Skip to main content

Five strides forward for CGIAR crop breeding resources and services

Sitting at the cutting edge of science, the crop breeding domain has been improving and refining tools, technologies and techniques. But adoption by public breeding programs focusing on Africa, Asia, and Latin America has often been slow. This has hindered progress on developing the new varieties needed for farmers to overcome climate impacts, build livelihoods, and feed their communities.

But One CGIAR’s new integrated approach is changing that. Building on the work of CGIAR Excellence in Breeding, the Breeding Resource Initiative can point to major progress in 2022, moving forward on an array of shared services, capacity development programs and technical support. Here are five significant milestones helping CGIAR and its national partners deliver better results:

1. Regional hubs are on their way: CGIAR’s vision is to have regional hubs coordinating and delivering services across crops. AfricaRice is set to grow into a regional service provider and coordinator for multiple crops in West Africa. After discussions, planning and site visits with BRI, AfricaRice leadership committed to working with the BRI team to start by providing regional nutritional analysis services, aimed to launch for selected partners in 2023. The plan is to then expand AfricaRice’s role as a coordinator of other competitive services like genotyping and capacity building. This is a major step toward CGIAR’s vision of not just improving breeding stations, but serving  all CGIAR/National Agricultural Research and Extension Services (NARES) partners regionally. The aim is collaboration, efficiency and results in farmers’ fields.

2. Operations teams are amping up skills and knowledge: Breeding success hinges on good operational practices leading to accurate data. To ensure the heritability of breeding trials, BRI has offered resources, trainings and on-the-ground support for operational teams. Through its Breeding Operation Network for Development (BOND), BRI/EiB, along with IITA, ran three weeklong workshops for partners across Africa (watch all 22 sessions on plotmanship, gender, seed processing, irrigation and more), regular webinars exploring private and public sector best practices, and a series focusing on continuous improvement approaches. BRI also trained dozens of operational staff across Africa on how to use and maintain new USAID-supplied equipment. And CGIAR continued its push to harmonize rice breeding processes between IRRI, AfricaRice and CIAT through a week-long rice breeding operations training at IRRI. As well, new tools such as a gender inclusion checklist are now available to support operational excellence.

3. EBS is settling in as a universal data platform: The data management platform Enterprise Breeding System has made real strides in the past year, with an updated version with new features (Milestone 5) rolling out across three Centers (CIMMYTIITAIRRI), with over 500 users. Other Centers, such as AfricaRice are starting to deploy the system too. On their visit to AfricaRice’s Ivory Coast station, the BRI team noted barcode deployment across the upland rice nurseries – an inspiration to spur other CGIAR Centers to accelerate their own adoption. EBS is a single, powerful, shared, multi-crop platform and its deployment will mean major time and money savings for breeders – and better breeding decisions.

4. Lab services are expanding: As breeders strive for higher-yielding, climate-resilient and nutritious crops, BRI/EiB have been improving breeding speed and accuracy through streamlined, reliable and cost-effective genotyping services. Services include Low Density SNP Genotyping Services (LDSG), Mid-density SNP Genotyping (MDSG), along with training. BRI also launched a Lab Services Process Team to connect Genetic Innovation departments and teams and ensure delivery of high quality services through standardized processes. And launching in 2023, partners will be able to access biochemical testing for nutritional traits and quality. These improved services mean CGIAR and national partners are becoming more effective and competitive as they use this data to make better decisions.

5. Regional approaches set to drive change: BRI drives change at both local and regional levels. For example, team members visited Kiboko and Njoro stations in Kenya, and ran planning sessions in Nairobi with East African breeding teams. This helped clarify challenges and priorities in the region, helping define how services could best be established. Kenya’s key outcomes included: a commitment with CIMMYT leadership to establish services in Kiboko as a pilot, an action plan to improve EBS development and adoption in the region, and endorsement by CGIAR Breeding Research Services leadership of major Crops to End Hunger grants in the region – these fill key gaps in the drive to modernization. The team plans to organize similar sessions to support CGIAR/NARES breeding networks in other regions.

These five strides forward represent but a glimpse into Breeding Resources’ progress. And these are much more than just separate achievements. They represent a shift in breeding culture across the CGIAR-NARES networks – one that will help deliver better varieties, faster. With major plans for 2023, CGIAR-NARES can look forward to the tools and services they need to deliver first-class programs.

Read the original article: Five strides forward for CGIAR crop breeding resources and services

Story and feature photo by Adam Hunt, EiB/BRI/ABI Communications Lead. We would like to thank all funders who support this research through their contributions to the CGIAR Trust Fund. And thank you to the supporters and partners of CGIAR Excellence in Breeding, particularly the funding from Bill and Melinda Gates Foundation.

More than a drop in the bucket: addressing food security in Nepal through improved sustainable irrigation

Agriculture is always impacted by war. However, Russia’s war in Ukraine, fought between two major agricultural producers in an era of globalized markets, poses unprecedented implications for global agriculture and food security. Russia and Ukraine are significant exporters of maize, wheat, fertilizers, edible oils and crude oil. These exports have been compromised by the war, with the greatest impact being on poor and low-income countries that rely most on food imports. Partly because of the Ukraine-Russia conflict and partly due to the decline in agricultural production caused by the climate emergency, food prices have increased between 9.5 and 10.5 percent over the past ten years. 

