Skip to main content

It’s Rural Women’s Day, from dawn to dusk

Over 70% of rural women in India are engaged in agriculture. Women carry out a large portion of farm work, as cultivators and agricultural laborers, but in most cases they are not even counted and recognized as farmers. Millions of Indian rural women also carry the burden of domestic work, a job that is undervalued and unrecognized economically.

On the International Day of Rural Women, October 15, the focus is on their contributions to growing food and feeding families. The often invisible hands of rural women play a pivotal role in food security and sustaining rural communities.

Today, we have a glimpse at the daily life of farmer Anita Naik.

She hails from the village of Badbil, in the Mayurbhanj district of India’s Odisha state, surrounded by small hills and the lush greenery of Simlipal National Park.

Naik belongs to a tribal community that has long lived off the land, through farming and livestock rearing. Smallholder farmers like her grow rice, maize and vegetables in traditional ways — intensive labor and limited yield — to ensure food for their families.

Married at a young age, Naik has a son and a daughter. Her husband and her son are daily-wage laborers, but the uncertainty around their jobs and her husband’s chronic ill health means that she is mostly responsible for her family’s wellbeing. At 41, Naik’s age and her stoic expression belie her lifelong experience of hard work.

The small hours

Naik’s day begins just before dawn, a little past 4 a.m., with household chores. After letting out the livestock animals — goats, cows, chicken and sheep — for the day, she sweeps the house’s, the courtyard and the animal shed. She then lights the wood stove to prepare tea for herself and her family, who are slowly waking up to the sound of the crowing rooster. Helped by her young daughter, Naik feeds the animals and then washes the dirty dishes from the previous evening. Around 6:30 or 7 a.m., she starts preparing other meals.

During the lean months — the period between planting and harvesting — when farm work is not pressing, Naik works as a daily-wage worker at a fly ash brick factory nearby. She says the extra income helps her cover costs during emergencies. “[I find it] difficult to stay idle if I am not working on the farm,” she says. However, COVID-19 restrictions have affected this source of income for the family.

Once her morning chores are over, Naik works on her small plot of land next to her house. She cultivates maize and grows vegetables, primarily for household consumption.

Naik started growing maize only after joining a self-help group in 2014, which helped her and other women cultivate hybrid maize for commercial production on leased land. They were supported by the International Maize and Wheat Improvement Center (CIMMYT) through the Cereal Systems Initiative for South Asia (CSISA) maize intensification program.

Every year from June to October, Naik also work on this five-acre leased farmland, along with the other group members. She is involved from planting to harvest — and even in marketing.

“There are eleven women members in our self-help group, Biswa Jay Maa Tarini. Thanks to training, awareness and handholding by CSISA and partners, an illiterate like me is currently the president of our group,” said an emotional Anita Naik.

Anita Naik (first from left) meets with her self-help group Biswa Jay Maa Tarini in village of Badbil, in the Mayurbhanj district of India’s Odisha state. Together, they work on a five-acre lease land, where they grow maize commercially. (Photo: CIMMYT)
Anita Naik (first from left) meets with her self-help group Biswa Jay Maa Tarini in village of Badbil, in the Mayurbhanj district of India’s Odisha state. Together, they work on a five-acre lease land, where they grow maize commercially. (Photo: Nima Chodon/CIMMYT)

Not quite done yet

A little further away from her house, Naik has a small field where she grows rice with the help of her husband and son. After checking in on her maize crop on the leased land, Naik works in her paddy the rest of the day. She tends to her land diligently, intent on removing the weeds that keep springing up again and again in the monsoon season.

“It is back-breaking work, but I have to do it myself as I cannot afford to employ a laborer,” Naik laments.

Naik finally takes a break around 1 p.m. for lunch. Some days, particularly in the summer when exhaustion takes over, she takes a short nap before getting back to removing weeds in the rice fields.

She finally heads home around 4 p.m. At home, she first takes the animals back into their shed.

Around 6 p.m., she starts preparing for dinner. After dinner, she clears the kitchen and the woodstove before calling it a night and going to bed around 8 or 9 p.m.

“The day is short and so much still needs to be done at home and in the field,” Naik says after toiling from early morning until evening.

Tomorrow is a new day, but chores at home and the work in the fields continue for Naik and farmers like her.

