Skip to main content

New generation of farmers lead the way in making farming more productive and profitable

In the Indo-Gangetic Plains of northern India, nearly 70% of the population is involved in agriculture and extension services. Despite the abundantly fertile soil and farmers’ resilience, the adoption of agricultural innovations and productivity in the region has been slow.

This slow progress is often attributed to comparatively low levels of agricultural mechanization in the region and small land holdings of individual farmers, which often makes them risk averse to new technologies. However, times are changing.

Farmer Gangesh Pathak, in his recently harvested field using combine harvester machine, discuss Kharif – summer crops – schedule with CIMMYT Agronomist Ajay K Pundir. (Photo: Vijay K. Srivastava/CIMMYT)

Through the Cereal Systems Initiative for South Asia (CSISA) project, researchers from the International Maize and Wheat Improvement Center (CIMMYT), working closely with the local Krishi Vigyan Kendra (KVK) and partners, have led the transition from traditional farming to sustainable intensification agricultural practices in the region, helping the region slowly but steadily realize its full potential. Over the years, working extensively with progressive farmers, CSISA scientists have helped optimize the cost of inputs and increase productivity through new technology adoption and capacity building for these farmers.

Krishnamohan Pathak, a farmer in his early sixties from the village of Patkhaoli, first learned about conservation agriculture practices when he attended a field event in Nonkhar village in Deoria district, Uttar Pradesh. CSISA researchers invited farmers from Nonkhar and neighbouring villages to attend a field day event, an exposure activity, on zero tillage wheat and direct seeded rice (DSR) technologies. Zero tillage allows farmers to plant directly without plowing or preparing the soil, minimizing soil movement. Pathak was one of the farmers who got to see first-hand the advantages of these sustainable agricultural practices.

Seeing merit in these practices, Pathak continued to engage with CSISA scientists and in 2013-2014, adopted zero tillage, and directly seeded rice in his family-owned fields.

“The CSISA field team encouraged me to buy a rice planter which has helped manage paddy transplantation on time, and wheat after that through zero till,” Pathak said.

Pathak later participated in other agri-technology events and CSISA field trial activities. In 2018, he joined other progressive farmers from the region who attended a training at ISARC (IRRI South Asia Regional Centre) in Varanasi, Uttar Pradesh on direct seeded rice, organized by CSISA researchers to build capacity and raise awareness of the conservation agriculture method.

The next generation leads the way

Today, Pathak is one of the key influential farming members in the region. He has now, however, passed the baton to his 37-year-old son Gangesh Pathak. “I have occupied myself with other local leadership activities after my son has been active in the fields. I am not so skilled at using these machines, their maintenance and their services. The younger generation seems much better at adapting,” he said.

Gangesh has been involved actively in farming ever since he finished his graduation, trying to make it lucrative. He has enjoyed recent success growing wheat and rice through new technology and practices. Standing in the fields recently harvested with the new improved wheat variety DBW 187, grown through early sowing – a method which goes against the traditional practice of planting after November – and zero tillage, he is happy with his 5.5 ton per hectare yield.

He spoke enthusiastically about the farming machinery he has procured to reduce drudgery in his farms and the hiring services provided to smallholder farmers in the region. After his father bought the transplanter in 2014, the family added larger machines such as the Happy Seeder, Super Seeder, Laser Land Leveller, Straw Reaper, and Direct Seeded Rice machine.

Farmer Gangesh Pathak explains the use of machinery that has enabled conservation agriculture practices in his fields and helped improve yields and income. (Photo: Nima Chodon/CIMMYT)

According to Gangesh, this has been possible thanks to the support from the local agriculture authorities and guidance from the CSISA team, who told his father about the various schemes offered by the central and state government to support farmers to adopt more productive and sustainable agricultural technologies.

Ajay Kumar Pundir, CIMMYT agronomist, based in Uttar Pradesh and leading CSISA’s efforts, stressed the importance of access to agricultural mechanization and support.

“Our job just does not end at informing and training farmers about better-bet agricultural practices. Along with other public and private stakeholders, we must support and ensure their availability and access – machines, quality seeds, timely information – for farmers to adopt it,” he said.

Custom hiring center help scale mechanization

With so much farm machinery, the Pathaks soon began extending hiring services. Custom hiring is a promising enterprise opportunity for farmers as they can use the machinery on their farms and earn extra income by extending services to other farmers at a reasonable cost, which helps cover diesel and maintenance costs. Gangesh made about 2.5 lakhs (USD $3,033.76) in profit during the 2022-2023 Rabi (winter crops) through hay machine hiring services, where around 250 farmers used these services.

Once the word spread, demand for hiring services by smallholder farmers, challenged by scarce labor for sowing and harvesting, started growing. Gangesh was encouraged by the good profits and was keen to share the benefits of such hiring services to as many farmers as possible, and he helped establish a Farmer Producer Organization (FPO) with his father, Krishnamohan. FPO is a group made up of farmer-producers who are entitled to a host of benefits, including quality seeds, technical support, market access, under the Department of Agriculture and Farmers Welfare (DA&FW).

