Skip to main content

Martin Kropff retires from CGIAR

Former CIMMYT Director General Martin Kropff contributed a decade of his career to improving agri-food systems within CGIAR.

After ten years working at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR, Martin Kropff is retiring as Managing Director for Resilient Agri-food Systems at CGIAR. Learn more about his decision and his career in the video below.

At CIMMYT, Kropff led the development and implementation of a new Strategic Plan (2017-2022) for science with impact at scale. He also helped frame the One CIMMYT philosophy, which encourages a shared mission and vision through scientific excellence, impact through partnerships, and capacity development. He was a strong promoter of CIMMYT’s integrated and systems approach to multi-disciplinary science and, under his direction, CIMMYT became a more efficient, effective, and impactful organization.

Kropff also played a critical role in the development of One CGIAR, of which he was an early champion, by leading the organization’s reform in 2016, serving on the first System Management Board, and acting as co-chair of the advisory group on the CGIAR 2030 Research and Innovation Strategy. Throughout his tenure, Martin’s leadership, vision, and commitment to the organization’s mission have been instrumental in advancing CGIAR’s research for development agenda.

Margaret Bath, Chair of CIMMYT’s Board of Trustees, said, “We cannot thank Martin enough for his visionary efforts and for his strong contribution to the integration process that we have successfully achieved. We are grateful for his contributions and wish him well in his future endeavors.”

CIMMYT Director General reaffirms commitment to Zambia

Honoring a legacy of innovative development in Zambia and looking forward to meeting the nation’s goals for food security, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), along with CGIAR Board Chair Lindiwe Sibanda, visited facilities and met with southern Africa collaborators of the Southern Africa AID-I Rapid Delivery Hub on June 2 and 3, 2023.

Bram Govaerts visited field experiments with the head of science at Zamseed (Photo: Katebe Mapipo/CIMMYT)

“CIMMYT’s work in Zambia and the region is geared to help national governments build resilience to climate change, diversify maize-based farming systems and improve productivity and production to address reduce hunger and poverty,” said Govaerts.
Southern Africa AID-I Rapid Delivery Hub aims to provide critical support to over 3 million farming households in Malawi, Tanzania and Zambia via targeted interventions for demand driven seed scaling, improved soil health and fertilizer use efficiency, and rapid delivery of critical agricultural advisory services deep into rural communities.

CIMMYT research and innovation supports Zambia’s medium-term goal of “Socio-Economic Transformation for Improved Livelihoods” and its 2030 Vision of becoming “A Prosperous Middle-Income Nation by 2030.”

Govaerts and Sibanda toured Afriseed’s factory in Lusaka and its wheat field trials in Ngwerere. They also attended a field demonstration of Purdue Improved Crop Storage bags in the nearby district of Chongwe organized by the Catholic Relief Services, a local partner promoting low-cost post-harvest technologies for small-scale farmers in Zambia.
The delegation visited private partner Zamseed, a company commercializing and releasing CIMMYT-bred, Fall Armyworm tolerant maize seeds.

Southern Africa AID-I Rapid Delivery Hub has enabled the release of nearly 10,000 metric tons of certified maize and legume seed, which have been harvested by Zambian seed companies and community-based seed organizations, directly benefiting a million semi-subsistence farmers.

Govaerts also hailed Zambia’s commitment to creating a transparent seed system. “Thanks to this conducive policy environment, Zambia is a major hub in sub-Saharan Africa for hybrid maize seed production and export in Africa.”

Kevin Kabunda opened a partner meeting in which Bram Govaerts met AID-I farmers and partners from seed companies, educational institutions, CGIAR centers, and micro-finance and tech companies. (Photo: Katebe Mapipo/CIMMYT)

Besides Southern Africa AID-I Rapid Delivery Hub, CIMMYT and the Zambia Agricultural Research Institute have been collaborating for over two decades along with public and private partners in Zambia through different investments designed to create sustainable interventions that strengthen food systems and directly reach small-scale farmers.

CIMMYT and BWMRI host international training program on surveillance and management strategies for wheat blast

The devastating disease wheat blast is a threat to crop production in many South Asian countries. In Bangladesh, it was first identified in seven southern and southwestern districts in 2016, and later spread to 27 others causing significant damage. The International Maize and Wheat Improvement Center (CIMMYT) is working with the Bangladesh Wheat and Maize Research Institute (BWMRI) and other national partners to conduct research and extension activities to mitigate the ongoing threat.