Anita Naik lights up her wood fire stove to prepare food, at her family home in the village of Badbil, in the Mayurbhanj district of India’s Odisha state. (Photo: CIMMYT)
Anita Naik lights up her wood fire stove to prepare food, at her family home in the village of Badbil, in the Mayurbhanj district of India’s Odisha state. (Photo: Nima Chodon/CIMMYT)

Paradigm change

Traditionally farmers in and around Naik’s village cultivated paddy in their uplands for personal consumption only, leaving the land fallow for the rest of the year. Growing rice is quite taxing as paddy is a labor-intensive crop at sowing, irrigating, weeding and harvesting. With limited resources, limited knowledge and lack of appropriate machinery, yields can vary.

To make maximum use of the land all year through and move beyond personal consumption and towards commercial production, CIMMYT facilitated the adoption of maize cultivation. This turned out to be a gamechanger, transforming the livelihoods of women in the region and often making them the main breadwinner in their families.

In early 2012, through the CSISA project, CIMMYT began its sustainable intensification program in some parts of Odisha’s plateau region. During the initial phase, maize stood out as an alternative crop with a high level of acceptance, particularly among women farmers.

Soon, CIMMYT and its partners started working in four districts — Bolangir, Keonjhar, Mayurbhanj and Nuapada — to help catalyze the adoption of maize production in the region. Farmers shifted from paddy to maize in uplands. At present, maize cultivation has been adopted by 7,600 farmers in these four districts, 28% of which are women.

CIMMYT, in partnership with state, private and civil society actors, facilitated the creation of maize producers’ groups and women self-help groups. Getting together, farmers can standardize grain quality control, aggregate production and sell their produce commercially to poultry feed mills.

This intervention in a predominantly tribal region significantly impacted the socioeconomic conditions of women involved in this project. Today, women like Anita Naik have established themselves as successful maize farmers and entrepreneurs.

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

Cover photo: Farmer Anita Naik stands for a photograph next to her maize field. (Photo: Nima Chodon/CIMMYT)

Aussie drives global research that underpins Australian wheat industry

New CIMMYT maize hybrids available from Southern Africa breeding program

The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of elite, improved maize hybrids to partners for commercialization in southern Africa and similar agro-ecological zones. National agricultural research systems (NARS) and seed companies are invited to apply for licenses to register and commercialize these new hybrids, in order to bring the benefits of the improved seed to farming communities.

The deadline to submit applications to be considered during the first round of allocations is October, 24 2021. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available CIMMYT maize hybrids from the Latin America breeding program, application instructions and other relevant material is available in the CIMMYT Maize Product Catalog and in the links provided below.

Product Profile Newly available CIMMYT hybrids Basic traits Nice-to-have / Emerging traits Trial summary
Southern Africa Product Profile 1A

(SA-PP1A)

CIM19SAPP1A-23

(CZH16277)

Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV MLN, Striga, FAW Appendix 2
CIM19SAPP1A-24 (CZH16278)
Southern Africa Product Profile 1B

(SA-PP1B)

CIM20SAPP1B-15

(CZH17098)

Late-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV MLN, Striga, FAW Appendix 3
Southern Africa Product Profile 2

(SA-PP2)

CIM19SAPP2-35

(CZH16413)

Early-maturing, white, high-yielding, drought tolerant, NUE, resistant to GLS, MSV, TLB FAW, Striga, FAW, Downy mildew Appendix 4

 

CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization.

Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Scientists bridge theory and practice to boost climate resilience in wheat

With the past decade identified as the warmest on record and global temperatures predicted to rise by as much as 2 degrees Celsius over preindustrial levels by 2050, the world’s staple food crops are increasingly under threat.

A new review published this month in the Journal of Experimental Botany describes how researchers from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators are boosting climate resilience in wheat using powerful remote sensing tools, genomics and big data analysis. Scientists are combining multiple approaches to explore untapped diversity among wheat genetic resources and help select better parents and progeny in breeding.

The review — authored by a team of 25 scientists from CIMMYT, Henan Agricultural University, the University of Adelaide and the Wheat Initiative — also outlines how this research can be harnessed on a global level to further accelerate climate resilience in staple crops.

“An advantage of understanding abiotic stress at the level of plant physiology is that many of the same tools and methods can be applied across a range of crops that face similar problems,” said first author and CIMMYT wheat physiologist Matthew Reynolds.

Abiotic stresses such as temperature extremes and drought can have devastating impacts on plant growth and yields, posing a massive risk to food security.

Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.
Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.

Addressing research gaps

The authors identified nine key research gaps in efforts to boost climate resilience in wheat, including limited genetic diversity for climate resilience, a need for smarter strategies for stacking traits and addressing the bottleneck between basic plant research and its application in breeding.