Nepal, where one in four families is impoverished, is an example of a low-income country impacted by the war’s disruption of trade in agricultural goods and inputs. Although wheat, maize and rice are staples, vegetables are also important for nutrition and income, and Nepal imports fuel and fertilizer for their domestic production. Uncertainty in global supply chains, combined with the Nepali rupee’s significant depreciation against the US dollar, has resulted in a 500% increase in the cost of diesel since 2012. ­­

Irrigation to boost homegrown production

Land irrigation is crucial to crop growth and to the capacity of famers to withstand the effects of the climate emergency and economic shock. However, the majority of Nepal’s groundwater resources are underutilized, leaving ample room for increasing climate-resilient agricultural production capable of withstanding an increasing number of drought events. With the right kind of management of its groundwater, Nepal can increase its domestic output, and bolster smallholder resilience and food security in times of economic and climate crisis.

As part of the first prong of this approach, the Cereal Systems Initiative for South Asia (CSISA) advises farmers (particularly women), governments and donors on the targeted support available to enable them to access existing low-cost and fuel-efficient engineering solutions. These solutions can contribute to the immediate goals of increasing agricultural productivity, intensifying groundwater irrigation and improving rural livelihoods. CSISA informs small producers about ways to access irrigation and develop water entrepreneurship. It also and empowers farmers, especially women, to improve service provision and gain access to services and irrigation pumps, including through access to finance.

Policymakers, businesses, researchers and farmers (especially women, youth and marginalized groups) will collaborate to co-create business models for sustainable and inclusive irrigation with development partners and Nepali public and private sector actors. While there are more than one million wells and pumps in Nepal, many of these are not used efficiently, and social barriers often preclude farmers from accessing services such as pump rentals when they need them. To address these constraints and support private investment in irrigation and water entrepreneurship models, CSISA will work with existing infrastructure investment programs and local stakeholders to build a dynamic and more inclusive irrigation sector over the course of the next year, positively impacting a projected 20,000 small farming households.

At the macro-level, these water entrepreneurship models will respond to prioritized irrigation scaling opportunities, while at the farm level they will respond to irrigation application scheduling advisories. CSISA will also create policy brief documents, in the form of an improved farm management advisory, to be distributed widely among partners and disseminated among farmers to support increases in production and resilience. CSISA’s sustainable and inclusive irrigation framework guides its crisis response.

Scaling digital groundwater monitoring to support adaptive water management

In growing resilience-building irrigation investments, there is always a risk of groundwater depletion, which means that accurate and efficient groundwater data collection is vital. However, Nepal doesn’t currently have a data or governance system for monitoring the impact of irrigation on groundwater resources.

To tackle the need for low-cost, context-specific data systems which improve groundwater data collection, as well as mechanisms for the translation of data into actionable information, and in response to farmer, cooperative and government agency stakeholder demands, the Government of Nepal Groundwater Resources Development Board (GWRDB) and CSISA have co-developed and piloted a digital groundwater monitoring system for Nepal.

In a recent ministerial level workshop, GWRDB executive director Bishnu Belbase said, “CSISA support for groundwater monitoring as well as the ongoing support for boosting sustainable and inclusive investments in groundwater irrigation are cornerstone to the country’s development efforts.”

A pilot study conducted jointly by the two organizations in 2021 identified several options for upgrading groundwater monitoring systems. Three approaches were piloted, and a phone-based monitoring system with a dashboard was evaluated and endorsed as the best fit for Nepal. To ensure the sustainability of the national response to the production crisis, the project will extend government monitoring to cover at least five Tarai districts within the Feed the Future Zone of Influence, collecting data on a total of 100 wells and conducting an assessment of potential network expansion in Nepal’s broad, inner-Tarai valleys and Mid-Hills regions. The goal is to utilize this data to strengthen the Feed the Future Zone of Influence in Nepal by increasing GWRDB’s capability to monitor groundwater in five districts.

Ensuring food security

These activities will be continued for next two years. During that time CSISA will increase GWRDB’s capacity to monitor groundwater and apply this to five districts in Nepal’s Feed the Future Zone of Influence, using an enhanced monitoring system which will assist planners and decision-makers in developing groundwater management plans. As a result, CSISA expects to support at least 20,000 farming households in gaining better irrigation access to achieve high yields and climate-resilient production, with 40 percent of them being women, youth and/or marginalized groups. This access will be made possible through the involvement of the private sector, as CSISA will develop at least two promising business models for sustainable and inclusive irrigation. Finally, through this activity government and private sector stakeholders in Western Nepal will have increased their capacity for inclusive irrigation and agricultural value chain development.

CSISA’s Ukraine Response Activities towards boosting sustainable and inclusive irrigation not only respond to crucial issues and challenges in Nepal, but will also contribute to the regional knowledge base for irrigation investments. Many regions in South Asia face similar challenges and the experience gained from this investment in Nepal will be applicable across the region. Given the importance of of groundwater resources for new farming systems and food system transformation, the project is mapped to Transforming Agrifood Systems in South Asia (TAFSSA), the One CGIAR regional integrated initiative for South Asia, that will act as a scaling platform for sharing lessons learned and coordinating with stakeholder regionally towards more sustainable groundwater management and irrigation investments.