The FPO, started by the Pathaks in 2020, with 75 members (farmers) initially, currently boasts of around 300 farmers. Almost all FPO members have availed the custom hiring services for all farming purposes and various crops. Farmers, “particularly smallholders who cannot afford to purchase these machines for less than a few acres of land, are happy with the custom hiring services. It helps reduce their input cost by almost 50% along with other FPO member benefits,” Gangesh said.

Community-based technology demonstrations by CSISA and KVK and partners are ongoing to scale-out proven technologies and practices like early wheat sowing, zero tillage, and direct seeded rice. Gangesh is hopeful that farmers in the region, despite the emerging climate crisis concerns – already being felt in the region – can produce more and improve their income. He reckons that diversifying between rice-wheat cropping systems, mechanizing and system optimization through better advisories, and improved access to technologies as recommended by agronomists, will help farmers stay ahead of the curve.

About CSISA

Established in 2009, the Cereal Systems Initiative for South Asia (CSISA) is a science-driven and impacts-oriented regional initiative for increasing the productivity of cereal-based cropping systems. CSISA works in Bangladesh, India, and Nepal. CSISA activities in India focus on the eastern Indo-Gangetic Plains, dominated by small farm sizes, low incomes, and comparatively low agricultural mechanization, irrigation, and productivity levels. Learn about CSISA (India) Phase 4.0  

Inauguration of the international soil-borne pathogens research & development center in Ankara, Turkey

Staff of the International Soil Borne Pathogens Research and Development Center along with the Minister, deputy ministers, TAGEM’s DG, and high-level officials of the Ministry of Agriculture Forestry. (Photo: TAGEM)

Soil-borne pathogens (SBP) are a serious threat to Turkey’s food security, especially as climate extremes (temperature, precipitations) become more commonplace. SBP are an array of specific adverse effects, such as root rot, wilt, yellowing, and dwarfing caused by fungi, bacteria, viruses, and nematodes. These pathogens can cause 50-75% yield loss in crops.

On May 2, 2023, the International Maize and Wheat Improvement Center (CIMMYT) Country Representative in Turkey, Abdelfattah Dababat, joined the inauguration ceremony of the International Soil-Borne Pathogens Research & Development Center (ISBPRDC).

Vahit Kirişci, Turkish Minister of Agriculture and Forestry, inaugurated the Center, which is the first of its kind in the Central West Asia and North Africa (CWANA) region dedicated to advancing research on SBPs and developing innovative solutions to control and prevent their spread.

The opening ceremony took place at the Directorate of Plant Protection Central Institute working under the General Directorate of Agricultural Research and Policies (TAGEM), and it was attended by deputy ministers, TAGEM’s DG, and high-level officials of the Ministry of Agriculture and Forestry.

Serving under the auspices of the General Directorate of Agricultural Research and Policies (TAGEM), part of the Turkish Minister of Agriculture and Forestry, the ISBPRDC will meet international standards for sanitary conditions.

CGIAR and TAGEM mutually supported the SBP CIMMYT Turkey program by establishing and funding the ISBPRDC.

Bringing partners together

CIMMYT is signing a collaboration agreement with the ISBPRDC to facilitate knowledge exchange and technology transfer between the two institutions, which will support joint research and development activities aimed at improving crop health and productivity.

“The most effective way forward to battle against threats to food security is through cooperation,” said Dababat. “This collaboration is a great opportunity for Turkey’s seed industry to maintain its competitive advantage in foreign markets.”

Professor Vahit Kirişci, Turkish Minister of Agriculture and Forestry, TAGEM’s DG, CIMMYT’s Representative, and high-level officials from the Ministry of Agriculture and Forestry. (Photo: TAGEM)

Thirty-five scientists and technicians will work at the ISBPRDC and the institute will act as an umbrella for all SBP research in Turkey. Bahri Dağdaş International Agricultural Research Institute (BDIARI), the Transitional Zone Agricultural Research Institute (TZARI), and the Plant Protection Central Research Institute (PPCRI) with offices in Konya, Eskisehir, and Ankara, respectively, will support the ISBPRDC center and collaborate with the SBP program at CIMMYT to deliver high-yielding wheat germplasm that is resistant to SBP.

Among new programs at the center are the development of a robust surveillance system to track pathogens, a genebank for germplasm, and screening facilities for resistance against SBP.

Accelerating delivery of stress-tolerant, nutritious seed in Eastern and Southern Africa

AID-I staff inspect germination in Malawi (Photo: CIMMYT)

Accelerated delivery with a difference is underway in Malawi, Tanzania, and Zambia to ensure access to stress-tolerant seeds for underserved farmers in remote areas. Supported by USAID, the Accelerated Innovation Delivery Initiative (AID-I) project brings public-private and civil society together to address the impacts of climate change, pests and diseases, and food shocks on maize and legume systems.