Based on a combination of the latest research advances and tried-and-tested breeding methods, the scientists are developing strategies to address these gaps. These include:

  • Using big data analysis to better understand stress profiles in target environments and design wheat lines with appropriate heat and drought adaptive traits.
  • Exploring wheat genetic resources for discovery of novel traits and genes and their use in breeding.
  • Accelerating genetic gains through selection techniques that combine phenomics with genomics.
  • Crowd-sourcing new ideas and technologies from academia and testing them in real-life breeding situations.

These strategies will be thoroughly tested at the Heat and Drought Wheat Improvement Network (HeDWIC) Hub under realistic breeding conditions and then disseminated to other wheat breeding programs around the world facing similar challenges.

One factor that strongly influences the success and acceleration of climate resilience technologies, according to Reynolds, is the gap between theoretical discovery research and crop improvement in the field.

“Many great ideas on how to improve climate-resilience of crops pile up in the literature, but often remain ‘on the shelf’ because the research space between theory and practice falls between the radar of academia on the one hand, and that of plant breeders on the other,” Reynolds explained.

Translational research — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields and aims to bridge this gap.

Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.
Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.

The impacts of this research, conducted under HeDWIC — a project led by CIMMYT in partnership with experts around the world — will be validated on a global scale through the International Wheat Improvement Network (IWIN), with the potential to reach at least half of the world’s wheat-growing area.

The results will benefit breeders and researchers but, most importantly, farmers and consumers around the world who rely on wheat for their livelihoods and their diets. Wheat accounts for about 20% of all human calories and protein, making it a pillar of food security. For about 1.5 billion resource-poor people, wheat is their main daily staple food.

With the world population projected to rise to almost ten billion by 2050, demand for food is predicted to increase with it. This is especially so for wheat, being a versatile crop both in terms of where it can grow and its many culinary and industrial uses. However, current wheat yield gains will not meet 2050 demand unless serious action is taken. Translational research and strategic breeding are crucial elements in ensuring that research is translated into higher and stable yields to meet these challenges.

Read the full study:
Harnessing translational research in wheat for climate resilience

Cover photo: Wheat fields at CIMMYT’s experimental stations near Ciudad Obregón, Sonora state, Mexico. (Photo: M. Ellis/CIMMYT)

FG authorizes deregulation of TELA maize in Nigeria

Nigeria’s National Biosafety Management Agency (NBMA) has approved the commercialization of TELA Maize seeds—a drought-tolerant and insect-protected variety aimed at enhancing food security in sub-Saharan Africa.

The TELA Maize Project in Nigeria is part of an international consortium coordinated by the African Agricultural Technology Foundation (AATF), the International Maize and Wheat Improvement Centre (CIMMYT), and the National Agricultural Research Systems of seven countries, including Ethiopia, Kenya, Mozambique, Nigeria, South Africa, Tanzania, and Uganda.

Read more: https://guardian.ng/news/fg-authorizes-deregulation-of-tela-maize-in-nigeria/

Celebrating 10 years of the Borlaug Institute for South Asia

BISA and CIMMYT gather for a virtual 10 year celebration
BISA and CIMMYT gather for a virtual 10 year celebration.

A decade ago, a foundation was laid with a vision to secure food, nutrition, livelihoods, and the environment in South Asia. The Borlaug Institute of South Asia (BISA) was formed and the principles were set following the path of Norman Borlaug to translate the agrarian challenges into opportunities by collaborating with the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR). BISA was established as an independent, non-profit research organization.

BISA anniversary Borlaug statue

To commemorate the 10th anniversary of BISA, Bram Govaerts, Director General, CIMMYT-BISA, gathered BISA staff for a virtual celebration on 5 October 2021. He congratulated BISA colleagues and said “[…] BISA has continued to expand Norman Borlaug’s vision and legacy. It has […] been committed and achieved excellence in science, seeds and partnerships by touching lives of millions of farmers and consumers.”

“Perhaps one of the most impactful outcomes of BISA’s work has been its contribution to build a strong and wide network for evaluating and disseminating new high yielding and climate-resilient wheat varieties for southern Asia in close partnership with ICAR and national agricultural research systems. CIMMYT-BISA has not only contributed towards this but will also make sure that India’s farmers are the happiest. Efforts will and have been made towards their income generation, livelihood for families, a clean environment and building of future agricultural resilience,” he added.

BISA milestones and achievements

Pramod Aggarwal, Regional Program Leader, BISA and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), gave suggestions for the way forward and BISA’s future collaborations. He said, “It’s time to strengthen BISA and further expand it to other South Asian countries.”

Arun Joshi, Managing Director, BISA, spoke about the achievements of BISA throughout the last decade and about the establishment of the ‘Farms of the Future’. “BISA farms are equipped with state-of-the-art technology. BISA’s no residue burning, efficient resource management, precision phenotyping, climate resilient germplasm, quality seed and capacity development activities are just a few examples of BISA’s successful programs,” he said.