Cover photo: Ram Bahadur Thapa managing water in his paddy field in Dailekh district of Nepal. (Photo: Nabin Baral)

Pravasi Bharatiya Samman winner, scientist Dr Ravi Singh is working towards food security for all

As he retires from his illustrious career, a new interview with Ravi Singh, Head of Global Wheat Improvement at CIMMYT, by the Global Indian reveals his motivations for becoming a scientist and his desire to ensure people all over the world had access to food.

“I retired quite recently, however, I have a lot to do. I wish to mentor young scientists about on how to increase food production. I also look forward to working on several high-profile projects with farmers to tackle future issues they might face due to the climate changes on a crop like wheat,” shares the scientist.

Singh was honored with the Pravasi Bharatiya Samman by the Government of India in January 2021, recognizing his outstanding achievements by non-resident Indians, persons of Indian origin, or organizations or institutions run by them either in India or abroad. He received this for his role in the development, release, and cultivation of more than 550 wheat varieties over the past three decades.

Singh has also been included among the top one percent of highly-cited researchers, according to Clarivate Analytics-Web of Science every year since 2017.

Read the original article: Pravasi Bharatiya Samman winner, scientist Dr Ravi Singh is working towards food security for all

Adapting growing seasons to climate change can boost yields of world’s staple crops

Rising global temperatures due to climate change are changing the growth cycles of crops worldwide. Recent records from Europe show that wild and cultivated plants are growing earlier and faster due to increased temperatures.

Farmers also influence the timing of crops and tend to grow their crops when weather conditions are more favorable. With these periods shifting due to climate change, sowing calendars are changing over time.

Over thousands of years of domesticating and then breeding crops, humans have also managed to artificially change how crop varieties respond to both temperature and day length, and in turn have been able to expand the area where crop species can be grown. Farmers can now choose varieties that mature at different rates and adapt them to their environment.

Including farmers’ decisions on when to grow crops and which varieties to cultivate are vital ingredients for understanding how climate change is impacting staple crops around the world and how adaptation might offset the negative effects.

In a ground-breaking study, a team of researchers from the Potsdam Institute for Climate Impact Research (PIK), the Technical University of Munich and the International Maize and Wheat Improvement Center (CIMMYT) investigated how farmers’ management decisions affect estimates of future global crop yields under climate change.

“For long time, the parametrization of global crop models regarding crop timing and phenology has been a challenge,” said Sara Minoli, first author of the study. “The publication of global calendars of sowing and harvest have allowed advancements in global-scale crop model and more accurate yield simulations, yet there is a knowledge gap on how crop calendars could evolve under climate change. If we want to study the future of agricultural production, we need models that can simulate not only crop growth, but also farmers’ management decisions.”

Using computer simulations and process-based models, the team projected the sowing and maturity calendars for five staple crops, maize, wheat, rice, sorghum and soybean, adapted to a historical climate period (1986–2005) and two future periods (2060–2079 and 2080–2099). The team then compared the crop growing periods and their corresponding yields under three scenarios: no adaptation, where farmers continue with historical sowing dates and varieties; timely adaptation, where farmers adapt sowing dates and varieties in response to changing climate; and delayed adaptation, where farmers delay changing their sowing dates and varieties by 20 years.

The results of the study, published last year in Nature Communications, revealed that sowing dates driven by temperature will have larger shifts than those driven by precipitation. The researchers found that adaptation could increase crop yields by 12 percent, compared to non-adaptation, with maize and rice showing the highest potential for increased crop yields at 17 percent. This in turn would reduce the negative impacts of climate change and increase the fertilization effect of increased levels of carbon dioxide (CO2) in the atmosphere.

They also found that later-maturing crop varieties will be needed in the future, especially at higher latitudes.

“Our findings indicate that there is space for maintaining and increasing crop productivity, even under the threat of climate change. Unfortunately, shifting sowing dates – a very low-cost measure – is not sufficient, and needs to be complemented by the adaptation of the entire cropping cycle through the use of different cultivars,” said Minoli.

Another important aspect of this study, according to Anton Urfels, CIMMYT systems agronomist and co-author of the study, is that it bridges the GxMxE (Gene-Management-Environment) spectrum by using crop simulations as an interdisciplinary tool to evaluate complex interactions across scientific domains.

“Although the modeled crops do not represent real cultivars, the results provide information for breeders regarding crop growth durations (i.e. the need for longer duration varieties) needed in the future as well as agronomic information regarding planting and harvesting times across key global climatic regimes. More such interdisciplinary studies will be needed to address the complex challenges we face for transitioning our food systems to more sustainable and resilient ones,” said Urfels.

Read the study: Global crop yields can be lifted by timely adaptation of growing periods to climate change

Cover photo: Work underway at the International Maize and Wheat Improvement Center in Zimbabwe (CIMMYT), is seeking to ensure the widespread hunger in the country caused by the 2015/6 drought is not repeated, by breeding a heat and drought tolerant maize variety that can still grow in extreme temperatures. CIMMYT maize breeders used climate models from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) to inform breeding decisions. (Photo: L. Sharma/Marchmont Communications)

Digital Press Briefing with U.S. Special Envoy for Global Food Security Dr. Cary Fowler, and USAID Global Food Crisis Coordinator Dina Esposito

Cary Fowler, Special Envoy for Global Food Security, and Dina Esposito, the United States Agency for International Development (USAID) Global Food Crisis Coordinator, discussed the US strategy for addressing the global food security crisis and their ongoing visit to Malawi and Zambia at a digital press briefing on January 19.

