Skip to main content

A reluctant farmer changes the fortune of his inherited land

In the sultry spring-summer heat of Bihar, India, the landscape is yellow with wheat grains ready for harvest. Here, in Nagma village farmer Ravi Ranjan attends to his fields — mostly wheat, with some pulses in the adjoining plots. The harvest this year will be a little less than anticipated, he explains, as receding monsoon rains left the soil too moist to begin sowing on time.

Ranjan’s grandfather and father were both farmers who owned sizable land. His father used to say that the land was productive but required a lot of hands, sweat, and time to sustain the yields. Agriculture was all that the family had known and depended on for decades before Ranjan’s father left the sector for the civil service. After the early demise of his grandfather in 2003, and with his father in a secure government job, it fell to Ranjan to shoulder the responsibility of managing the family farm.

As a young man, Ranjan had sometimes helped his grandfather in the fields, but now, as the owner of a hydraulic mechanical service firm working hundreds of kilometers away in Chhattisgarh, he had never imagined becoming a farmer himself. Though reluctant to begin with, Ranjan decided there was no alternative but to take on the challenge and do his best, and while initially he had little success with the new venture, slowly and steadily he began to change the fortune of his inherited land.

Today Ranjan is one of the local area’s success stories, as a progressive and influential farmer with ties to the Cereal Systems Initiative for South Asia (CSISA) project. Researchers on the CSISA team have been working with farmers like him in the region for over a decade and are proud of the ongoing collaboration. Ranjan’s fields are regularly used as CSISA trial plots to help demonstrate the success of new technologies and conservation agriculture practices that can enhance productivity and sustainability. For example, in the 2021-2022 winter cropping season — locally known as Rabi — he harvested 6.2 tons per hectare – while a separate acre plot as demonstration site was harvested publicly with officials from CSISA and the Krishi Vigyan Kendra Network (KVK), JEEViKA, and farmers from neighboring villages for improving yield sustainably.

As India celebrates Kisan Diwas (Farmer’s Day) on December 23, we speak to Ranjan about his hopes for the future and the continuity of farming in his family after he hangs his boots.

Farming has seen a sea of change since your grandfather’s time. What do you think has been the most transformative change in the years you have been involved in farming?

I think using mechanized tools and technology to ensure good cropping practices has tremendously reduced manual work. Furthermore, today with innovations and digitization in agriculture science, farming is not just recognized as a noble profession, but also an enterprising one. I am happy I came into it right when things were changing for good. I have no regrets.

Though not by choice that I came into it, I am now fully invested and devoted to farming. From being an entrepreneur to farming, it has been a transformational journey for me. I am unsure whether my daughters — I have three, the eldest turns 18 next year — will choose to be involved in agricultural farming. But I will encourage and fully support them if they choose to take it up. After all, they will inherit the land after me.

Extreme climate effects are challenging agricultural practices and output. How are you preparing to reduce the impact of these in your fields?

It is worrying to see how extreme climatic effects can be challenging for agriculture, particularly for smallholder farmers in the region. Erratic rains, drought at times, and increasing temperatures have all harmed our cereal and vegetable farms and affected yield in wheat crops significantly. The adoption of new technologies like direct seeded rice (DSR) to avoid puddled rice transplanting, early wheat sowing (EWS) to avoid terminal heat at maturity, zero tillage technology (ZTT), and better-quality seeds, are interventions introduced and supported by CSISA and other agricultural organizations from the state that has helped combat some of these climate-induced problems.

In my own fields, I have also introduced proper irrigation systems to reduce the impact of limited water availability. I hope to stay ahead of the curve and make sure I am aware of all that is possible to keep my farm productive and sustainable.

How did you begin your association with CSISA? What has been your experience of working with them to make your agriculture resilient and productive?

I was initially approached by one of their scientists working in the area. And because of my interest, they slowly began informing me of various technologies I could try. With these technologies implemented in my field, the yield and productivity improved.

Soon after expanding my agriculture output, I got 50 acres of land on lease in the village to grow more crops like pulses, along with rice and wheat. Today, CSISA has started using my fields as their demonstration plots for new technologies and best practices, and to spread awareness and bring in more farmers from neighboring villages to encourage adoption.

CSISA and others call me a progressive and innovative farmer. I am proud that many farmers and other agricultural agencies in the area have appreciated our efforts to continue making agriculture productive and sustainable.