“BISA has been scaling climate smart agriculture technologies not only in Indian villages but to other countries of South Asia, as well, and has supported African colleagues in capacity development.” Joshi recalled the support provided by numerous funding partners, by ICAR (Government of India), state governments (Punjab, Bihar, Madhya Pradesh, Maharashtra), other governmental institutions, CIMMYT’s Board of Trustees and Management Committee team members and different research programs to strengthen BISA.

BISA Ludhiana team gathers for a celebration
BISA’s Ludhiana team gathers for a celebration

Celebrations galore  

In addition to the virtual celebration with the leadership of BISA and CIMMYT, numerous teams scattered across India celebrated the success and fruitful journey of BISA. The teams at BISA farms in Jabalpur (Madhya Pradesh), Pusa (Bihar), and Ludhiana (Punjab) marked the occasion by gathering at a COVID-19-appropriate distance and paid regards to Norman Borlaug and spoke about the objectives and vision of BISA.

BISA Jabalpur team gathers for a celebration
BISA’s Jabalpur team gathers for a celebration

The New Delhi team celebrated by garlanding the statue of Borlaug, that stands in front of the office of BISA based at the National Agriculture Science Complex (NASC).

Capturing the decade-long journey

The ten-year journey of BISA is captured in “A Decade of Research in Borlaug Institute for South Asia (BISA) 2011-2021,” a research highlights report that was unveiled during the virtual celebration and that will soon be available online. Arun Joshi explained that the document encapsulates the spirit of BISA and its achievements throughout the last ten years. Its sixteen themes define the work of BISA and its reach across South Asia.

Special celebratory BISA report to mark its 10 years of success

The report also informs of BISA’s outreach activities throughout the last decade and its impact on climate resilient agriculture. Themes such as ‘Managing Rice Residue Burning’, ‘Climate Smart Village Approach’, ‘Precision Phenotyping in Wheat Breeding’, ‘Developing Improved Crop Insurance Products’, ‘Mainstreaming Gender in Climate-Resilient Agriculture’ reveal how BISA scaled up these approaches with its advanced technology mechanisms. In addition, every theme captures information related to funding and research partners.

Overall, the ten-year report is a robust document which showcases how millions of farmers in South Asia have benefitted from the strong scientific partnership of BISA and national programs.

Taming wheat blast

As wheat blast continues to infect crops in  countries around the world, researchers are seeking ways to stop its spread. The disease — caused by the Magnaporthe oryzae pathotype Triticum — can dramatically reduce crop yields, and hinder food and economic security in the regions in which it has taken hold.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and other international institutions looked into the potential for wheat blast to spread, and surveys existing tactics used to combat it. According to them, a combination of methods — including using and promoting resistant varieties, using fungicides, and deploying strategic agricultural practices — has the best chance to stem the disease.

The disease was originally identified in Brazil in 1985. Since then, it has spread to several other countries in South America, including Argentina, Bolivia and Paraguay. During the 1990s, wheat blast impacted as many as three million hectares in the region. It continues to pose a threat.

Through international grain trade, wheat blast was introduced to Bangladesh in 2016. The disease has impacted around 15,000 hectares of land in the country and reduced average yields by as much as 51% in infected fields.

Because the fungus’ spores can travel on the wind, it could spread to neighboring countries, such as China, India, Nepal and Pakistan — countries in which wheat provides food and jobs for billions of people. The disease can also spread to other locales via international trade, as was the case in Bangladesh.

“The disease, in the first three decades, was spreading slowly, but in the last four or five years its pace has picked up and made two intercontinental jumps,” said Pawan Singh, CIMMYT’s head of wheat pathology, and one of the authors of the recent paper.

In the last four decades, wheat blast has appeared in South America, Asia an Africa. (Video: Alfonso Cortés/CIMMYT)

The good fight

Infected seeds are the most likely vector when it comes to the disease spreading over long distances, like onto other continents. As such, one of the key wheat blast mitigation strategies is in the hands of the world’s governments. The paper recommends quarantining potentially infected grain and seeds before they enter a new jurisdiction.

Governments can also create wheat “holidays”, which functionally ban cultivation of wheat in farms near regions where the disease has taken hold. Ideally, this would keep infectable crops out of the reach of wheat blast’s airborne and wind-flung spores. In 2017, India banned wheat cultivation within five kilometers of Bangladesh’s border, for instance. The paper also recommends that other crops — such as legumes and oilseed — that cannot be infected by the wheat blast pathogen be grown in these areas instead, to protect the farmers’ livelihoods.