“We’ve recently supported a new project which will be operating in a number of countries, including Zambia and Malawi, that will be coordinated by the International Maize and Wheat Improvement Center, and by the International Institute of Tropical Agriculture,” said Fowler.

“They’ll be establishing innovation hubs where they’ll bring together the best and most appropriate technologies and information to help small-scale farmers with a whole variety of issues that they confront. This will give the farmers access, for example in Zambia, to drought-tolerant maize, which they’re really clamoring for. This is maize which, on a year-in and year-out basis, on average will yield about 30 percent more, rotated with legumes, which provide protein and also enrich the soil and reduce the need for fertilizer. But also other technologies and assistance in establishing markets for those products and lengthening out the value chain so that farmers are not just – and small businesses are not just dealing with raw commodities but are taking those commodities and making something more valuable and more useful to a broader population.”

Read the original article: Digital Press Briefing with U.S. Special Envoy for Global Food Security Dr. Cary Fowler, and USAID Global Food Crisis Coordinator Dina Esposito

‘Farmers now more aware about climate resilient agri’

A workshop in New Delhi on the Climate Resilient Agriculture (CRA) programme explored solar harvesting, carbon credit, crop residue management, climate resilient cultivars, millets and pulses in cropping systems, and maize drying and processing.

Arun Kumar Joshi from the Borlaug Institute for South Asia (BISA) highlighted the potential of the programme if more farmers embrace CRA technology.

New technologies and innovations are essential in helping farmers adapt to changing climate conditions and reduce reliance on greenhouse gases (GHG).

Read the original article: ‘Farmers now more aware about climate resilient agri’

How a new generation of women are changing wheat science

by Krisy Gashler 

For Charlotte Rambla, winning the 2022 Jeanie Borlaug Laube Women in Triticum (WIT) Early-Career Award was an “incredible, unreal experience.”

Each year, the Borlaug Global Rust Initiative (BGRI) honors five to six female early-career wheat researchers with the WIT award in recognition of scientific excellence and leadership potential. With the award, women scientists receive leadership training and professional development opportunities meant to support them as they join the community of scholars who are fighting hunger worldwide.​

“The training I’ve received with this award has been one of the best experiences of my professional life,” said Rambla, an Italian native who recently completed her Ph.D. at the Queensland Alliance for Agriculture and Food Innovation in Australia and has begun a postdoctoral appointment at the Salk Institute for Biological Studies. “Meeting these incredible women working in the same field, sharing our knowledge and experiences, it felt like we belonged together and were working toward one shared purpose; We are all joined by this same passion for agriculture and science.”

The 2022 awards honored six early-career scientists from Morocco, Indonesia, Ethiopia, Italy, Pakistan and China. Since 2010, the WIT awards have recognized 66 early-career scientists from 29 different countries. The training and development opportunities offered to each year’s cohort varies, based on the needs and interests of the winners, said Maricelis Acevedo, director for science for the BGRI, research professor in the Department of Global Development at Cornell University, and a 2010 WIT awardee. The 2022 WIT cohort visited the World Food Prize Foundation in October, just before the foundation announced the winner of this year’s World Food Prize, widely considered the Nobel Prize for food and agriculture.

“The role of the WIT award is to recognize emerging scientific leadership and provide training and support for women working in wheat to create a cohesive group of hunger-fighters who have the skills to lead the next generation of scientists and create the solutions that we need at such a critical time,” Acevedo said. “As these women receive the award, we hope that they continue to support other women and other early-career scientists, and to train their students in a more open, diverse network.”

Meriem Aoun, a 2018 WIT awardee and native of Tunisia, was a postdoctoral associate at Cornell University when she won her award. Her cohort received a month-long training at the International Maize and Wheat Improvement Center (CIMMYT) – the center where Norman Borlaug did the research that earned him the 1970 Nobel Peace Prize –  and attended the 2018 international BGRI conference in Morocco. Aoun believes that the WIT award supported her professional career development and gave her the opportunity to connect with other WIT winners from many countries.  “I am thrilled to see more and more ambitious and career-interested wheat scientists and that our community of WIT winners is growing each year,” she said.

Now an assistant professor of wheat pathology at Oklahoma State University (OSU), Aoun studies the genetics of disease resistance to wheat pathogens. She is a key member of OSU’s wheat improvement team developing disease-resistant wheat varieties suited for Oklahoma and the Southern Great Plains of the U.S.

For 2013 winner and Swiss-Argentinian Sandra Dunckel, the fact that BGRI chooses a cohort of women each year, rather than a single winner, is one of the strengths of the award. Now head of Breeding Barley, Special Crops and Organics at KWS Group, a multinational seed company headquartered in Germany, Dunckel said the networking opportunities were among the most beneficial aspects of her WIT award training.

“There is this group of women who are working on a common goal, and even if you aren’t in touch for several years, you can contact someone from your year, or really any year, and say, ‘Hello, fellow WIT winner, I’m looking for a breeder with great potential for one of my teams, can you recommend someone, or  I need help with this question.’ It’s always there to fall back on,” she said.