About CSISA:

Established in 2009, the Cereal Systems Initiative for South Asia (CSISA) is a science-driven and impacts-oriented regional initiative for increasing the productivity of cereal-based cropping systems. CSISA works in Bangladesh, India, and Nepal. CSISA activities in India focus on the eastern Indo-Gangetic Plains, dominated by small farm sizes, low incomes, and comparatively low agricultural mechanization, irrigation, and productivity levels.

Cover photo: Ravi Ranjan takes the author on a tour of his fields where wheat grown with conservation agriculture practices like zero tillage technology is ready for harvest, Nagwa village, Bihar, India. (Photo: Nima Chodon/CIMMYT)

Improved nitrogen use can boost tomato yields

Nitrogen use efficiency (NUE) and tomato production in Nepal have both been negatively affected by universal fertilizer recommendations that do not consider the soil type, nutrient status, or climate and crop management practices. Improved use of appropriate levels of nitrogen (N) fertilizer, application time, and application methods could increase yields and reduce environmental impact.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Nepal Agricultural Research Council (NARC), the National Soil Science Research Center (NSSRC), and the International Fertilizer Development Center completed a study to identify the optimum N rate and application method to increase NUE and tomato crop yield as part of the Nepal Seed and Fertilizer (NSAF) project.

Randomized trials with nine treatments across five districts included the omission of N, phosphorus (P) and potassium (K) (N0, P0, K0), variable N rates of 100, 150, 200 and 250 kg ha−1 (N-100, N-150, N-200 and N-250), use of urea briquettes (UB) with deep placement (UBN-150) and a control (CK).

Considering its anticipated higher NUE, N input in UB was reduced from the recommend N rate of 200 kg ha−1 by a quarter. N was revealed as the most limiting plant nutrient based on yield responses from an NPK omission plot.

Tomato yield was increased by 27 percent, 35 percent, 43 percent, and 27 percent over N0 with respective applications of fertilizer at N-100, N-150, N-200 and N-250. Yields responded quadratically to the added N fertilizers, with optimum rates ranging from 150 to 200 kg ha−1.

UBN-150 produced a similar yield to the recommended rate of N-200 and significantly increased tomato yield by 12% over N-150.

At N-100, scientists observed the highest partial factor productivity of N (PFPN), while at N-200, the highest agronomic efficiency of N (AEN) was recorded.

Results suggest that there is opportunity to develop more efficient N fertilization strategies for Nepal, leading to benefits of higher yields and less environmental damage.

Read the study: Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal

Cover photo: Generic, non-specific recommendations for fertilizer use in Nepal have affected the production of tomato crops. (Photo: Dilli Prasad Chalise/CIMMYT)

Building capacities in genetic resources and seed production strengthens collaboration ties between Guatemala and CIMMYT

Field day on maize seed production. (Photo: CIMMYT)

More than 20 participants attended the genetic resources and seed production courses given by researchers from the Global Maize Program of the International Maize and Wheat Improvement Center (CIMMYT), from October 24 to 28 in Antigua, Guatemala. Among the attendees were technicians and researchers from the Institute of Agricultural Science and Technology (ICTA, for its acronym in Spanish), as well as students from Universidad Rafael Landívar and the University Centers of Chimaltenango (CUNDECH, in Spanish) and Quiché (CUSACQ, in Spanish) of Universidad de San Carlos de Guatemala.

Thanks to the support of the Global Environment Facility (GEF), the Tropical Agricultural Research and Higher Education Center (CATIE, in Spanish), the National Council for Protected Areas (CONAP, in Spanish) and the United Nations Environment Program (UNEP), these courses contributed to the development of a biosafety project, supported by GEF and UNEP, to complete the implementation process of the Cartagena Protocol through an innovative approach that promotes a strong link between biotechnology and biodiversity. In addition, it sought to strengthen capacities in the performance and interpretation of molecular analyses and promote the generational change that is gradually taking place in this Central American country.

Activities began on October 24 and 25 with the course on Statistics Applied to Genetic Resources given by Juan Burgueño, Head of CIMMYT’s Biometrics and Statistics Unit, to students from the aforementioned universities and ICTA staff interested in the analysis of molecular data for the purpose of characterizing accessions and the formation of core collections in germplasm banks. On the 26 and 27 of the same month, César Petroli, a specialist in high-throughput genotyping at CIMMYT, offered a course on biotechnology and high-throughput genotyping.