Other tactics involve partnerships between researchers and agricultural workers. For instance, early warning systems for wheat blast prediction have been developed and are being implemented in Bangladesh and Brazil. Using weather data, these systems alert farmers when the conditions are ideal for a wheat blast outbreak.

Researchers are also hunting for wheat varieties that are resistant to the disease. Currently, no varieties are fully immune, but a few do show promise and can partially resist the ailment depending upon the disease pressure. Many of these resistant varieties have the CIMMYT genotype Milan in their pedigree.

“But the resistance is still limited. It is still quite narrow, basically one single gene,” Xinyao He, one of the co-authors of the paper said, adding that identifying new resistant genes and incorporating them into breeding programs could help reduce wheat blast’s impact.

Wheat spikes damaged by wheat blast. (Photo: Xinyao He/CIMMYT)
Wheat spikes damaged by wheat blast. (Photo: Xinyao He/CIMMYT)

The more the merrier

Other methods outlined in the paper directly involve farmers. However, some of these might be more economically or practically feasible than others, particularly for small-scale farmers in developing countries. Wheat blast thrives in warm, humid climates, so farmers can adjust their planting date so the wheat flowers when the weather is drier and cooler. This method is relatively easy and low-cost.

The research also recommends that farmers rotate crops, alternating between wheat and other plants wheat blast cannot infect, so the disease will not carry over from one year to the next. Farmers should also destroy or remove crop residues, which may contain wheat blast spores. Adding various minerals to the soil, such as silicon, magnesium, and calcium, can also help the plants fend off the fungus. Another option is induced resistance, applying chemicals to the plants such as jasmonic acid and ethylene that trigger its natural resistance, much like a vaccine, Singh said.

Currently, fungicide use, including the treatment of seeds with the compounds, is common practice to protect crops from wheat blast. While this has proven to be somewhat effective, it adds additional costs which can be hard for small-scale farmers to swallow. Furthermore, the pathogen evolves to survive these fungicides. As the fungus changes, it can also gain the ability to overcome resistant crop varieties. The paper notes that rotating fungicides or developing new ones — as well as identifying and deploying more resistant genes within the wheat — can help address this issue.

However, combining some of these efforts in tandem could have a marked benefit in the fight against wheat blast. For instance, according to Singh, using resistant wheat varieties, fungicides, and quarantine measures together could be a time-, labor-, and cost-effective way for small-scale farmers in developing nations to safeguard their crops and livelihoods.

“Multiple approaches need to be taken to manage wheat blast,” he said.

Govt mulling mechanization to boost jute production

The Bangladeshi government is thinking of expanding the work of the Cereal Systems Initiative for South Asia-Mechanization Extension Activity (CSISA-MEA) project in Bogra, Jessore, Faridpur and Cox’s Bazar to the rest of the country.

The joint initiative, launched in October 2019 and funded by the United States Agency for International Development (USAID) Feed the Future initiative, seeks to promote the mechanization of jute production across Bangladesh, among other issues.

Read more: https://www.dhakatribune.com/bangladesh/2021/09/29/will-mechanization-boost-the-jute-sector

Climate-smart strategy for weed management proves to be extremely effective

Rice-wheat cropping rotations are the major agri-food system of the Indo-Gangetic Plains of South Asia, occupying the region known as the “food basket” of India. The continuous rice-wheat farming system is deceptively productive, however, under conventional management practices.

Over-exploitation of resources leaves little doubt that this system is unsustainable, evidenced by the rapid decline in soil and water resources, and environmental quality. Furthermore, continuous cultivation of the same two crops over the last five decades has allowed certain weed species to adapt and proliferate. This adversely affects resource-use efficiency and crop productivity, and has proven to negatively influence wheat production in the Western Indo-Gangetic Plains under conventional wheat management systems.

Studies suggest weed infestations could reduce wheat yields by 50-100% across the South Asian Indo-Gangetic Plains. Globally, yield losses from weeds reach 40%, which is more than the effects of diseases, insects, and pests combined.

Herbicides are not just expensive and environmentally hazardous, but this method of chemical control is becoming less reliable as some weeds become resistant to an increasing number common herbicides. Considering the food security implications of weed overgrowth, weed management is becoming increasingly important in future cropping systems.

How can weeds be managed sustainably?

Climate-smart agriculture-based management practices are becoming a viable and sustainable alternative to conventional rice-wheat cropping systems across South Asia, leading to better resource conservation and yield stability. In addition to zero-tillage and crop residue retention, crop diversification, precise water and nutrient management, and timing of interventions are all important indicators of climate-smart agriculture.