Dunckel won her WIT award while completing her PhD at Kansas State, then worked for two years as a wheat breeder in Australia before moving to her current role at KWS, where she oversees nine breeding teams across Europe who are working to develop new barley, peas, oats and protein crop varieties that are more tolerant to drought and heat, have desired quality profiles and can be grown more sustainably globally.

Paula Silva, a 2020 WIT awardee, also won her award while completing her PhD at Kansas State. She has since returned to her native Uruguay, where she leads the breeding team developing disease resistant varieties of barley and wheat for Uruguay’s National Institute of Agricultural Research (INIA). From 2019-2022, she coordinated breeding efforts with CIMMYT by leading the Precision field-based Phenotyping Platform (PWPP) for Multiple Resistance to Wheat Diseases.

One of the purposes of the WIT award is to help achieve gender parity among wheat scientists, and Silva said she believes the award “is playing a big part in building gender equality.”

Silva said that as a student, she was encouraged to apply for the WIT award by Sarah Evanega, who, along with Ronnie Coffman, international professor emeritus of plant breeding and genetics at Cornell, lobbied for the establishment of the WIT award. The BGRI now annually presents WIT honors to early-career scientists and a mentor award for excellence in advising of women working in wheat and its nearest relatives.​

“Sarah was always advocating for young, female participation,” Silva said. “I remember her counting how many females there were in conference pictures, and I do that now, too. You can see, year by year, the female representation gets bigger and bigger.”

Full gender equality in science is still lacking, but progress is being made. The gains are seen in wider perspectives that challenge orthodoxy and improve scientific possibilities.

“The WIT awards are a fantastic way to recognize and support emerging leaders in our community. The impressive cohort of past and present WIT recipients are actively contributing to global efforts to improve crop production and food security,” said Alison Bentley, who now leads the Global Wheat Program at CIMMYT.

Part of Acevedo’s leadership role for BGRI is helping choose each year’s winner, as part of a panel that includes previous WIT awardees and globally recognized wheat scientists, and working with each cohort to develop appropriate training opportunities. Acevedo said as she progressed in her career, she realized how important it was to help young female scientists not only with traditional training and networking opportunities, but also with leadership, communication, and work-life balance.

“It’s really tough to be an isolated scientist: science can be very individualistic. It can be competitive. As women in science, we feel particularly isolated because a lot of our colleagues are males. So you may feel like, ‘This is only happening to me, I’m the only one struggling with this,’” Acevedo said. “In these trainings, we celebrate professional and personal successes but also share  our challenges, normalize struggles, and find support. As we think about a more collaborative and open science, we need to be talking more about humbleness, the positive impact of recognizing and making peace with weakness, and seeking support from one another to thrive as a diverse research community.”

Read the original article: How a new generation of women are changing wheat science

CIMMYT-China workshop aims to facilitate future collaborations to battle climate change

Hybrid maize seed and ears of the Yunrui 88 variety, developed using CIMMYT and Chinese germplasm. It is high-yielding, resistant to important diseases, and drought tolerant, and farmers report that the ears can be stored for longer and are better for animal feed. It was released in 2009 and is now the most popular hybrid in the area. (Photo: Michelle DeFreese/CIMMYT)

The negative effects of climate change on food systems are felt across political boundaries, so creating sustainable remediation steps are best accomplished through global collaboration. In that spirit, the International Maize and Wheat Improvement Center (CIMMYT) and the Chinese Academy of Agricultural Sciences (CAAS) convened the China-CIMMYT Workshop on Climate Change & Food Crops Production on December 6, 2022.

Participants included principal investigators of China’s National Key Technology Research and Development Program, representatives of Chinese agricultural universities, CIMMYT scientists and representatives from a variety of international organizations. The agenda featured discussions regarding research priorities, efforts to establish best practices in classifying and prioritizing climate risks and identifying potential crucial points for future cooperation between CIMMYT and China.

After the welcome address from Wheat Breeder and Country Representative for China Zhongzhu He, Thomas Lumpkin, CIMMYT Director General Emeritus provided the introduction to global climate issues and their effects on agriculture, particularly staple crops like wheat.

“All climate change mitigation strategies must account for their effect on food production systems, the aim of this convening was to facilitate discussions among climate change scientists, crop breeders and agronomists,” said Lumpkin. “Global issues require global solutions and so collaboration among institutions is pivotal.”

Tek Sapkota, CIMMYT Agricultural Systems and Climate Change Scientist, presented a framework for quantifying GHG emissions and mitigation potential for food systems, key research objectives of the One CGIAR initiative MITIGATE+, an initiative aimed to reduce annual global food systems emissions by 7% by 2030.

Three other CIMMYT scientists presented at the workshop. Wei Xiong, Senior Scientist, Crop Modeler, focused on genotype-environment interactions and its implication on breeding. Urs Schulthess, Remote Sensing Scientist, presented state-of-the-art results on the effects of temperature and vapor pressure deficit on radiation use efficiency of wheat. Huihui Li, Scientist, Quantitative Geneticist, discussed expanding genome wide association mapping and genomic selection to include climatic factors, highlighting novel methods to bring genes and climate together to accelerate breeding cycles.