One simple and cost-effective solution to tackle these threats is last mile delivery of stress-tolerant and nutritious seeds. Ensuring that farmers have access to a diverse range of seeds means they can choose the best varieties to suit their needs and their local environment.

Through AID-I, scientists at the International Maize and Wheat Improvement Center (CIMMYT) are working with over 20 global, regional, national, and local partners to strengthen maize and legume seed systems in Malawi, Tanzania, and Zambia.

So far, in 2023, the team has set up over a hundred mega-demonstrations across Malawi and Zambia, to raise awareness and increase seed production by exposing communities to improved, climate-adapted and nutritious crop varieties. As learning centers, the mega-demonstrations give farmers a chance to see for themselves the advantages of improved maize and legume varieties and better farming practices including conservation agriculture and doubled up legumes systems.

Farmers plant mega-demonstration plots in Malawi (Photo: CIMMYT)

Spotlighted were drought-tolerant and nutritious varieties, expected to play a crucial role in the recovery of regional maize production. The Zambian and Malawian governments have also just released maize hybrids tolerant to fall armyworms, which will be scaled through the AID-I. The fall armyworm is an invasive pest that attacks more than 80 different crops but has a particular preference for maize. Without proper control measures, the pest can decimate crops, threatening food security, incomes, and livelihoods.

Alongside maize, the AID-I team is making seed of improved legume varieties, including beans, soybean, pigeon peas, cowpea, and groundnuts available at the last mile. Legumes are nutritious and good for the soil, providing valuable nutrients like nitrogen (N) so farmers can use less fertilizer, save money, and protect soil health.

AID-I supports strengthening of strategically located seed stockists of improved legume varieties and linking seed growers and buyers. These stockists, called agricultural development agents will also receive training in community seed production. Through connection with hundreds of agricultural development agents in the first farming season with seed suppliers, hundreds of thousands of farmers will be able to access a wide variety of improved seed.

Members of the CIMMYT leadership team with representatives from the U.S. Department of State and the U.S. Agency of International Development (USAID) visit AfriSeed in Zambia (Photo: CIMMYT)

Building strong relationships between public and private sector organizations is an integral part of the project. On January 16, 2023, long-term CIMMYT collaborator and AID-I key partner, AfriSeed hosted senior government officials from the United States Department of State (DOS) and U.S. Agency for International Development (USAID). The visitors gained valuable insight into how private seed companies involved in the marketing and distribution of maize and legume seeds operate in Zambia and showed their crucial role in the country’s seed sector.

Crop Trust leadership visits CIMMYT

Maize under conservation agriculture (CA) in Malawi (Photo: T. Samson/CIMMYT)

With many stresses facing agricultural food systems, including climate change, disease epidemics, growing populations, there is not one solution that will answer all the challenges. However, a foundational part of any attempt to strengthen food systems is the effort to conserve crop diversity. Maintaining a robust set of plant varieties serves as a building block for developing favorable traits, like increased yield, increased disease resistance, and drought tolerance, among others.

Dedicated to conserving crop diversity, the Crop Trust is a non-profit international organization with the mission of making that diversity available for use globally, forever, for the benefit of everyone.

On April 3, 2023, Crop Trust’s Executive Director, Stefan Schmitz, and Director of Programs, Sarada Krishnan, visited the International Maize and Wheat Improvement Center (CIMMYT) for the first time to examine CIMMYT’s maize and wheat genebanks, with the goal of establishing a set of standards for genebanks around the world. The parties also discussed future collaborations between the two institutions that will be best amplify each organization’s strengths.

A key part of the Crop Trust’s mission is support for collections of unique and valuable plant genetic resources for food and agriculture held in genebanks.

“CIMMYT is — and has been — one of the key partners in making sure crop diversity is safe and available for all of humanity,” said Schmitz. “Their maize and wheat genebanks serve a crucial role in assuring crop diversity, especially in Latin America.”

Maize seed samples, CIMMYT germplasm bank (Photo: Xochiquetzal Fonseca/CIMMYT)

CIMMYT manages the most diverse maize and wheat collections. CIMMYT’s germplasm bank, also known as a seed bank, is at the center of CIMMYT’s crop-breeding research. This remarkable, living catalog of genetic diversity comprises over 28,000 unique seed collections of maize and 123,000 of wheat.

“CIMMYT is honored to host the Crop Trust as any global solution requires global collaboration,” said CIMMYT Director General, Bram Govaerts.

Advances in genebank management

Representatives of the Crop Trust were eager to learn more about CIMMYT’s efforts in Digital sequence information (DSI). CIMMYT is using DSI to analyze structure, redundancies, and gaps within its own genebank and is now working to bring DSI tools to national genebanks in Latin America.

This visit builds on ongoing work, such as the third workshop of the Community of Practice for Latin America and the Caribbean on the use of genomic and digital tools for the conservation and use of Genetic Resources for Food and Agriculture (GRAA) held in November 2022.

