from Ward 30, Nyanga, Zimbabwe, as he walks through his 0.5-hectare plot of onions and potatoes. “This is by far the best method to water my crops.”
Duri is one of 30 beneficiaries of garden drip-kits installed by the International Maize and Wheat Improvement Center (CIMMYT), an implementing partner under the Program for Growth and Resilience (PROGRESS) consortium, managed by the Zimbabwe Resilience Building Fund (ZRBF).
“In June 2020, I installed the drip kit across 0.07 hectares and quickly realized how much water I was saving through this technology and the reduced amount of physical effort I had to put in,” explains Duri. By September, he had invested in two water tanks and more drip lines to expand the area under drip irrigation to 0.5 hectares.
Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)
Water woes
Zimbabwe’s eastern highland districts like Nyanga are renowned for their diverse and abundant fresh produce. Farming families grow a variety of crops — potatoes, sugar beans, onions, tomatoes, leafy vegetables and garlic — all year round for income generation and food security.
Long poly-pipes lining the district — some stretching for more than 10 kilometers — use gravity to transport water from the mountains down to the villages and gardens. However, in the last five-to-ten years, increasing climate-induced water shortages, prolonged dry spells and high temperatures have depleted water reserves.
To manage the limited resources, farmers access water based on a rationing schedule to ensure availability across all areas. Often during the lean season, water volumes are insufficient for effectively irrigating the vegetable plots in good time, which leads to moisture stress, inconsistent irrigation and poor crop performance. Reports of cutting off or diverting water supply among farmers are high despite the local council’s efforts to schedule water distribution and access across all areas. “When water availability is low, it’s not uncommon to find internal conflicts in the village as households battle to access water resources,” explains Grace Mhande, an avid potato producer in Ward 22.
Climate-proofing gardens
Traditionally, flood, drag hose, bucket and sprinkler systems have been used as the main irrigation methods. However, according to Raymond Nazare, an engineer from the University of Zimbabwe, these traditional irrigation designs “waste water, are laborious, require the services of young able-bodied workers and use up a lot of time on the part of the farmers.”
Prudence Nyanguru, who grows tomatoes, potatoes, cabbages and sugar beans in Ward 30, says the limited number of sprinklers available for her garden meant she previously had to irrigate every other day, alternating the sprinkler and hose pipe while spending more than five hours to complete an average 0.05-hectare plot.
“Whereas before I would spend six hours shifting the sprinklers or moving the hose, I now just switch on the drip and return in about two or three hours to turn off the lines,” says Nyanguru.
The drip technology is also helping farmers in Nyanga adapt to climate change by providing efficient water use, accurate control over water application, minimizing water wastage and making every drop count.
“With the sprinkler and flood systems, we noticed how easily the much-needed fertile top soil washed away along with any fertilizer applied,” laments Vaida Matenhei, another farmer from Ward 30. Matenhei now enjoys the simple operation and steady precision irrigation from her drip-kit installation as she monitors her second crop of sugar beans.
Frédéric Baudron, a systems agronomist at CIMMYT, observes that Zimbabwe has a long history of irrigation, but this has mostly tended to be large-scale. “This means either expensive pivots owned by large-scale commercial farmers — a minority of the farming population in Zimbabwe as in much of sub-Saharan Africa — or capital-intensive irrigation schemes shared by a multitude of small-scale farmers, often poorly managed because of conflicts amongst users,” he says. A similar pattern can be seen with mechanization interventions, where Zimbabwe continues to rely on large tractors when smaller, and more affordable, machines would be more adapted to most farmers in the country.
“Very little is done to promote small-scale irrigation,” explains Baudron. “However, an installation with drip kits and a small petrol pump costs just over $1 per square meter.”
Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
A disability-inclusive technology
The design of the drip-kit intervention also focused on addressing the needs of people with disabilities. At least five beneficiaries have experienced the limitations to full participation in farming activities as a result of physical barriers, access challenges and strenuous irrigation methods in the past.
For 37-year-old Simon Makanza from Ward 22, for example, his physical handicap made accessing and carrying water for his home garden extremely difficult. The installation of the drip-kit at Makanza’s homestead garden has created a barrier-free environment where he no longer grapples with uneven pathways to fetch water, or wells and pumps that are heavy to operate.