ICTA seed production leaders and CIMMYT course facilitators. (Photo: CIMMYT)

At the same time, Alberto Chassaigne, curator of the Maize Collection of CIMMYT’s germplasm bank, participated in the course on Genetic Resources and Management of Germplasm Banks. He explained the management of CIMMYT’s germplasm bank, the processes that are carried out and the partnerships with ICTA on work with community seed banks and the plans of both institutions for 2023. Also, as a specialist in Seed Systems, Chassaigne and Ubaldo Marcos, research assistant in CIMMYT’s Maize Seed Systems area, gave a course on Maize Seed Production. This course was aimed at staff in charge of the production of basic and certified seed at ICTA. This course concluded with a field day at the Regional Research Center of the South (CISUR, in Spanish), Cuyuta, Escuintla, where participants asked the specialists questions while visiting a maize seed production plot.

In turn, María de los Ángeles Mérida, a researcher specializing in genetic resources from ICTA, who organized these courses, spoke about the collection and conservation of native varieties of maize in Guatemala. Additionally, César Azurdia, CONAP biodiversity advisor, gave a presentation on wild relatives of different crops in Guatemala. Leslie Melisa Ojeda C. (CONAP) also participated, and spoke about the issue of legislation on crop wild relatives; and, Mynor Otzoy, a researcher from Universidad de San Carlos de Guatemala, spoke about the collection and morphological characterization of cocoa germplasm in Guatemala.

Along the path of constant strengthening of collaboration ties with countries, course participants highlighted their interest and need to continue this type of training. In 2023, it is expected to facilitate a team training with Ubaldo Marcos and Félix San Vicente, CIMMYT maize breeder for Latin America. It should be noted that, within the framework of the CGIAR germplasm bank initiative, the objective will be to replicate this experience in other Latin American countries and increase participation in community seed banks (ex situ and in situ banks).

Seven new CIMMYT maize hybrids available from Southern Africa Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce seven new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM21SAPP1-14 Intermediate-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB, and ear rots
CIM21SAPP1-10
CIM21SAPP1-01 Late-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to MSV, TLB, and ear rots
CIM21SAPP1-08
CIM21SAPP2-12 Early-maturing, white grain, high-yielding, drought-tolerant, NUE, resistant to GLS, MSV, TLB
CZH1815A Early-maturing, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CZH1805A
Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019, 2021, and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 10 January 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2021/22 Southern Africa Stage 5 Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Rear fish in a rice paddy? Old ways can future-proof food production

In an op-ed for the South China Morning Post, Bram Govaerts, Director General at the International Maize and Wheat Improvement Center (CIMMYT), and Essam Yassin Mohammed, Interim Director General of WorldFish and acting Senior Director of Aquatic Food Systems of CGIAR, explore the role of the research community in developing future-proof strategies to address challenges to the global agrifood system.

Through examples from Egypt, Malaysia and Mexico, the authors explain the benefits of “co-culture”, such as when different crop species are grown together.

This innovation centers on co-design, combining farmer-centric models and new measurement tools that allow scientific advances to benefit a variety of smallholder production systems.

Read the original article: Rear fish in a rice paddy? Old ways can future-proof food production

How a policy to address a groundwater shortage inadvertently increased air pollution in northern India

A recent study by Harvard University, the Jet Propulsion Laboratory, Environmental Defense Fund (EDF), the University of Michigan, the Public Health Foundation of India, the International Maize and Wheat Improvement Center (CIMMYT), Columbia University, and the University of California, Los Angeles, has determined the environmental impact of a government policy of delayed rice planting in northwest India.

As explained in an article for the Tech and Science Post, farmers had to push back rice sowing to take advantage of monsoon rains and decrease reliance on groundwater-fed irrigation systems. However, this led to farmers relying on fire to quickly clear fields ready for the next planting season, thereby exacerbating air pollution in the region.

“We have shown that the groundwater and air quality crises are major regional issues and are interconnected,” said co-author Balwinder-Singh, former Cropping System Scientist at the International Maize and Wheat Improvement Center (CIMMYT) in New Delhi. “But there is still a path to clearer skies and safer water practices. Local solutions include planting rice varieties that either grow more quickly or need less water. Promoting less water-demanding crops like maize would be helpful in zones with severe groundwater depletion.”