Among CIMMYT led initiatives, the Mining Useful Alleles for Climate Change Adaptation from the CGIAR Genebanks project, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.

The doomsday vault

In 2020, CIMMYT was the largest contributor to the Svalbard Global Seed Vault, providing 173,779 maize and wheat accessions from 131 countries.

The Seed Vault, managed by the Crop Trust, is a repository collection holding duplicates of seeds from over 1,700 genebanks around the world.

CIMMYT’s most recent donation to the Seed Vault was in October 2022.

Colleagues from CIMMYT’s germplasm bank prepare a delivery of 263 accessions of maize and 3,548 accession of wheat. (Photo: Francisco Alarcón/CIMMYT)

“All CIMMYT staff we met were passionate about their work and welcomed us kindly, generously sharing their knowledge and time with us. We look forward to continuing our collaboration, to strengthen it, and make sure that the crop collections held at the CIMMYT genebank are safe and available, forever,” said Schmitz.

CIMMYT at AIM for Climate Summit

AIM4C Call to Action (Photo: SterlingComs)

With the harmful effects of climate change, including drought and extreme temperatures moving from the abstract into the practical, the development and deployment of sustainable investments and support for climate action in agricultural and food systems must be accelerated.  

A hotter and drier world will significantly affect the average yields of key staple crops. Researchers at the International Center for Maize and Wheat Improvement (CIMMYT) estimate that, without adaptation of climate-smart solutions, each Celsius degree increase in global mean temperatures will cut average maize yields by 7.4 percent and wheat yields by 6.0 percent. 

“Those would be catastrophic losses, affecting every part of the global food system,” said CIMMYT Director General Bram Govaerts “Already we see havoc being caused in food insecure regions like southern Africa. With that in mind, it’s time not only to keep developing climate smart solutions, but we need to speed up the distribution of innovations.”  

CIMMYT is a partner in the Agriculture Innovation Mission for Climate (AIM4C) initiative, which aims to raise global ambition and drive more rapid and transformative climate action in all countries by bringing together policymakers, industry leaders, producers, civil society groups, and scientists and researchers. 

The AIM for Climate Summit, May 8-10, in Washington DC, brought together a global coalition of climate partners, including CIMMYT, all working towards the mission of rapid dissemination of climate-smart innovations.  

Bram Govaerts delivered closing remarks at IFPRI (Photo: CIMMYT)

As part of its participation in the Climate Summit, CIMMYT is reshaping its strategy for contributing to the 2030 Agenda for Sustainable Development.  

The new strategy places CIMMYT research within three main pillars: (1) discovery, (2) systems development, and (3) inclusivity, all within the framework of climate adaptation and mitigation.  

“Our new approach ensures that CIMMYT will be a partner of choice and a contributor to science and technology development. All while keeping the focus on smallholder farmers and establishing guidelines to ensure advances are sustainable and fair, as we engage previously underrepresented stakeholders,” said Govaerts.  

Establishing frameworks for rapid innovation 

At the Summit, CIMMYT updated partners on the progress of two Innovation Sprints, which are key components of the AIM and intended to achieve innovations for climate smart agri-food systems in an expedited time frame.  

CIMMYT is leading two sprints: Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America and Fast Tracking Climate Solutions from CGIAR Genebank Collections. 

The Right Fertilizer at the Right Time 

The Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America Innovation Sprint provides targeted interventions for fertilizer application and overall soil health to smallholder farmers.  

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others. 

“We need innovations that promote local adaptation and agency by smallholder farmers. By tailoring fertility management practices to specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieglinde Snapp, Innovation Sprint Leader and Program Director of CIMMYT’s Sustainable Agricultural Systems.  

Sieg Snapp participated in a breakout session (Photo: SterlingComs)

Withdrawals from genebanks 

CIMMYT’s germplasm bank, also known as a genebank, is at the center of CIMMYT’s crop-breeding research. This living catalog of genetic diversity conserves over 28,000 unique seed collections of maize and 150,000 of wheat. Many other CGIAR institutions hold similar genebanks for other key crops. The Genebank Sprint unlocks potential climate smart solutions lurking in varieties held in genebanks. 

Sarah Hearne spoke on the potential of utilizing CGIAR genebanks (Photo: CIMMYT)

Research has developed integrated approaches for six major crops (cassava, maize, sorghum, cowpea, common bean and rice), providing a scalable model for the rapid and cost-effective discovery of climate-adaptive alleles. 

“Genetic diversity is a key part of our responses to climate change,” said Sarah Hearne, CIMMYT Principal Scientist. “By utilizing the vast diversity catalogue in our CGIAR genebanks, we can disseminate climate resilient varieties to smallholder farmers around the world.” 

Working towards speeding up deployment  

In addition, CIMMYT’s Accelerated Innovation Delivery Initiative (AID-I), a partnership with the United States Agency for International Development (USAID) and based on the MasAgro model in Mexico, works toward improving legume seed and maize varieties. So far, 35 local partners are employing solutions in Zambia, Tanzania, and Malawi, and there have been 125 mega demonstrations, a majority managed by women, for farmers of improved seeds.  