“I used to walk to that well about 500 meters away to fetch water using a bucket,” he explains. “This was painstaking given my condition and by the time I finished, I would be exhausted and unable to do any other work.”
The fixed drip installation in his plot has transformed how he works, and it is now easier for Makanza to operate the pump and switches for the drip lines with minimal effort.
Families living with people with disabilities are also realizing the advantages of time-saving and ease of operation of the drip systems. “I don’t spend all day in the field like I used to,” says George Nyamakanga, whose brother Barnabas who has a psychosocial disability. “Now, I have enough time to assist and care for my brother while producing enough to feed our eight-member household.”
By extension, the ease of operation and efficiency of the drip-kits also enables elderly farmers and the sick to engage in garden activities, with direct benefits for the nutrition and incomes of these vulnerable groups.
Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Scaling for sustained productivity
Since the introduction of the drip-kits in Nyanga, more farmers like Duri are migrating from flood and sprinkler irrigation and investing in drip irrigation technology. From the 30 farmers who had drip-kits installed, three have now scaled up after witnessing the cost-effective, labor-saving and water conservation advantages of drip irrigation.
Dorcas Matangi, an assistant research associate at CIMMYT, explains that use of drip irrigation ensures precise irrigation, reduces disease incidence, and maximal utilization of pesticides compared to sprinklers thereby increasing profitability of the farmer. “Although we are still to evaluate quantitatively, profit margin indicators on the ground are already promising,” she says.
Thomas Chikwiramadara and Christopher Chinhimbiti are producing cabbages on their shared plot, pumping water out of a nearby river. One of the advantages for them is the labor-saving component, particularly with weed management. Because water is applied efficiently near the crop, less water is available for the weeds in-between crop plants and plots with drip irrigation are thus far less infested with weeds than plots irrigated with buckets or with flood irrigation.
“This drip system works well especially with weed management,” explains Chinhimbiti. “Now we don’t have to employ any casual labor to help on our plot because the weeds can be managed easily.”
Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Wheat fields in the Arsi highlands, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)
A state-of-the-art study of plant DNA provides strong evidence that farmers in Ethiopia have widely adopted new, improved rust-resistant bread wheat varieties since 2014.
The results — published in Nature Scientific Reports — show that nearly half (47%) of the 4,000 plots sampled were growing varieties 10 years old or younger, and the majority (61%) of these were released after 2005.
Four of the top varieties sown were recently-released rust-resistant varieties developed through the breeding programs of the Ethiopian Institute for Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT).
Adoption studies provide a fundamental measure of the success and effectiveness of agricultural research and investment. However, obtaining accurate information on the diffusion of crop varieties remains a challenging endeavor.
DNA fingerprinting enables researchers to identify the variety present in samples or plots, based on a comprehensive reference library of the genotypes of known varieties. In Ethiopia, over 94% of plots could be matched with known varieties. This provides data that is vastly more accurate than traditional farmer-recall surveys.
This is the first nationally representative, large-scale wheat DNA fingerprinting study undertaken in Ethiopia. CIMMYT scientists led the study in partnership with EIAR, the Ethiopian Central Statistical Agency (CSA) and Diversity Array Technologies (DArT).
“When we compared DNA fingerprinting results with the results from a survey of farmers’ memory of the same plots, we saw that only 28% of farmers correctly named wheat varieties grown,” explained Dave Hodson, a principal scientist at CIMMYT and lead author of the study.
The resulting data helps national breeding programs adjust their seed production to meet demand, and national extension agents focus on areas that need better access to seed. It also helps scientists, policymakers, donors and organizations such as CIMMYT track their impact and prioritize funding, support, and the direction of future research.
“These results validate years of international investment and national policies that have worked to promote, distribute and fast-track the release of wheat varieties with the traits that farmers have asked for — particularly resistance to crop-destroying wheat rust disease,” said Hodson.
Ethiopia is the largest wheat producer in sub-Saharan Africa. The Ethiopian government recently announced its goal to become self-sufficient in wheat, and increasing domestic wheat production is a national priority.
Widespread adoption of these improved varieties, demonstrated by DNA fingerprinting, has clearly had a positive impact on both economic returns and national wheat production gains. Initial estimates show that farmers gained an additional 225,500 tons of production — valued at $50 million — by using varieties released after 2005.