From March 1-10, 2023, a group of 46 wheat researchers, government extension agents, and policy makers from ten countries — Bangladesh, Brazil, China, Ethiopia, India, Japan, Mexico, Nepal, Sweden, and Zambia — gathered in Jashore, Bangladesh to learn about and exchange experiences regarding various wheat diseases, particularly wheat blast. Following the COVID-19 pandemic, this was the first in-person international wheat blast training held in Bangladesh. It focused on the practical application of key and tricky elements of disease surveillance and management strategies, such as resistance breeding and integrated disease management.

Training participants get hands-on practice using a field microscope, Bangladesh. (Photo: Ridoy/CIMMYT)

“This is an excellent training program,” said Shaikh Mohammad Bokhtiar, executive chairman of the Bangladesh Agriculture Research Council (BARC), during the opening session.  “Participants will learn how to reduce the severity of the blast disease, develop and expand blast resistant varieties to farmers, increase production, and reduce imports.”

This sentiment was echoed by Golam Faruq, director general of BWMRI. “This program helps in the identification of blast-resistant lines from across the globe,” he said. “From this training, participants will learn to manage the devastating blast disease in their own countries and include these learnings into their national programs.”

Hands-on training

The training was divided into three sections: lectures by national and international scientists; laboratory and field experiment visits; and trips to farmers’ fields. Through the lecture series, participants learned about a variety of topics including disease identification, molecular detection, host-pathogen interaction, epidemiology and integrated disease management.

Hands-on activities were linked to working on the Precision Phenotyping Platform (PPP), which involves the characterization of more than 4,000 wheat germplasm and releasing several resistant varieties in countries vulnerable to wheat blast. Participants practiced taking heading notes, identifying field disease symptoms, tagging, and scoring disease. They conducted disease surveillance in farmers’ fields in Meherpur and Faridpur districts — both of which are extremely prone to wheat blast — observing the disease, collecting samples and GPS coordinates, and completing surveillance forms.

Muhammad Rezaul Kabir, senior wheat breeder at BWMRI, explains the Precision Phenotyping Platform, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

Participants learned how to use cutting-edge technology to recognize blast lesions in leaves using field microscopes. They went to a pre-installed spore trapping system in a farmer’s field to learn about the equipment and steps for collecting spore samples, observing them under a compound microscope, and counting spores. They also visited the certified seed production fields of Shawdesh Seed, a local company which has played an important role in promoting wheat blast resistant varieties BARI Gom 33 and BWMRI Gom 3 regionally, and Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) in Gazipur to see current wheat blast research in action.

Blast-resistance in Bangladesh

“I am so happy to see the excellent infrastructure and work ethics of staff that has made possible good science and impactful research come out of the PPP,” said Aakash Chawade, associate professor in Plant Breeding at the Swedish University of Agricultural Sciences. “Rapid development of blast-resistant varieties and their dissemination will help Bangladesh mitigate the effects of wheat blast, not only inside the country but by supporting neighboring ones as well.”

Training participants scout and score disease in a blast-infected wheat field, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

“Besides the biotic and abiotic challenges faced in wheat production, climate change and the Russia-Ukraine crisis are further creating limitations to wheat production and marketing,” said Pawan Kumar Singh, head of Wheat Pathology at CIMMYT and lead organizer of the training. “Due to the development of blast-resistant wheat varieties and its commercial production under integrated disease management practices, the domestic production of wheat in Bangladesh has increased and there is increased interest from farmers in wheat.”

Dave Hodson, a principal scientist at CIMMYT and one of the training’s resource speakers, added: “This is a remarkable success that researchers developed two blast resistant varieties in Bangladesh urgently. It was only achievable because of the correct measures taken by the researchers and support of Government policies.”

However, there are still some barriers to widespread adoption of these varieties. As such, in parallel to other activities, a team from Bangladesh Agricultural University (BAU) joined the field trip to meet local farmers and conduct research into the socio-economic factors influencing the adoption and scaling of relevant wheat varieties.

Milestones achieved in rust research

The ambitious fourth phase of the Australian Cereal Rust Control Program (ACRCP) is complete and it has produced an impressive set of achievements. Phase 4 saw an emphasis on gene discovery work and on understanding the interactions between rusts and their cereal hosts. It also included a strong focus on adult plant resistance (APR) genes and their potential to deliver more-durable forms of resistance.