In a recently published 8-year study, scientists observed weed density and diversity under six different management scenarios with varying conditions. Conditions ranged from conventional, tillage-based rice-wheat system with flood irrigation (scenario one), to zero-tillage-based maize-wheat-mung bean systems with subsurface drip irrigation (scenario 6). Each scenario increased in their climate-smart agriculture characteristics all the way to fully climate-smart systems.

At the end of 8 years, scenario six had the lowest weed density, saw the most abundant species decrease dramatically, and seven weed species vanish entirely.  Scenario one, with conventional rice-wheat systems with tillage and flooding, experienced the highest weed density and infestation. This study highlights the potential of climate-smart agriculture as a promising solution for weed suppression in northwestern India.

Read the full study: Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains

Cover image: Farmer weeding in a maize field in India. (Photo: M. Defreese/CIMMYT)

The UN Food Systems Summit has arrived

On September 23, 2021, the United Nations is convening a Food Systems Summit (UNFSS) as part of the Decade of Action to achieve the Sustainable Development Goals (SDGs) by 2030. The Summit will launch bold new actions to deliver progress on all 17 SDGs, each of which relies in part on healthier, more sustainable and equitable food systems.

According to the UN, the term “food system” encompasses every person and every process involved in growing, raising or making food, and getting it into your stomach. The health of our food systems profoundly affects the health of our bodies, as well as the health of our environment, our economies and our cultures. When they function well, food systems have the power to bring us together as families, communities and nations.

As the world’s largest public agricultural research network, CGIAR has made invaluable contributions to global efforts to reach these 17 goals.  CIMMYT plays an important role in these efforts.

Throughout September, in recognition of the historic UN Summit, we are highlighting the impact of CIMMYT research to attain the SDGs, in collaboration with the broader CGIAR and development community.

From conservation agriculture to reaching women and marginalized communities, we hope these social media snapshots help you discover the vast experience, capacity and impact of our research.

Take action

Help us share CIMMYT’s social media messages for the Food Systems Summit.

CIMMYT’s social media toolkit for the Food Systems SummitRegister for the Food Systems Summit and join the conversation online using #FoodSystems4SDGs.

Follow CIMMYT on social media: Facebook, Twitter, LinkedIn, Instagram, YouTube, Flickr, SlideShare.

Cover photo: Across the globe, maize and wheat make up a large part of human diets and are an integral element of a healthy and sustainable food system. (Photo: A. Cortés/CIMMYT)

A new tool to strengthen the fight against fall armyworm in Asia

Together with the United States Agency for International Development (USAID) and Feed the Future, the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize (MAIZE) are pleased to announce the release of “Fall Armyworm in Asia: A Guide for Integrated Pest Management.”

The publication builds on intensive, science-based responses to fall armyworm in Africa and Asia.

Fall armyworm in Asia: A guide for integrated pest management“I have encountered few pests as alarming as the fall armyworm,” wrote USAID Chief Scientist Rob Bertram in the guide’s Foreword. “This publication … offers to a broad range of public and private stakeholders — including national plant protection, research and extension professionals — evidence-based approaches to sustainably manage fall armyworm,” Bertram adds.

“Partners from a wide array of national and international institutions have contributed to the mammoth task of formulating various chapters in the guide,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and of MAIZE. “While the publication is focused on Asia, it provides an updated understanding of various components of fall armyworm integrated pest management that could also benefit stakeholders in Africa.”

In January 2018, CIMMYT and USAID published a similar guide on integrated pest management of fall armyworm in Africa, which reached a large number of stakeholders globally and is widely cited. Prasanna spearheaded the development and publication of both guides.

The current publication also follows CIMMYT’s announcement of three fall armyworm-tolerant elite maize hybrids for sub-Saharan Africa.

CIMMYT becomes partner of choice in PepsiCo and Grupo Trimex’s sustainability strategy

Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, Pénjamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)
Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, Pénjamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)

A new partnership announced today between the International Maize and Wheat Improvement Center (CIMMYT), PepsiCo and Grupo Trimex will greatly contribute to scale out sustainable farming practices in the central Mexican states of Guanajuato and Michoacán, which together form the country’s second wheat producing region.

The project Agriba Sustentable — a shortened reference for Bajío Sustainable Agriculture — will promote the adoption of conservation agriculture-based sustainable intensification practices among local farmers who will have access to PepsiCo’s wheat grain supply chain via Grupo Trimex.