The study results validate investments in wheat improvement made by international donor agencies, notably the Bill & Melinda Gates Foundation, the Ethiopian government, the UK Foreign, Commonwealth and Development Office (FCDO, formerly DFID), the US Agency for International Development (USAID) and the World Bank. Their success in speeding up variety release and seed multiplication in Ethiopia is considered a model for other countries.
“This is good news for Ethiopian farmers, who are seeing better incomes from higher yielding, disease-resistant wheat, and for the Ethiopian government, which has put a high national priority on increasing domestic wheat production and reducing dependence on imports,” said EIAR Deputy Director General Chilot Yirga.
The study also confirmed CGIAR’s substantial contribution to national breeding efforts, with 90% of the area sampled containing varieties released by Ethiopian wheat breeding programs and derived from CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm. Varieties developed using germplasm received from CIMMYT covered 87% of the wheat area surveyed.
“This research demonstrates that DNA fingerprinting can be applied at scale and is likely to transform future crop varietal adoption studies,” said Kindie Tesfaye, a senior scientist at CIMMYT and co-author of the study. “Additional DNA fingerprinting studies are now also well advanced for maize in Ethiopia.”
This research is supported by the Bill and Melinda Gates Foundation and CGIAR Fund Donors. Financial support was provided through the “Mainstreaming the use and application of DNA Fingerprinting in Ethiopia for tracking crop varieties” project funded by the Bill & Melinda Gates Foundation (Grant number OPP1118996).
Dave Hodson, International Maize and Wheat Improvement Center (CIMMYT), d.hodson@cgiar.org
ABOUT CIMMYT:
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org
In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.
“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”
In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.
As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.
“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”
This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.
A catalyst for South-South learning and cooperation
Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.
CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.
However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.
Fostering solutions
By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.
To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.
Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)
The COVID-19 global health crisis has disrupted food and agricultural systems around the world, affecting food production, supply chains, trade and markets, as well as people’s livelihoods and nutrition. Following an initial assessment in May 2020, the Food and Agriculture Organization of the United Nations (FAO) joined the International Fund for Agricultural Development (IFAD), the International Maize and Wheat Improvement Center (CIMMYT) and other CGIAR centers to conduct a comprehensive assessment of the impacts of the COVID-19 pandemic on Bangladesh’s agri-food system.
The report shares critical reflections and lessons learned, as well as providing detailed quantitative and qualitative information on all disruption pathways and possible recovery strategies.
According to the research team, the major visible impact was the decline of food demand due to the disruption of value chain actors in the food market and income shortages, especially among low- and daily wage-earning populations. This reduced demand lead in turn to reduced prices for agricultural goods, particularly perishable food items like vegetables, livestock and fish products.
Additionally, constraints on the movement of labor led to a disruption in agricultural services, including machinery and extension services, while domestic and international trade disruptions created input shortages and lead to price volatilities which increased production costs. This increase, coupled with reductions in production and output prices, essentially wiped farmer profits.
A farmer takes maize grain to a local reserve in Bangladesh. (Photo: Fahad Kaizer/FAO)
Building back a better food system
The latest report was launched at the same time as the CGIAR COVID-19 Hub in Bangladesh, which aims to build local resilience to the effects of the pandemic and support government-led recovery initiatives. At a panel discussion presenting the results of the assessment, researchers emphasized the importance of social safety net mechanisms and food demand creation, as well as the need for strong monitoring of food systems to ensure continued availability and affordability, and early detection of any critical issues.
The discussion centered on the need for public access to trustworthy information in order to raise awareness and instill confidence in the food they consume. One key recommendation which emerged is facilitating the digitalization of farming, which looks to re-connect farmers and consumers and build the food system back better. The accelerated development of digital platforms connecting farmers to markets with contactless delivery systems can ensure the safer flow of inputs and outputs while generating a higher share of consumer money for farmers. There is also a need to explore green growth strategies for reducing food waste — the creation and distribution of improved food storage systems, for instance — and circular nutrient initiatives to better utilize food waste as feed and bio manure.
Data has become a key driver of growth and change in today’s world.