Read the original article: How a policy to address a groundwater shortage inadvertently increased air pollution in northern India

Sustainability of rice production in the Northwestern Indo-Gangetic Plains

Rice is a vital crop for India, contributing around 30 percent of calories consumed in the country and providing a crucial source of income from exports. However, due to climate change and conversion of land for other uses, rice growing area in India is projected to decline by 6-7 million hectares (ha) by 2050, while production must increase by 1.1% annually over the next four decades to achieve rice self-sufficiency for the country.

As there is limited opportunity to horizontal expansion of cultivable land, the predicted increase in demand must be met through increasing rice yields in regions with low yields and maintaining existing yields in high-yielding areas. This must be achieved using sustainable farming practices: currently, 90 percent of total greenhouse gas (GHG) emissions of monsoon season cropped cereals in India is caused by rice cultivation, as is 80 percent of the energy and water used in agriculture.

Scientists found that in the Northwestern Indo-Gangetic Plains (IGP) of India, yield gaps were small (ca. 2.7 t ha−1, or 20% of potential yield) mainly because of intensive production system with high input use. Using management data from 4,107 individual farmer fields, the study highlighted scope to reduce nitrogen (N) inputs without compromising yields in this intensive production system.

Findings show evidence of and methodology for the quantification of yield gaps and approaches that can improve resource-use efficiency, providing a possible alternative approach that could be reproduced elsewhere for other crops and contexts. It is recommended that future research focuses on ways to reduce other production inputs without compromising the yields in such intensive production systems.

This paper is the result of Harishankar Nayak’s PhD training in collaboration with the Indian Council of Agricultural Research (ICAR) jointly supervised by the researchers at the Indian Agricultural Research Institute (IARI) and International Maize and Wheat Improvement Center (CIMMYT).

Read the study: Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers’ practices

Cover photo: A farmer stands in his rice field at a Climate-Smart Village in the Vaishali district of Bihar, India, as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). (Photo: DK Singh/CIMMYT)

The importance of germplasm in protecting nature

At COP15, Sarah Hearne gives an overview of the CGIAR Allele Mining Initiative projects and their potential role in conserving biodiversity and nature. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Prioritizing the protection of biodiversity is an essential part of mitigating and adapting to the effects of climate change and global warming. At the 15th meeting of the Conference of the Parties to the UN Convention on Biological Diversity (CBD) (COP15), held between December 7-19 in Montreal, Canada, emphasis was placed on the important role of nature in meeting the Sustainable Development Goals (SDGs), proposing the adoption of a bold global biodiversity framework that addresses the key drivers of nature loss to secure health and wellbeing for humanity and for the planet.

On December 7, scientists from the International Maize and Wheat Improvement Center (CIMMYT), together with colleagues from CGIAR research centers and the secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture, presented at a COP15 side event on how Digital sequence information (DSI) is changing the way genetic resources are used in agricultural research and development and implications for new benefit-sharing norms.

The session, organized by the CGIAR Initiative on Genebanks explored the role of DSI to conserve crop and livestock genetic diversity and explore and utilize that diversity in plant and animal breeding programs.

Attendees at the COP15 side event on DSI discover how genetic resources are used in research and development for agriculture. (Photo: Michael Halewood/Alliance of Bioversity International and CIAT)

Carolina Sansaloni, wheat germplasm bank curator and genotyping specialist, illustrated how DSI is being used in the CIMMYT wheat collection to analyze structure, redundancies, and gaps, further detailing how generation and use of DSI to conduct similar analyses within national genebanks in Latin America is being supported through collaborative efforts of CIMMYT and the Alliance of Bioversity and CIAT.

CIMMYT principal scientist Sarah Hearne focused on the application of DSI to interrogate broad swathes of crop genetic diversity for potential climate change adaptation, providing examples of work from the Allele Mining Initiative projects, Mining Useful Alleles and Fast Tracking Climate Solutions, alongside earlier work funded by the Mexican Government.

The take-home message was that genetic diversity and germplasm bank collections, when explored at “global scale” with modern tools and diverse partnerships, offer a powerful resource in the efforts to mitigate the impacts of climate change. This potential is only realized through appropriate generation and sharing of DSI generated from collections of many countries of origin.