In conjunction with the Summit’s focus on rapid implementation, CIMMYT is ready to deploy a similar project immediately in Central America, a historically under-funded region, which would improve livelihoods throughout the area.  

“CIMMYT is dedicated to accelerating food systems transformation by using the power of collective action for research and innovation to foster productive, inclusive, and resilient agrifood systems that ensure global food and nutrition security,” said Govaerts. 

A promising partnership

In August 2022, the arrival of a container ship at the port in Cotonou, Benin signaled a major milestone in a developing South-South business relationship that holds the potential to produce a massive change in agricultural practices and output in Benin and across West Africa.

The delivery of six-row seeder planters from India marks the initial fruit of a collaboration between Indian manufacturer Rohitkrishi Industries and Beninese machinery fabricator and distributor Techno Agro Industrie (TAI) that has been two years in the making.

Connecting partners in the Global South

A major area of focus for the Green Innovation Centers for the Agriculture and Food Sector (GIC) projects launched in 15 countries by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger is fostering cooperation between nations in the Global South.

Krishna Chandra Yadav laser levels land for rice planting in Sirkohiya, Bardiya, Nepal (Photo: Peter Lowe/CIMMYT)

This story began through the partnership between the Green Innovation Centers for the Agriculture and Food Sector and The International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and 2 in Asia.

GIC in India has been working with Rohitkrishi to develop appropriate mechanization solutions for smallholding farmers in India since 2017.

Under this new cross-border goal, GIC India discussed with Rohitkrishi the opportunity to adapt machines to the agroecological and socio-economic systems of African countries where continued use of traditional farming methods was drastically limiting efficiency, productivity, and yield. Rohitkrishi assessed the need and pursued this opportunity for long-term business expansion.

Small machines for smallholders

Before connecting with farmers and manufacturers in Benin, Rohitkrishi was busy solving problems for smallholding farmers in India, where large manufacturers focus on agricultural machinery designed and produced to meet the needs of the bigger, commercial farms. Sameer Valdiya of GIC India and Sachin Kawade of Rohitkrishi put their heads together to develop a plan for producing machines that could make a difference—and then convince smallholding farmers to try them.

A farmer pulls a row seeder, Maharashtra, India. (Photo: Green Innovation Center-India)

By adapting an existing machine and incorporating continuous feedback from farmers, they created a semi-automatic planter. This unique, co-creative process was accompanied by an equally important change in farmer mindset and behavior—from skepticism to the demonstrated impact and cost-benefit of the planter that was clear to each farmer.

These farmers were the first to adopt the technology and promoted it to their peers. Their feedback also drove continued improvements—a fertilizer applicator, new shaft and drive, safety features, night-lights and (perhaps most importantly) a multi-crop feature to make it useful for planting potatoes, ginger, and turmeric.

Today, Rohitkrishi has distributed 52 semi-automatic planters across India, and these machines are being used by up to 100 farmers each. Users are seeing a 17-20 percent increase in productivity, with an accompanying increase in income, and 30 percent of users are women.

The seeders are a roaring success, but Rohitkrishi is focused on continued improvement and expansion. As they continue to respond to adjustments needed by farmers, the company plans to sell 1000 semi-automatic planters per year by 2025. Reaching that goal will require both domestic and foreign sales.

Market opportunity meets technological need

Thanks to the active partnership of CIMMYT and Programme Centres d’Innovations Vertes pour le secteur agro-alimentaire (ProCIVA), TAI in Benin emerged as a promising early adopter of Rohitkrishi’s planters outside India. Seeing a remarkable opportunity to establish a foothold that could open the entire West African market to their products, Rohitkrishi began the painstaking process of redesigning their machine for a new context.

This ambitious project faced numerous challenges–from language barriers, to the definition of roles amongst major players, to major COVID-19 and supply chain delays. The arrival of the seeders, however, is a major accomplishment. Now Rohitkrishi and TAI will begin working with government representatives and farmer-based organizations to ensure the equipment performs well on the ground and meets Benin’s agroecological requirements.

Once final testing is completed in the coming months, Rohitkrishi’s seeders will have the chance to demonstrate what a difference they can make for soy and rice production in Benin.

“When developing countries with similar contexts and challenges forge alliances and business connections to share their knowledge, expertise, and problem-solving skills with each other, this kind of direct South-South collaboration produces the most sustainable advances in agricultural production, food security, and job creation,” said Rabe Yahaya, agricultural mechanization specialist at CIMMYT.

Scale mechanization through a starter pack that comprises a two-wheel tractor – a double row planter as well as a trailer and sheller (Photo: CIMMYT)

Meanwhile, CIMMYT is studying this pilot project to identify opportunities for reproducing and expanding its success. Through the Scaling Scan–a web-based, user-friendly tool to assess ten core ingredients necessary to scale-up any innovation–CIMMYT is helping Rohitkrishi and TAI set ambitious and reachable goals for scalability.