There is growing recognition that data is indispensable for effective planning and decision-making in every sector. But the state of digital data in developing countries is far from satisfactory. In Asia, monitoring the Sustainable Development Goals (SDGs) remains a challenge due to a lack of accurate data.
At seed fair in Masvingo District, Zimbabwe, farmers browse numerous displays of maize, sorghum, millet, groundnuts and cowpeas presented by the seed companies gathered at Muchakata Business Centre.
The event — organized by the International Maize and Wheat Improvement Center (CIMMYT) as part of the R4 Rural Resilience Initiative — is promoting a range of stress-tolerant seeds, but there is a particular rush for the vitamin A-rich, orange maize on offer. Farmers excitedly show each other the distinctive orange packets they are purchasing and in no time all, this maize seed is sold out at the Mukushi Seeds stand.
“I first saw this orange maize in the plot of my neighbor, Florence Chimhini, who was participating in a CIMMYT project,” explains Dorcus Musingarimi, a farmer from Ward 17, Masvingo. “I was fascinated by the deep orange color and Florence told me that this maize was nutritious and contained vitamin A which helps to maintain normal vision and maintain a strong immune system.”
“I would like to grow it for myself and consume it with my family,” says Enna Mutasa, who also purchased the seed. “I heard that it is good for eyesight and skin — and it is also tasty.”
A customer shows off her orange maize purchases at a seed fair in Masvingo, Zimbabwe. (Photo: S. Chikulo/CIMMYT)
Knowledge transfer through mother trials
Florence Chimhini is one of ten farmers who has participated in the “mother trials” organized as part of the Zambuko/R4 Rural Resilience Initiative since 2018.
These trials were designed in a way that allows farmers to test the performance of six different maize varieties suited to the climatic conditions of their semi-arid region, while also growing them under the principles of conservation agriculture. Using this method, farmers like Chimhini could witness the traits of the different maize varieties for themselves and compare their performance under their own farm conditions.
An important outcome of the mother trials was a growing interest in new varieties previously unknown to smallholders in the area, such as the orange maize varieties ZS244A and ZS500 which are sold commercially by Mukushi Seeds.
“Recent breeding efforts have significantly advanced the vitamin A content of orange maize varieties,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “However, the orange color has previously been associated with relief food — which has negative connotations due to major food crises which brought low quality yellow maize to Zimbabwe.”
“Now that farmers have grown this maize in their own mother trial plots and got first-hand experience, their comments are overwhelmingly positive. The local dishes of roasted maize and maize porridge are tastier and have become a special treat for the farmers,” he explains.
“Though not as high yielding as current white maize varieties, growing orange maize under climate-smart conservation agriculture systems can also provide sustained and stable yields for farm families in Zimbabwe’s drought-prone areas.”
Grison Rowai, a seed systems officer at HarvestPlus outlines the benefits of an orange maize variety at a seed fair in Masvingo, Zimbabwe. (Photo: S.Chikulo/CIMMYT)
Addressing micronutrient deficiency
In Zimbabwe, at least one in every five children suffers from ailments caused by vitamin A deficiency, from low levels of concentration to stunting and blindness. The vitamin is commonly found in leafy green vegetables, fruits and animal products — sources that may be unavailable or unaffordable for many resource-poor households.
Staple maize grain, however, is often available to smallholder families and thus serves as a reliable means through which to provide additional micronutrient requirements through conventional biofortification. This allows people to improve their nutrition through the foods that they already grow and eat every day, says Lorence Mjere, a seed systems officer at HarvestPlus Zimbabwe.
The beta-carotene in orange maize gives it its distinctive orange color and provides consumers with up to 50% of their daily vitamin A requirements.
“Orange maize addresses hidden hunger in family diets by providing the much-needed pro-vitamin A which is converted to retinol upon consumption,” explains Thokozile Ndhlela, a maize breeder at CIMMYT. “In doing so, it helps alleviate symptoms of deficiency such as night blindness and poor growth in children, to name just a few.”
The success of the recent seed fairs shows that provitamin A maize is gaining momentum among smallholder farmers in Masvingo and its continued promotion will support all other efforts to improve food and nutrition security in rural farming communities of southern Africa.
There are decades when nothing happens and weeks when decades happen. So goes the old saw. In the social sciences, these “weeks” are often referred to as critical junctures. They are moments when the old rules of the game — the long-established ways of doings things — go out the window and new patterns begin to emerge. The breadbasket states of northwestern India seem to be having one of those weeks.