Sansaloni and Hearne also contributed to a discussion paper, titled “Digital sequence information is changing the way genetic resources are used in agricultural research and development: implications for new benefit sharing norms”. This article, developed by scientists and germplasm law experts from across the CGIAR, provides a more detailed assessment of CGIAR use of DSI and the benefit sharing options being considered by the Contracting Parties to the Convention on Biological Diversity.

Combining improved seed varieties and index insurance to address drought losses

This VoxDevTalk features Paswel Marenya, Adoption and Impact Assessment Economist at the International Maize and Wheat Improvement Center (CIMMYT), being interviewed about a recent study, “Bundling Genetic and Financial Technologies for More Resilient and Productive Small-scale Agriculture”.

To test solutions that could mitigate the impacts of drought, the study used randomized control trials to test the impact of combining drought-resistant seeds and index insurance in Mozambique and Tanzania.

Results show that combining these two technologies expands their benefits: using the improved seeds reduces insurance costs, and having insurance to begin with counteracts the risk of adopting the seeds. Farmers who use both technologies have greater resilience to drought in the short- and long-term.

Demonstrating the benefits to farmers and informing the scaling-up of the solution-bundling approach was also found to be important.

Listen to the podcast: Combining improved seed varieties and index insurance to address drought losses

Smallholder farmers embrace climate-smart seed and mechanization fairs

Farmers pose with the drought-tolerant seed of their choice at a seed fair in Masvingo district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

The long-term climate outlook for sub-Saharan Africa predicts more erratic rainfalls and higher temperatures. For this reason, the rapid uptake of measures to adapt to climate change within seed systems is of paramount importance. In Zimbabwe, the adoption of “climate-smart seed varieties”, environmentally-sustainable and scale-appropriate mechanization is critical to reaching zero hunger in the face of climate change. Farmers in Zimbabwe’s Masvingo district appear to have embraced this goal. More than 1,000 farmers participated in recent R4/Zambuko climate smart seed and mechanization fairs held in the region on October 11 and 12, respectively.

The fairs were organized by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with Zimbabwe’s Ministry of Lands, Agriculture, Fisheries, Water and Rural Development. Financial support was provided by the United States Agency of International Development (USAID), the Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP). With the onset of the 2022/2023 cropping season, the new OneCGIAR Ukama Ustawi initiative will build upon this work to reach thousands more farmers in the area.

One highlight of the fairs was a strong focus on smallholder mechanization, which saw Zimbabwean and international mechanization companies displaying their products. Each demonstrated two-wheel tractors and a range of attachments, from trailers to crop production and harvesting implements. In the words of the District Development Coordinator (DDC) Kenneth Madziva, “It’s important that farmers own machinery that is appropriate to their context as we now need to move into an era of high productivity and efficient post-harvest processing. We also see some of the machinery on display quite relevant for conservation agriculture practices which aligns with the government’s Pfumvudza program.” Mechanizing the manual basin planting system in Pfumvudza to ripline seeding will dramatically reduce the farm labor usually needed to dig the basins while maintaining the key principles of conservation agriculture: no-tillage, crop residue retention and crop diversification.

According to Madziva, “Such initiatives from partners are very welcome, as rural livelihoods are predominantly agriculturally based. There is need to rapidly transition our farmers from a donor dependence to self-sufficiency, hence I am impressed with the number of farmers I have seen buy seed with their own hard-earned money.” The fairs generally strive to achieve two goals: first, ensuring that farmers are well-informed about climate adapted varieties able to withstand climate challenges such as in-season dry-spells and/or heat stress, and, second, that they buy the improved seed directly from private sector partners.

Farmers observe a two-wheel tractor engine being used to power a maize sheller. (Photo: Tawanda Hove/CIMMYT)

It is hoped that increasing famers’ exposure to scale-appropriate mechanization will translate into increased purchases of the equipment and a move away from the drudgery of both draft or manual production and processing systems. Robin Vikström, the donor representative from WFP also stated that it is high time for smallholder farmer systems be intensified, and mechanization is one of the essential triggers of intensification.