“A part of the wheat that we use in Mexico for our products comes from the Bajío region,” said Luis Treviño, Director of Sustainability at PepsiCo Latin America. “However, agricultural production in the region has needs and areas of opportunity that we were able to identify thanks to the experience and deep knowledge that CIMMYT has developed over the years.”

Agriba Sustentable is the latest example of the new business models that CIMMYT is exploring as part of its integrated development approach to agri-food systems transformation, which seeks to engage multiple public, private and civil sector collaborators in cereals value chain development and enhancement efforts.

CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, Pénjamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)
CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, Pénjamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)

“The project’s specific goal is to improve the sustainability of the wheat production system in the Bajío region by enabling the adoption of technological innovations and sustainable production practices among at least 200 farmers in the Grupo Trimex supply chain during the first year of implementation, and to gradually scale out to reach many more farmers,” said Bram Govaerts, Director General of CIMMYT.

CIMMYT’s long-term field trials in Mexico have shown that conservation agriculture-based sustainable intensification practices raise wheat yields by up to 15% and cut greenhouse gas emissions by up to 40%.

“The farming practices that CIMMYT promotes reduce environmental impact,” said Mario Ruiz, Sourcing Manager of Grupo Trimex. “Conservation agriculture can cut CO2 emissions by up to 60% from reduced diesel consumption, lower fuel use by up to 70% and water consumption by 30%.”

According to PepsiCo Mexico, Agriba Sustentable is an important step for its global vision PepsiCo Positive (pep+), which seeks to offset its agricultural footprint by promoting sustainable farming on 2.8 million hectares globally. The plan also aims to improve the livelihoods of 250,000 people who are part of their global agricultural supply chain and to source sustainably 100% of the company’s key ingredients by 2030.


FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, PLEASE CONTACT:

Ricardo Curiel, Senior Communications Specialist for Mexico, CIMMYT. r.curiel@cgiar.org, +52 (55) 5804 2004 ext. 1144

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Mechanization takes off

In a small workshop in Ethiopia’s Oromia region, mechanic Beyene Chufamo and his technician work on tractor repairs surrounded by engines and spare machinery parts.

Established in Meki in 2019, Beyene’s workshop provides maintenance, repair and overhaul services for two-wheel tractors and their accessories, and it acts as a point of sale for spare parts and implements such as planters, threshers and water pumps. Beyene also works as a tractor operation instructor, providing trainings on driving, planter calibration and how to use threshers and shellers.

The city already had a well-established mechanics and spare parts industry based around four-wheel tractors and combine harvester hire services, as well as motorcycle and tricycle transportation services. But now, as market demand for two-wheel tractor hire services rises among smallholder farming communities and entrepreneurial youth race to become local service providers, business is booming.

A two-wheel tractor with an improved driver seat and hydraulic tipping trailer system sits in from of Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)
A two-wheel tractor with an improved driver seat and hydraulic tipping trailer system sits in from of Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)

Building a business

Beyene’s business has benefitted from support from the International Maize and Wheat Improvement Center (CIMMYT) and the German development agency GIZ since its formation. Beyene was initially trained as a mechanic through the Innovative Financing for Sustainable Mechanization in Ethiopia (IFFSMIE) project, which promotes small-scale mechanization in the area through demand creation, innovative financing mechanisms and the development of private sector-driven business. He went on to receive additional technical and business skills development training to enable him to run his own enterprise.

His ongoing association with the project and its new leasing scheme has helped Beyene establish connections with local service providers, while also improving his own skills portfolio. Currently, he helps maintain the smooth operation of machinery and equipment at CIMMYT project sites in Amhara, Oromia and Tigray. This involves everything from training other local mechanics and troubleshooting for service providers, to facilitating the delivery of aftersales services in project areas.

In addition to this, Beyene receives orders for maintenance, repair and overhaul services for two-wheel tractors and implements. He sources replacement parts himself, though the cost of purchase is covered by his clients. In some cases — and depending on the distance travelled — CIMMYT covers the transport and accommodation costs while Beyene services equipment from service providers and sources equipment from local distributors. When individual parts are not readily available, he often purchases whole two-wheel tractors from the Metals and Engineering Corporation (METEC) and breaks them down into individual parts.

Tools and spare machinery parts lie on the ground during at Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)
Tools and spare machinery parts lie on the ground during at Beyene Chufamo’s workshop in Meki, Ethiopia. (Photo: CIMMYT)

The way forward for sustainable mechanization

“Mechanization take-off relies heavily on skilled staff and appropriate infrastructure to perform machinery diagnostics, repair and maintenance,” said Rabe Yahaya, a CIMMYT agricultural mechanization expert based in Ethiopia.