Most importantly, the Scaling Scan results will identify areas for course correction and help Rohitkrishi and its partners continue to be sensitive to farmer feedback and produce equipment better suited to needs on the ground.

Startups, nonprofits race to unlock Africa’s agricultural potential as millions face food crisis and droughts

In sub-Saharan Africa, 85% of the population couldn’t afford an energy- and nutrient-sufficient diet. In the 12 most afflicted countries, World Bank data shows 9 out of 10 people struggle to afford a nutritious meal.

Climate change aggravates risk to make food even more unaffordable and crops more susceptible to crop pests and diseases.

CIMMYT maize research guides startups and nonprofits across Africa to act and put pressure on public and private actors to avert food insecurity and regional instability.

CIMMYT at the AIM for Climate Summit

Sieg Snapp, Tek Sapkota, and partners photographed during AIM for Climate (Photo: CIMMYT)

As climate change threats accelerate, new technologies, products, and approaches are required for smallholder farmers to mitigate and adapt to current and future threats. Targeting smallholder farmers will benefit not only the farmers but the entire agri-food system through enhanced locally relevant knowledge that harnesses handheld sensors and advisories on management options, soil status, weather, and market information.

The Agriculture Innovation Mission for Climate (AIM for Climate / AIM4C) seeks to address climate change and global hunger by uniting participants to significantly increase investment in, and other support for, climate-smart agriculture and food systems innovation over five years (2021–2025).

The International Maize and Wheat Improvement Center (CIMMYT), as a partner of AIM for Climate, organized a breakout session titled “Smart Smallholder Fertilizer Management to Address Food Security, Climate Change, and Planetary Boundaries” during the AIM for Climate Summit in Washington DC, May 8-10, 2023.

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others.

Farmers in low-income countries are highly vulnerable to fertilizer supply shortages and price spikes, which have direct consequences for food prices and hunger. Improving fertilizer efficiency and integrated organic and inorganic sources is important globally as nutrient loss to the environment from inappropriate input use drives greenhouse gas emissions and pollution.

Innovation Sprint

Because smallholder farmers are the primary managers of land and water, the CIMMYT-led AIM4C Innovation Sprint, Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America is designed to implement and scale-up a range of climate robust nutrient management strategies in 12 countries, and to reach tens of millions of smallholder farmers in close collaboration with nearly 100 public-private partners organizations.

Sieg Snapp called for more investments in data synthesis (Photo: CIMMYT)

Strategies include innovations in extension where digital tools enable farmer-centered private and public advisories to increase the uptake of locally adapted nutrient management practices. Connecting farmers to investors and markets provides financial support for improved nutrient management.

By tailoring validated fertility management practices to their specific conditions, and integrated use of legumes and manure, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions. Research from other organizations has determined that improved fertilizer management can increase global crop yield by 30% while reducing greenhouse gas emissions.

Right place, right time

“We need locally adapted fertilizer management approaches that work for smallholder farmers. By tailoring validated fertility management practices to their specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieg Snapp, CIMMYT’s Sustainable Agricultural Systems Program Director. She continued, “What is needed now is major investment in data synthesis. Through this SPRINT we are exploring options to enable taking sensors to scale, to reach tens of millions of farmers with hyper-local soils information.”

Inequality is the core of the problem in fertilizer management: some regions apply more than the required amount, where in other regions fertilizer application is insufficient for plant needs, leading to low yields and soil degradation.

Tek Sapkota spoke on fertilizer management (Photo: CIMMYT)

“Fertilizer efficiency can be improved through application of the right amount of fertilizer using the right source employing the right methods of application at the right time of plant demand,” said Tek Sapkota, CIMMYT Senior Scientist, Agricultural System/Climate Change.

The session included presentations by the Foundation for Food & Agriculture Research (FFAR), UN Foundation, Pakistan Agricultural Research Council (PARC), Stockholm International Water Institute (SIWI), USDA, and Alliance of CIAT-Bioversity. Highlights sustainable and climate-smart practices in Pakistan, novel plant genetics for improved nitrogen cycling, and soil water and nutrient management in the Zambezi to tackle food security and climate change challenges.

Alison Bentley announced as 2023 Borlaug CAST Communication Award recipient

AMES, IOWA—The Council for Agricultural Science and Technology (CAST) has announced the 2023 Borlaug CAST Communication Award goes to Alison Bentley.

 

While Bentley is known for her global research on wheat genetics, she is also recognized for her proficiency in science communication. Bentley has a passion for delivering practical applications from innovation to farmers, extensive reach through communicating and influencing, and mentoring and support of individuals and community efforts. Bentley’s exceptional work in raising awareness about the importance of wheat as a food crop is also evidenced by her wide-ranging list of communication activities.