Vikström, speaking on the significance of the events said, “Such initiatives are part of a broader national resilience building strategy where our intention is to enable smallholder farmers to deal with climate shocks and stresses through capacity development trainings, diversified crop production systems, effective and well-governed Income Savings and Lending groups (ISALS) and improved livestock. This is a step forward from our tradition of distributing food, which is still necessary in certain contexts, but has to be progressed to self-reliance. The seed and mechanization fairs facilitate stronger interactions between the farmers and the private sector and furthermore the procurement of the right seed and mechanization for their ecological region. More interaction translates to better product development and increased sales which is a win-win for all stakeholders concerned. This is a major step towards sustainable achievement of food and nutrition security.”

Concerning the long-term plan of the intervention, Vikström added, “The initiative is currently set to run until 2025 with plans already underway to expand to more wards and districts as the development strategy is proving to be yielding significant results.” The seed fairs resulted in the sale of approximately 1.9 metric tons of improved white and orange maize seed, generating over $6,000 in revenue for participating private sector vendors.

Christian Thierfelder, Principal Cropping Systems Agronomist at CIMMYT and Principal Investigator for the program said, “As we expanded this year to different wards, our objective was to first create an educational platform for farmers where farmers could learn more about the various stress-tolerant seed varieties with improved genetics available from the private sector. Secondly, we wanted to create a selling platform for the private sector where various companies could have their products made much more easily accessible to the smallholder farmers. I am happy that the private sector talked about conservation agriculture, which is an important new narrative. Farmers need to grow the right seed in a good agronomic environment for the crop to succeed.”

Although this crop season’s outlook is yet to be officially communicated to farmers, there is high anticipation for a bumper harvest through improved varieties and efficient, mechanized operations and farmers were eager to buy the right seed to reap the benefits of science in their own homestead.

A renewed CGIAR can better support South Asia to determine its food future

In this article, Temina Lalani-Shariff, Regional Director of South Asia at CGIAR, explores the evolution of CGIAR to meet changing global needs, such as the critical challenge of ending hunger, poverty and inequality across South Asia by 2030 while reaching the climate goals of each country. “A reinvented CGIAR can offer greater flexibility and leadership in three key areas to accelerate the region’s agricultural development and its multiplier benefits for livelihoods, health and climate action,” said Lalani-Shariff.

Highlighting work by the International Maize and Wheat Improvement Center (CIMMYT) to target the spread of crop pests and diseases in Kenya, Lalani-Shariff explains how this success can transfer to fighting fall armyworm (FAW) in South Asia. She cites CGIAR’s experience in scaling innovations and solutions in a variety of agroecologies and environments in partnership with national research institutes, as well as examples from the Seeds Without Borders Initiative and climate-smart villages.

Lalani-Shariff explains the purpose of CGIAR’s Regional Integrated Initiative Transforming Agrifood Systems in South Asia (TAFSSA), which is combining efforts in South Asia to achieve agrifood systems that are more productive and environmentally sound, and support equitable access to sustainable, nutritious diets. Collaboration between CGIAR research centers on Initiatives like this offers opportunities to build effective networks and partnerships for addressing future challenges.

Read the original article: A renewed CGIAR can better support South Asia to determine its food future

How does physical disturbance of soil impact carbon mineralization?

Higher levels of potential carbon mineralization (Cmin) in soil indicate that the soil is healthier. Many reports indicate that Cmin in agricultural soils increases with reductions in soil disturbance through tillage, but the mechanisms driving these increases are not well understood.

The International Maize and Wheat Improvement Center (CIMMYT) has established a network of research platforms in Mexico, where collaborating scientists evaluate conservation agriculture and other sustainable technologies to generate data on how to improve local production systems. This network of research trials, many of which have over five years in operation, allowed us to participate with Mexican sites in the North American Project to Evaluate Soil Health Measurements (NAPESHM). This project aimed to identify widely applicable soil health indicators and evaluate the effects of sustainable practices on soil health in 124 long-term experiments across Canada, the United States of America, and Mexico.

Experienced field teams from CIMMYT sampled the soils from 16 experiments in Mexico, which were then analyzed by the Soil Health Institute for this study. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected, with results demonstrating that microbial (archaeal and bacterial) sensitivity to physical disturbance is influenced by cropping system, the intensity of the disturbance, and soil pH.

A subset of 28 percent of amplicon sequence variants were enriched in soils managed with minimal disturbance. These enriched sequences, which were important in modeling Cmin, were connected to organisms that produce extracellular polymeric substances and contain metabolic strategies suited for tolerating environmental stressors.