“Agricultural machinery should be available and functional any time a famer wants to use it — and a workshop can support this. Beyene’s work in Meki reflects the way forward for sustainable mechanization success in Ethiopia.”

Creating an agricultural machinery workshop from scratch was a challenging task, Rabe explained, but support and guidance from partners like CIMMYT and GIZ helped to make it happen. “Also, Beyene’s commitment and flexibility to travel to CIMMYT project sites anywhere and at any time — even on bad roads in difficult weather conditions — really helped him achieve his goal.”

A sign hangs on the entrance of Beyene Chufamo’s agricultural machinery workshop in Meki, Ethiopia. (Photo: CIMMYT)
A sign hangs on the entrance of Beyene Chufamo’s agricultural machinery workshop in Meki, Ethiopia. (Photo: CIMMYT)

Beyene is excited about how quickly the local two-wheel tractor market has grown in the past few years. He currently has 91 service providers as regular clients at CIMMYT project sites — up from just 19 in 2016.

Trends show that — with support from local microfinance schemes and the removal of domestic taxes on imported machinery — aftersales services will continue to evolve, and the number of service providers will rise alongside increased market demand for mechanization services, both at farm level and beyond.

With this in mind, Beyene aims to remain competitive by diversifying the services offered at his workshop and expanding his business beyond CIMMYT project sites. As a starting point he plans to hire more staff, altering his organizational structure so that each mechanic or technician is dedicated to working with a specific type of machinery. Longer term, he hopes to transform his workshop into one that can also service four-wheel tractors and combine harvesters, and establish a mobile dispatch service team that can reach more locations in rural Ethiopia.

For now, however, he simply remains grateful for CIMMYT’s support and investment in his business. “I am happy that I have been able to secure an income for myself, my family and my staff through this workshop, which has changed our lives in such a positive way.”

Cover photo: Workshop owner Beyene Chufamo (left) speaks to CIMMYT researcher Abrham Kassa during a visit to Meki, Ethiopia. (Photo: CIMMYT)

Multi-trait genomic-enabled prediction enhances accuracy in multi-year wheat breeding trials

A CIMMYT researcher and a field worker lay out wheat seed for planting at the center's headquarters in Texcoco, Mexico. In experimental trials, hundreds or thousands of wheat lines are planted for evaluation, each in small quantities, and so they are carefully laid out and sown by hand. (Photo: CIMMYT)
A CIMMYT researcher and a field worker lay out wheat seed for planting at the center’s headquarters in Texcoco, Mexico. In experimental trials, hundreds or thousands of wheat lines are planted for evaluation, each in small quantities, and so they are carefully laid out and sown by hand. (Photo: CIMMYT)

To help feed a growing world population, wheat scientists have turned to innovative technologies like genomic selection to hasten selection for positive traits — such as high grain yield performance and good grain quality — in varieties that are still undergoing testing. Instead of being shackled by the long duration of traditional breeding cycles, genomic selection allows scientists to make predictions regarding which traits will present when crossing two varieties; allowing breeders greater guidance and lessening potential time lost when crossing varieties that do not display potential for genetic gain. To reap the benefits of genomic selection, it is vital that the predictive models employed are as accurate as possible.

Currently, wheat breeders select characteristics like grain yield performance early in the breeding process, while selecting traits like good grain quality at a later stage in the breeding process.

In an article in the journal G3 Genes, researchers from the International Maize and Wheat Improvement Center (CIMMYT), and partners, led by CIMMYT scientist José Crossa along with Leonardo A. Crespo, Maria Itria Ibba and Alison R. Bentley, endeavored to determine if genomic prediction models could select for both characteristics simultaneously in the breeding process. This would improve selection accuracy in both early and later breeding stages, resulting a reduction in time and expense in delivering improved wheat varieties. They also tested the accuracy of a set of specific mathematical corrections applied to genomic predictions. These correction models identify correlations between genomic predictions and observed breeding values, such as increased yield or grain quality.

Considering two or more traits, like grain yield and good grain quality, is an example of a multi-trait model. The team examined this multi-trait model against a single trait model that improves one specific trait. Overall, the researchers found that prediction performance was highest using the multi-trait model.

However, the team also demonstrated that when breeding programs arrive at their genetic predictions, applying a specific correction method will account for differences between the predicted breeding value and the actual observed breeding value. Current correction models tend to underestimate that difference, which results in breeding programs not running as efficiently as possible.

By partnering selections from different stages in the breeding process and examining the resulting genetic predictions through a more appropriate correction model, the team has shown that breeding programs can use this to their benefit in developing and ultimately releasing improved wheat varieties that meet growing yield needs worldwide and respond to abiotic and biotic stressors.