In the workshop’s closing remarks, Wei reiterated CIMMYT’s commitments to continued collaboration with Chinese institutions and outlined next steps, such as CIMMYT’s commitment to increasing global agricultural resilience via novel research, partnerships, and increased engagement. Wei also detailed methods to identify new mechanisms and funding channels to promote global cooperation, such as One CGIAR initiatives and funding from national partners, including the CAAS.

Closing the investment gap for sustainable agriculture

The conflict between Russia and Ukraine has impacted exports of wheat, barley and fertilizers, affecting food security in many regions that rely heavily on imports to access these products. The UN Food and Agricultural Organization (FAO) and the World Food Programme predict that acute food insecurity will affect up to 205 million people by early 2023, with conditions deteriorating further in 19 countries.

Redesigning agricultural systems to solve this challenge must also take climate change into account: research published in Nature Food suggests that food systems cause a third of global greenhouse gas (GHG), while use and misuse of fertilizers, pesticides, energy, and water damages biodiversity.

The private sector is missing out on opportunities to invest in the agricultural sector and be part of the solution due to the challenges of putting a price on something like ‘protecting biodiversity’.

Director of CIMMYT’s global wheat program Alison Bentley says that while overseas development assistance and national governments provide significant support to the organization, private finance does play a role. “We have some really nice collaborations with the private sector, which allow us to access technology. The private sector, in the space of plant genetics and plant breeding, has pioneered some methodologies and technologies,” she tells GTR.

Read the original article: Closing the investment gap for sustainable agriculture

Exotic wheat DNA helps breed ‘climate-proof’ crops

A new study has determined that wheat with exotic DNA from wild relatives benefits from up to 50 percent higher yields in hot weather, compared with elite lacks lacking these genes.

The study by the International Maize and Wheat Improvement Center (CIMMYT) and the Earlham Institute examined how exotic alleles contribute to wheat heat tolerance in different field conditions based on field trials in Sonora, Mexico.

“Crossing elite lines with exotic material has its challenges,” said Matthew Reynolds, co-author of the study and leader of Wheat Physiology at CIMMYT. “There’s a well-recognized risk of bringing in more undesirable than desirable traits, so this result represents a significant breakthrough in overcoming that barrier and the continued utilization of genetic resources to boost climate resilience.”

These results can be used to improve crop resilience and food security in the face of the challenges posed by climate change, as well as emphasizing the importance of genetic diversity in key crops where selective breeding has reduced adaptability.

Read the original article: Exotic wheat DNA helps breed ‘climate-proof’ crops

Identifying climate mitigation strategies from AFOLU sector in Mexico

The vital tasks for each country to reduce its greenhouse gas (GHG) emissions and limited carbon outputs are daunting, especially with 2030 deadlines imposed by the Paris Climate Agreement only eight years away. National stakeholders would benefit greatly from roadmaps that identify realistic and achievable milestones to point the way forward.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) have provided just such a road map. Using easily available data, they developed rapid assessment methods and adoption costs for mitigation related to crops, livestock, and forestry to identify priority locations and actions. Their article, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico”, was published in Carbon Management.

Applying these methods for Mexico, researchers found a national mitigation potential of 87.88 million metric tons (Mt) of carbon dioxide equivalents per year.

“Faced with such an overwhelming issue like climate change, it can be difficult for an individual, an organization, and especially an entire nation to know where to start. We developed a rapid assessment framework, tested in India, Bangladesh, and Mexico, but we believe other nations can use our methods as well,” said Tek Sapkota, the project leader and first author of the paper.

The research specifically focused on climate change mitigation in agriculture, forestry, and other land uses (AFOLU). Agriculture and related land use change contributed about 23% of the world’s anthropogenic GHG emissions in 2016, and that number is expected to increase as more food needs to be produced for the world’s growing population.

Chickpeas planted on wheat residue under conservation agriculture. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

The researchers’ starting point was to quantify baseline emissions and analyze the major sources of emissions. Mexico’s AFOLU sector is responsible for 14.5% of its total national GHG emissions. In Mexico’s agricultural sector, methane and nitrous oxide emissions arise from livestock activities (enteric fermentation and fertilizers), as well as from agricultural activities (soil management and field burning of crop residues). For land use, carbon dioxide emissions and removals result from changes in forest lands, pastures, agricultural land, wetlands, and settlements.

Activities identified for GHG mitigation in crop production included avoiding fertilizer subsidies, since those tend reward inefficient nitrogen use. Subsidies could be of use, however, in encouraging farmers to adopt more efficient nitrogen management. Precision levelling of crop fields can help to lower GHG emissions by reducing cultivation time and improving the efficiency of fertilizer and irrigation water and adoption of conservation agriculture practices, such as zero tillage.

“Adoptions of these practices will not only reduce GHG emissions, but they will also help increase productivity,” said Ivan Ortiz-Monasterio, co-author and Mexico coordinator of the study.

In the livestock sector, mitigation possibilities identified are the creation of official programs, financial support, and capacity building on composting and biodigester. In FOLU sector, researchers identified options such as zero deforestation and C offset in the C market.

In addition to mapping out the mitigation benefits of specific activities, researchers also considered the costs associated with implementing those activities. “Looking at these efforts together with the cost of their implementation provide a complete picture to the implementing bodies to identify and prioritize their mitigation efforts consistent with their development goals,” said Sapkota. For example, some efforts, like increasing nitrogen use efficiency, do not provide the most climate benefits but are relatively inexpensive to realize, while establishing and maintaining carbon capture markets provides large reductions in GHG, they can be expensive to implement.