In 2022 alone, Bentley delivered 20 scientific presentations—including five international keynote talks and 15 additional invited talks. Bentley focused her communication efforts around two major areas. The first area was her rapid, science-led response to the impact of the Russian/Ukraine war on global wheat production through a communication article in Nature, followed with a social media campaign and numerous presentations and invited policy briefings. Her second area of focus was a major communications campaign by initiating and leading the Women in Crop Science network. This network was developed to address key issues such as the promotion and championing of females throughout their research careers, creating equal opportunities, and increasing visibility of members.

The extensive breadth of Bentley’s outreach ranges from classic science presentations and open access articles to blogs, podcasts, YouTube videos, and Twitter campaigns. All these formats demonstrate her commitment to science communication and reaching as wide an audience as possible in an accessible way to engage with important, current topics regarding wheat supplies and plant breeding.

The official presentation of the award will take place at a special side event during the World Food Prize Borlaug Dialogue event in Des Moines, Iowa, in October. The Borlaug CAST Communication Award honors the legacy of Norman Borlaug, a Nobel Prize winner and author of the first CAST publication, and Dr. Charles A. Black, the first executive vice president of CAST. It is presented annually for outstanding achievement by a scientist, engineer, technologist, or other professional working in the agricultural, environmental, or food sectors for contributing to the advancement of science through communication in the public policy arena.

ABOUT CAST

CAST is an international consortium of scientific and professional societies, universities, companies, nonprofits, libraries, and individuals. CAST convenes and coordinates networks of experts to assemble, interpret, and communicate credible, unbiased, science-based information to policymakers, the media, the private sector, and the public.

www.cast-science.org

ABOUT CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.


FOR FURTHER INFORMATION OR INTERVIEWS

Sarah Fernandes
Head of Communications
CIMMYT
s.fernandes@cgiar.org


 

2023: The International Year of the Millet

The United Nations declared 2023 as the International Year of the Millet.

Millet, with other resilient cereal crops, provides a nutritious and affordable option to families worldwide. CIMMYT and ICRISAT are scaling-up millet cultivation when climate change has placed pressure to protect the food systems that safeguard food security in Africa.

Hot, dry climates call for resilient, high-performing wheat varieties

Public and private crop research organizations worldwide have worked behind the scenes for decades, bolstering the resilience of staple crops like maize and wheat to fight what is shaping up to be the battle of our time: feeding humanity in a biosphere increasingly hostile to crop farming.

In the case of wheat — which provides some 20% of carbohydrates and 20% of protein in human diets, not to mention 40% of total cereal exports — harvests spoiled by heat waves, droughts, and crop disease outbreaks can send food prices skyrocketing, driving world hunger, poverty, instability, human migration, political instability, and conflict.

Century-high temperature extremes and the early onset of summer in South Asia in 2022, for example, reduced wheat yields as much as 15% in parts of the Indo-Gangetic Plains, a breadbasket that yearly produces over 100 million tons of wheat from 30 million hectares of crop land.

Around half the world’s wheat crop suffers from heat stress, and each 1 °C increase in temperature reduces wheat yields by an average 6%, according to a 2021 review paper “Harnessing translational research in wheat for climate resilience,” published in the Journal of Experimental Botany, which also outlines nine goals to improve the climate resilience of wheat.

Simulating heat shocks in the field using portable plot-sized ‘heating tents’ (Photo: G Molero/CIMMYT)

Droughts and shrinking aquifers pose equally worrying threats for wheat, said Matthew Reynolds, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. “Water availability is the biggest factor influencing potential yield in a majority of wheat environments globally,” Reynolds explained. “Studies predict severe water scarcity events for up to 60% of the world’s wheat-growing areas by the end of this century.”

Science and sources to toughen wheat

Along with modernized, more diverse cropping systems and better farm policies, more resilient varieties are crucial for sustainable wheat production, according to Reynolds and a wheat breeder colleague at CIMMYT, Leo Crespo, who added that breeders have been working for decades to stiffen wheat’s heat and drought tolerance, long before climate change became a buzzword.

“Breeding and selection in diverse environments and at targeted test sites characterized by heat and natural or simulated drought has brought farmers wheat varieties that perform well under both optimal and stressed conditions and we’re implementing new technologies to speed progress and lower costs,” said Crespo, mentioning that the Center’s wheat nurseries SAWYT and HTWYT target semi-arid and heat-stressed environments respectively and are sent yearly to hundreds of public and private breeders worldwide through the International Wheat Improvement Network (IWIN). “Retrospective analysis of IWIN data has shown that heat tolerance has been increasing in recent years, according to a 2021 CIMMYT study.”

“Climate change is a serious driver of potential disease epidemics, since changeable weather can increase selection pressure for new virulent pathotypes to evolve,” said Pawan Singh, a CIMMYT wheat pathologist. “We must be ever vigilant, and the IWIN is an invaluable source of feedback on potential new disease threats and changes in the virulence patterns of wheat pathogens.”