The unique sampling design of this study – analyzing across a variety of agricultural soils and climate – allows to evaluate management impacts on standardized measures of soil microbial activity. Additionally, understanding the microbial drivers of soil health indicators like Cmin can help with the interpretation of those indicators and ultimately the understanding of how to better manage soils.

Read the study: Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

Cover photo: Soil sampling in the Tlaltizapan station, Mexico in March 2019. (Photo: Simon Fonteyne/CIMMYT)

Inspiring future generations of scientists

Evidence shows that for every US $1 invested in anticipatory action to safeguard lives and livelihoods, up to US $7 can be saved by avoiding losses in disaster-affected communities, highlighting the power of agricultural research and development that can be continued by the scientists of the future.

This message was reiterated at the Global Food Security Forum for Young Scientists on December 2-3, designed to bring together scientists, scholars, and innovators from different subjects to discuss their research findings and exchange innovative ideas on all aspects of global food security. The event was co-organized by Huazhong Agricultural University (HZAU), China, the International Food Policy Research Institute (IFPRI), the International Maize and Wheat Improvement Center (CIMMYT), and the Leibniz Institute of Agricultural Development in Transition Economies (IAMO).

Topics included the resilience of global food systems and food supply chains, change of dietary patterns and transition of agrifood systems, digital and smart food production, and sustainable agricultural development and maintenance of the environment.

On behalf of CIMMYT Director General Bram Govaerts, agronomist Iván Ortiz-Monasterio presented at the launch event. “Investing in agriculture and a safe and peaceful future is something that CIMMYT and China can build together,” explained Monasterio. “We can develop networks and platforms of collaboration. You have excellent research institutes, and we can combine our capabilities.”

Govaerts then presented a plenary session on the power of young researchers to transform agri-food systems (above), reflecting on the disruption to global supply chains caused by the conflict between Russia and Ukraine, the COVID-19 pandemic, climate change, and high levels of inflation.

“For you as the young, new generation, for you as scientists that need to design the future, it is very important to ask you one central question: when historians pick up their pens and write the story of the 21st century, what will it say about you?” asked Govaerts, as he emphasized training opportunities through the CIMMYT Academy and stories from young scientists at CIMMYT, such as Leonardo Crespo-Herrera, recent winner of the 2022 Japan International Award for Young Agricultural Researchers.

At the conclusion of the conference, Govaerts was also appointed as an advisor of the Global Food Security Forum for Young Scientists.

Cover photo: Iván Ortiz-Monasterio presents at the launch of the Global Food Security Forum for Young Scientists, December 2022. (Photo: CIMMYT)

Using ENM principles to preserve soil health

In a new Frontiers publication, scientists from the International Maize and Wheat Improvement Center (CIMMYT) outline how to achieve an ecologically based approach to sustainable management of soil fertility, particularly for smallholders.

What is ecological nutrient management (ENM)?

Across the globe, smallholder farming communities only have limited resources to improve their financial and food security, and soil degradation is common. Ecological nutrient management (ENM), an agroecological approach to managing the biogeochemical cycles that regulate soil ecosystem services and soil fertility, can prevent degradation and preserve soil health.

Five principles guide ENM strategies:

  • Building soil organic matter and other nutrient reserves.
  • Minimizing the size of nitrogen (N) and phosphorus (P) pools that are most vulnerable to loss.
  • Maximize agroecosystem capacity to use soluble, inorganic N and P.
  • Use functional biodiversity to maximize presence of growing plants, biologically fix nitrogen and access sparingly soluble phosphorus.
  • Construct agroecosystem and field scale mass balances to track net nutrient flows over multiple growing seasons.
At the ICRISAT headquarters in Patencheru, India, M.L. Jat and Sieg Snapp stand in front on pigeonpea (Cajanus cajan) varieties, a semi-perennial legume that fixes nitrogen and solubilizes phosphorus for greater nutrient efficiency while building soil health. (Photo: Alison Laing/CSIRO)

Using functionally designed polycultures, diversified rotations, reduced fallow periods, increased reliance on legumes, integrated crop-livestock production, and use of a variety of soil amendments exemplify how ENM works in practice. A key principle is to underpin agroecosystem resilience through the promotion of soil organic matter accrual and restoration of soil function.