Researchers examined publicly available AFLOU spatial data for each Mexican state. At the state level, AFOLU mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8Mt CO2eq), indicating these states can be considered the highest priority for alleviation efforts. They identified an additional 11 states (Oaxaca, Quintana Roo, Yucatan, Jalisco, Sonora, Veracruz, Durango, Chihuahua, Puebla, Michoacán, and Guerrero) as medium priorities with mitigation potentials of 2.5 to 6.5 Mt CO2eq.

“Our data driven, and evidence-based results can help the government of Mexico refine its national GHG inventory and its Nationally Determined Contributions target and monitor progress,” said Eva Wollenberg, the overall coordinator of the study and research professor of University of Vermont, USA. “This analysis further provides an example of a methodology and results to help inform future efforts in other countries in addition to Mexico.”

Read the study: Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico

Cover photo: Low nitrogen (at the front) and high nitrogen (at the back) maize planted to address nitrogen use efficiency. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

Scaling Scan website launched

The Scaling Scan website has been launched offering the latest news, manuals, videos, trainings, a directory of consultants, and a forum to engage with peers and experts on how to use the Scaling Scan tool to support scaling processes.

The website, which was developed by Lennart Woltering, scaling advisor with the International Maize and Wheat Improvement Center (CIMMYT), and the Scaling team in CIMMYT, builds on the success of the Scaling Scan, a user-friendly tool designed for anyone to learn about scaling: appreciate that context is king, that innovations don’t scale alone, and that collaboration is key for success

“The idea behind the Scaling Scan has always been to make it accessible to users of all levels, to bring the discussion on scaling to the ground and therefore, just like the tool, the materials on the site are available in English, French, and Spanish,” said Woltering.

It features materials used in training programs and workshops by CIMMYT’s scaling team over the past five years, repurposing them neatly for users around the world to assess the scalability of their own pilot projects and innovations. The website also includes a forum where users can engage in conversations, exchange information, and ask experts and other users questions and advice related to scaling. The platform also acts as a conversation space, allowing users around the world to share their experiences with the Scaling Scan, ask questions, and learn from each other. This has the added benefit of helping the Scaling Scan team understand on the ground needs so that they can create more user-friendly content.

“The demand for Scaling Scan workshops has been overwhelming, within CIMMYT, the CGIAR, but also with development organizations like Catholic Relief Services and GIZ and the private sector and we realized that we should bank much more on its biggest asset: accessibility. So, in 2022 we started with trainings for facilitators and the website serves as the platform for them to draw inspiration, materials, and methodologies how to apply the Scaling Scan in their context,” said Woltering.

Scaling is a process that aims to achieve sustainable change at scale. This means that not only should many people benefit from a new technology, but the results of a particular project should carry over beyond its immediate context and transform communities for the better.

It’s a complex process, and there is no one single recipe or blueprint. The Scaling Scan can, however, give direction to scaling new projects and highlight key factors scaling teams need to look out for

“The Scaling Scan aims to provide a framework for people to understand how much they should scale, and what else should be taken into consideration, in addition to the technology, for the next steps in their scaling process,” said CIMMYT Scaling Coordinator Eva Marina Valencia Leñero. “It also intends to show that scaling is not only about focusing on where the innovation is ready or mature, but also whether there are enabling conditions – what we call scaling ingredients – surrounding this innovation that managers have to plan for if they want their innovation to last in the long-term.”

“Considering that the core of the tool was developed at a kitchen table with three people over two days with no funding, it is amazing that the tool has served more than 2,000 people in the last five years,” said Woltering. With support from GIZ, the Scaling Scan is now being digitized which allows for the development of different versions, for example one with more emphasis on social inclusion or on climate mitigation for the One CGIAR Low-Emission Food Systems (MITIGATE+) Initiative. The lessons from over five years of applying the Scaling Scan from rural areas in Honduras to Bangladesh are currently being written up.

Tracking the development and reach of CIMMYT’s climate research

Research for development organizations generate a wealth of knowledge. However, due to time and resource restraints, this knowledge has not been systematically analyzed, and the dynamics of how research is shared online have not been fully understood.

Today, technical advances in text mining, network analysis and hyperlink analysis have made it possible to capture conversations around research outcomes mentioned almost anywhere on the web. New digital research methodologies have emerged offering comprehensive approaches to leverage data across the web and to synthesize it in ways that would be impossible to carry out using traditional approaches.

In a study published in Nature Scientific Reports, scientists from the International Maize and Wheat Improvement Center (CIMMYT) teamed up with researchers from the University of Coimbra and University of Molise to investigate how CIMMYT research in climate change and climate sensitive agriculture is developing and the extent to which the center is exchanging knowledge with communities around the world.

Using text mining, social network analysis and hyperlink analysis to uncover trends, narratives and relationships in digital spaces such as research databases, institutional repositories, and Twitter, the team found that CIMMYT has steadily increased its focus on climate change research and is effectively sharing this knowledge around the world. The authors also found that CIMMYT’s climate research was centered on three main countries: Mexico, India, and Ethiopia.