In the quest to improve climate resilience in wheat, CIMMYT “pre-breeding” — accessing desired genetic traits from sources like wheat’s grassy relatives and introducing them into breeding lines that can be crossed with elite varieties — focuses on specific traits. These include strong and healthy roots, early vigor, a cool canopy under stress, and storage of water-soluble carbohydrates in stems that can be used as stress intensifies to complement supplies from photosynthesis, as well as an array of traits that protect photosynthesis including ‘stay-green’ leaves and spikes and pigments that protect the delicate photosynthetic machinery from oxidative damage caused by excess light.

Screening highly diverse lines – identified by DNA fingerprinting – from the World Wheat Collection under heat stress. (Photo: Matthew Reynolds/CIMMYT)

Though elite breeding lines may contain genetic variation for such traits, in pre-breeding researchers look further afield for new and better sources of resilience. The vast wheat seed collections of CIMMYT and other organizations, particularly seed samples of farmer-bred heirloom varieties known as “landraces,” are one potential source of useful diversity that cutting-edge genetic analyses promise to help unlock.

Rich diversity for wheat is still found in farmers’ fields in India, in the northern states of the Himalayan region, the hill regions, and the semi-arid region of Rajasthan, Gujarat, Karnataka. The landraces there show tolerance to drought, heat, and saline soils.

The so-called “synthetic wheats” represent another plentiful source of resilience genes. Synthetics are the progeny of crosses of tetraploid wheat (having four chromosomes, like the durum wheat used for pasta) with wild grass species. CIMMYT and other organizations have been creating these since the 1980s and using them as bridges to transfer wild genes to bread wheat, often for traits such as disease resistance and heat and drought tolerance.

The study, creation, and use of bridging lines, landraces, and seed collections with useful traits as part of pre-breeding is described in the 2021 paper “Progress and prospects of developing climate resilient wheat in South Asia using modern pre-breeding methods,” published in the science journal Current Genomics.

Lines with new sources of heat- and drought-tolerance from CIMMYT’s pre-breeding are also distributed to public and private breeders worldwide via the IWIN for testing as the Stress Adapted Trait Yield Nurseries (SATYNs), according to the paper. These special nurseries are grown by national and private breeders throughout South Asia, for example in Afghanistan, Bangladesh, India, Iran, Nepal, and Pakistan. Lines from the nursery have on occasion been released directly as varieties for use by farmers in Afghanistan, Egypt, and Pakistan.

A critical challenge in pre-breeding is to identify and keep desirable wild genes while culling the undesirable ones that are also transferred in crosses of elite breeding lines with landraces and synthetics. One approach is through physiological pre-breeding, where complementary crosses are made to improve the crop performance under drought and heat stress. The second approach is using genomic prediction, on the basis of seeds, or accessions, in the gene bank collection that have gone through genomic and phenotyping analysis for target traits such as heat and drought tolerance. These approaches can also be combined to boost the speed and effectiveness of selecting strong varieties.

Breeding revolutions

Wheat breeding is being revolutionized by advances in “high-throughput phenotyping.” This refers to rapid and cost-effective ways to measure wheat performance and specific traits in the field, particularly remote sensing — that is, crop images taken from vehicles, drones, or even satellites. Depending on the wavelength of light used, such images can show plant physiochemical and structural properties, such as pigment content, hydration status, photosynthetic area, and vegetative biomass. Similarly, canopy temperature images from infrared photography allow detection for crop water status and plant stomatal conductance.  “Such traits tend to show better association with yield under stress than under favorable conditions”, said Francisco Pinto, a CIMMYT wheat physiologist who is developing methods to measure roots using remote sensing. “A remotely sensed ‘root index’ could potentially revolutionize our ability to breed for root traits, which are critical under heat and drought stress but have not been directly accessible in breeding.”

Innovative statistical analysis has greatly increased the value of field trials and emphasized the power of direct selection for yield and yield stability under diverse environments.

Initial results from genomic selection programs, particularly where combined with improved phenotyping techniques, also show great promise. The potential benefits of combining a range of new technologies constitute a valuable international public good.

New initiatives

Launched in 2012, the Heat and Drought Wheat Improvement Consortium (HeDWIC) facilitates global coordination of wheat research to adapt to a future with more severe weather extremes, specifically heat and drought. It delivers new technologies — especially novel wheat lines  to wheat breeders worldwide via the International Wheat Improvement Network (IWIN), coordinated for more than half a century by CIMMYT.

HeDWIC is supported by the Foundation for Food and Agriculture Research (FFAR) and is part of the Alliance for Wheat Adaption to Heat and Drought (AHEAD), an international umbrella organization set up by the Wheat Initiative to bring the wheat research community together and to exchange new germplasm, technologies and ideas for enhancing tolerance to heat and drought.

Cover photo: Night heaters to increase night temperature in the field, as increasingly warmer nights are diminishing yield in many cropping systems. (Photo: Enrico Yepez/CIMMYT)