After years of research and advocacy that appeared to be making little headway, researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) are seeing a sudden and dramatic increase in the adoption of some of the technologies and techniques they have long argued are necessary in this region, including direct-seeding of rice, crop diversification and the adoption of Happy Seeder technology.
A case of unintended consequences
In March 2020 the Indian government decreed a national lockdown in response to the COVID-19 crisis. This triggered the largest internal migration since partition, as millions of migrant workers and day laborers scrambled to return to their home villages. Estimates suggest that up to 1 million workers left the northwestern states of Haryana and Punjab alone.
Agriculture in the region is dominated by the labor- and input-intensive production of rice and wheat in rotation. This system is the most productive per hectare in India, but it is also extremely sensitive to external shocks. The success of both the rice and wheat crop depend on the timely transplantation of rice in mid-June.
As the results of a recently published study demonstrate, delays in this schedule can have devastating downstream effects not only on rice and wheat yields, but on regional air quality too. Models of the worst-case delay scenario predicted a total economic loss of nearly $1.5 billion. Moreover, they predicted that, if no action were taken, up to 80% of rice residue would be burned later in the autumn, when cooler conditions contribute to seasonally poor air quality.
Such an exacerbation of the region’s air pollution would be dire under normal conditions. During a global pandemic of a primarily respiratory illness, it could be devastating.
Fortunately, solutions and technologies that CIMMYT researchers had been studying for decades, along with ICAR, Punjab Agricultural University (PAU) and other national partners, promised to help ward off the worst effects of the crisis. The adoption of direct-seeding technology could help reduce the labor-intensiveness of rice production, crop diversification could minimize the economic impacts of the crisis, and the use of Happy Seeder technology could alleviate the practice of residue burning.
A farmer burns rice residues after harvest to prepare the land for wheat planting around Sangrur, Punjab, India. (Photo: Neil Palmer/CIAT)
Decades of work pay off
The study, co-authored by researchers at CIMMYT, ICAR and the International Rice Research Institute (IRRI), relied on a sophisticated ex ante model of four different rice-transplanting delay scenarios. It is published in the November 2020 issue of Agricultural Systems.
However, given the time-sensitivity and high-stakes of the issue, the lead researchers did not wait for the articles publication to press their case. Earlier this year they circulated their initial findings and recommendations to policymakers via their national partners. Notably, after receiving a one-pager summarizing these, the Chief Minister of Punjab released a video address echoing their points.
“Policymakers realized the need for these kinds of solutions,” says Balwinder Singh, a CIMMYT scientist and lead author of the paper. They then moved quickly to incentivize their adoption through various mechanisms, such as subsidizing direct-seeding drills and ensuring the timely availability of machines and other inputs.
Singh and Jat have been carrying out a multi-year survey to assess farmer willingness to adopt Happy Seeder technology and have documented a drastic increase in farmer interest in the technology during 2020. For Jat, this highlights the power of partnerships. “If you don’t include your partners from the beginning, they will not own what you say,” he argues.
Such changes are to be celebrated not only as an important response to the current labor shortage, but also as key to ensuring the long-term sustainability of agricultural production in the region, having important implications for the stewardship of water resources, air pollution and soil health.
“Policies encouraging farming practices that save resources and protect the environment will improve long-term productivity and sustainability of the nation,” says S. K. Chaudhari, deputy director general for Natural Resource Management at ICAR.
A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
Warding off catastrophe
Although the agricultural cycle is not yet over, and early data are still partial, Singh and Jat estimate that thanks to the dramatic adoption of alternative agricultural practices this year, their worst-case estimates have been avoided. Given the rapid response from both policymakers and farmers, the real-world effects of the COVID-19 labor crisis are likely closer to the mid-range severity scenarios of their analysis. Indeed, early estimates predict no rice yield losses and minor-to-no wheat yield losses over baseline. For the researchers, the relief is palpable and the lessons couldn’t be clearer.
“These technologies were there for decades, but they were never appreciated because everything was normal,” says Jat. “This clearly indicates a need for investment in the technology and the research. You may encounter a problem at any time, but you cannot generate the technology overnight.”