The novel analytical framework developed by the team will help scientists track where their research is being shared and discussed on the web, from traditional scientific journal databases to social media.

“The web analytics framework proposed in this paper could be a useful tool for many research for development organizations to assess the extent of their knowledge production, dissemination, and influence from an integrated perspective that maps both the scientific landscape and public engagement,” said Bia Carneiro, first author of the paper.

The results of the study showed that sharing of CIMMYT’s climate science research was strongest on academic and research platforms but was also reflected in social media and government and international organization websites from across the Global North and South.

The findings from the study are important for the decolonization of science and the democratization of scientific debate. They show that CIMMYT is decolonizing climate science by sharing, creating, and co-creating knowledge with communities across the globe, particularly in Latin America, South Asia and Africa. On Twitter, the team noted that almost all countries were mentioned in CIMMYT’s Twitter conversations.

The study also shows that CIMMYT is bringing climate science and climate-sensitive agriculture into public debate, particularly through social media platforms, though they note there is potential to share more knowledge through these channels.

According to CIMMYT Agricultural Systems and Climate Change Scientist and coordinator of the study, Tek Sapkota, these types of analyses help research for development organizations to understand how people around the world view their expertise on subject matter, identify their comparative advantage and develop the value proposition of their work going forward.

Read the study: Digital artifacts reveal development and diffusion of climate research

Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)

In maize research, farmers’ priorities are our priorities

Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.

While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.

Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.

In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.

The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.

The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.

By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.

Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)

Drought and striga tolerance come out top for Kenyan farmers

In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.

The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.

“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.

“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”

The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”

Read the studies:

Maize variety preferences among smallholder farmers in Ethiopia: Implications for demand-led breeding and seed sector development

Building Resilient Maize Production Systems With Stress-Adapted Varieties: Farmers’ Priorities in Western Kenya

Cover photo: Roadside vendor sells roasted maize cobs to a customer in Timau, Kenya. (Photo: Peter Lowe/CIMMYT)

Farmers in Zimbabwe embrace agroecology

Smallholder farmers display a range of small and large grains at the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Smallholder farmers in resource-poor communities of Zimbabwe and much of the Global South have been experiencing low crop productivity due to many factors, including inappropriate seeds and seed varieties, labor shortages, loss of agro-biodiversity, insufficient inputs, degrading soils, and recurrent droughts. These threats are now amplified by climate change.

This has resulted in broken food systems rendering food and nutrition insecurity commonplace. The One CGIAR initiative, Transformational Agroecology Across Food, Land, and Water Systems, led by the International Maize and Wheat Improvement Center (CIMMYT) in Zimbabwe, is designed to bring agroecological advances to smallholder famers in an effort to strengthen local food systems.

Smallholder farmers in the Mbire and Murehwa Districts of Zimbabwe were introduced to innovative agroecology interventions, premised on harnessing nature’s goods and services while minimizing adverse environmental impacts and improving farmer-consumer connectivity, knowledge co-creation, and inclusive relationships among food system actors.

Smallholder farmers register for the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove)

Farmer to farmer collaboration at seed fairs

In response to challenges related to lack of appropriate seeds and eroding agrobiodiversity and, as a way to transition prevailing food systems to more sustainable ones, farmers were invited to take part in seed fairs. The seed fair’s objective was to enable smallholder farmers to access improved and locally adapted seeds of food crops originating from the private sector and fellow farmers. In addition, the seed fairs provided a platform for learning about agroecological practices. Farmers were also given a chance to see different machinery that could aid in land, food, and feed preparation, and address their labor shortage challenges.

At the opening of the seed fair in Mbire, Dorcas Matangi, CIMMYT research associate, acknowledged that smallholder farmers operate in challenging and complex ecological, social, and economic systems and there is a need for interventions that address the natural resource base without ignoring the social and economic dynamics within communities.

“The communal culture of sharing and trading between community members can be capitalized on for a collective benefit, said Matangi. “One such case is through events such as seed fairs where we encourage farmers to showcase and sell seeds they know perform very well.”

She further explained to the participating farmers how increasing their crop diversity and using practices such as conservation agriculture techniques benefit the environment and improves food security and nutrition.

“I am grateful for these efforts,” said Grace Musandaira, supervisor of the Agriculture Advisory and Rural Development Service. “Our region is arid, and as such, it is very difficult for our farmers to achieve significant yields to assure them there is enough food for the year. In addition, the knowledge provision relating to preserving and improving agrobiodiversity through agroecological practices is set to improve rural livelihoods.”

Senzeni Nyagonye, a farmer in Mbire, said “This initiative is teaching and exposing us to so many new concepts such as conservation agriculture with mechanization. If we can apply conservation agriculture with the seeds we bought at this seed fair, we are optimistic about a great harvest.”

A total of 1,058 farmers attended two seed fairs in Mbire and Murehwa. Farmers had the opportunity to access a variety of crop seeds ranging from maize, to sorghum, millets, groundnuts, bambara groundnuts, and sunflowers. More than 200 farmers exhibited local seeds that were available for sale or exchange. Private seed companies also showcased and sold certified drought-tolerant maize, sorghum, bean and cowpea varieties.

“The seed fairs in Mbire and Murehwa were very successful”, said Matangi. “And we feel these efforts will serve as a useful case study to guide a national scale-up.”