Strategic increases of spatial and temporal plant species diversity are used, that meet farmer requirements. This often involves perennial or semi-perennial bushes and vines that provide food, fuel and fodder while restoring soil fertility. ENM long-term management systems can increase yields, yield stability, profitability, and food security, thus addressing a range of smallholder needs.

Read the study: Advancing the science and practice of ecological nutrient management for smallholder farmers

Cover photo: A maize-bean intercrop that exemplifies the ENM approach, taken at CIMMYT’s Chiapas Hub, a long-term field experiment. (Photo: Sieg Snapp/CIMMYT)

Indian scientists visit CIMMYT Türkiye facility for wheat improvement systems

Scientists from the All India Coordinated Research Project (AICRP) on Wheat and Barley, part of the Indian Council of Agricultural Research (ICAR), and the Mountain Research Centre for Field Crops at Sher-e-Kashmir University of Agricultural Sciences and Technology visited the International Maize and Wheat Improvement Center (CIMMYT) facility in Türkiye on November 14-17.

This trip was an extension of their visit to the Türkiye Akdeniz University, Antalya, under the ICAR-NAHEP overseas fellowship program. The trip to CIMMYT program in Türkiye was with the objective to get exposure to CIMMYT’s germplasm and other new developments in wheat improvement that may be helpful for wheat production in the Northern Hill zone of India, which grows wheat on around 0.8 million hectares.

Ajaz Ahmed Lone, Principal Scientist, Genetics and Plant Breeding at the Dryland Agricultural Research Station, and Shabir Hussain Wani, Scientist, Genetics and Plant Breeding and Principal Investigator, aimed to learn more about CIMMYT’s wheat improvement systems.

Meeting at TAGEM, from left to right: Hilal Ar, Amer Dababat, Ajaz Lone, Shabir Wani, Fatma Sarsu, Aykut Ordukaya. (Photo: TAGEM)

After a brief introduction on CIMMYT’s international and soil borne pathogens program in Türkiye by Abdelfattah Dababat, CIMMYT Country Representative for Türkiye and program leader, the visitors met with General Directorate of Agricultural Research and Policies (TAGEM) representative Fatma Sarsu and her team to discuss possible collaboration and capacity building between the two institutions.

Ayşe Oya Akın, Amer Dababat, Shabir Wani, Sevinc Karabak, Senay Boyraz Topaloglu, Ajaz Lone and Durmus Deniz outside of the GenBank in Ankara, Türkiye. (Photo: GenBank)

Wheat improvement in Türkiye

Lone and Wani also visited the GenBank in Ankara to meet its head, Senay Boyraz Topaloglu, who gave a presentation about the GenBank and highlighted the site’s various facilities.

They then visited the Transitional Zone Agricultural Research Institute (TZARI) in Eskisehir, located in Central Anatolian Plateau of Türkiye, to hear about historical and current studies, particularly within the national wheat breeding program delivered by Head of the Breeding Department, Savas Belen. Belen briefed the visitors about the institute’s facilities, and the collaboration with CIMMYT scientists on wheat breeding activities and germplasm exchange.

Dababat and Gul Erginbas-Orakci, research associate at CIMMYT, presented an overview of soil borne pathogens activities in TZARI-Eskisehir.

Before the visitors departed to Konya, Director of TZARI, Sabri Cakir, welcomed the visitors in his office.

Visitors to TZARI, from left to right: Sali Sel, Shabir Wani, Ajaz Lone, Sabri Cakir, Amer Dababat, Savas Belen, Gul Erginbas-Orakci. (Photo: TZARI)

On the final day, the scientists were briefed about Bahri Dagdas International Agricultural Research Institute (BDIARI) through a presentation given by Murat Nadi Tas and Musa Turkoz. Bumin Emre Teke from the animal department presented a European project report on animal breeding, and Mesut Kirbas provided an overview of a European project on e-organic agriculture, as well as visits to the institute’s laboratory and field facilities and the newly established soil borne pathogens field platform.

Dababat said, “It was a fruitful short trip which enabled scientist from SKUAST-Kashmir and CIMMYT-Türkiye to share knowledge about wheat improvement activities and will give way to a road map for future research collaborations between the three institutions.”

Musa Turkoz, Amer Dababat, Ajaz Lone, Shabir Wani, Gul Erginbas-Orakci, Murat Nadi Tas, Bumin Emre Teke and Mesut Kirbas visit the BDIARI site in Konya, Türkiye. (Photo: BDIARI)