Read the full story here.

Wheat output in Africa and South Asia will suffer severely from climate change by 2050, modelling study shows

Leading crop simulation models used by a global team of agricultural scientists to simulate wheat production up to 2050 showed large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.

The model predicted average declines in wheat yields of 15% in African countries and 16% in South Asian countries by mid-century, as described in the 2021 paper “Climate impact and adaptation to heat and drought stress of regional and global wheat production,” published in the science journal Environmental Research Letters. Climate change will lower global wheat production by 1.9% by mid-century, with the most negative impacts occurring in Africa and South Asia, according to the research.

“Studies have already shown that wheat yields fell by 5.5% during 1980-2010, due to rising global temperatures,” said Diego N.L. Pequeno, wheat crop modeler at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the paper. “We chose several models to simulate climate change impacts and also simulated wheat varieties that featured increased heat tolerance, early vigor against late season drought, and late flowering to ensure normal biomass accumulation. Finally, we simulated use of additional nitrogen fertilizer to maximize the expression of these adaptive traits.”

Wheat fields in Ankara, Turkey, where data was used for crop model simulation (Photo: Marta Lopes/CIMMYT)

The wheat simulation models employed — CROPSIM-CERES, CROPSIM, and Nwheat within the Decision Support System for Agrotechnology Transfer, DSSAT v.4.6 — have been widely used to study diverse cropping systems around the world, according to Pequeno.

“The DSSAT models simulated the elevated CO2 stimulus on wheat growth, when N is not limiting,” he said. “Our study is the first to include combined genetic traits for early vigor, heat tolerance, and late flowering in the wheat simulation.”

Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. The DSSAT wheat models simulate the impact of temperature, including heat stress, water balance, drought stress, or nitrogen leaching from heavy rainfall.

“Generally, small and low-volume wheat producers suffered large negative impacts due to future climate changes, indicating that less developed countries may be the most affected,” Pequeno added.

Climate change at high latitudes (France, Germany, and northern China, all large wheat-producing countries/region) positively impacted wheat grain yield, as warming temperatures benefit wheat growth through an extended early spring growing season. But warmer temperatures and insufficient rainfall by mid-century, as projected at the same latitude in Russia and the northwestern United States, will reduce rainfed wheat yields — a finding that contradicts outcomes of some previous studies.

At lower latitudes that are close to the tropics, already warm, and experiencing insufficient rainfall for food crops and therefore depending on irrigation (North India, Pakistan, Bangladesh), rising heat will damage wheat crops and seriously reduce yields. China, the largest wheat producer in the world, is projected to have mixed impacts from climate change but, at a nation-wide scale, the study showed a 1.2% increase in wheat yields.

“Our results showed that the adaptive traits could help alleviate climate change impacts on wheat, but responses would vary widely, depending on the growing environment and management practices used,” according to Pequeno. This implies that wheat breeding for traits associated with climate resilience is a promising climate change adaptation option, but its effect will vary among regions. Its positive impact could be limited by agronomical aspects, particularly under rainfed and low soil N conditions, where water and nitrogen stress limit the benefits from improved cultivars.

Extreme weather events could also become more frequent. Those were possibly underestimated in this study, as projections of heat damage effects considered only changes in daily absolute temperatures but not possible changes in the frequency of occurrence. Another limitation is that most crop models lack functions for simulating excess water (e.g., flooding), an important cause of global wheat yield variability.

This study was supported by the CGIAR Research Program on Wheat agri-food systems (CRP WHEAT; 2012-2021), the CGIAR Platform for Big Data in Agriculture, the International Wheat Yield Partnership (IWYP115 Project), the Bill & Melinda Gates Foundation, the World Bank, the Mexican government through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, and the International Treaty of Plant Genetic Resources for Food and Agriculture and its Benefit-sharing Fund for co-funding the project, with financial support from the European Union.

Building capacities for advanced modern breeding programs in Africa

In December 2022, more than 40 scientists from African National Agricultural Research Institutes (NARI) and Small and Medium Enterprise (SME) seed companies received training on the design and implementation of modern maize breeding programs.

The training, explains Yoseph Beyene, project leader in the Accelerating Genetic Gains (AGG) – Maize project, was designed to improve maize breeders’ knowledge of the most advanced technologies and methodologies in order to increase genetic gains in their respective breeding programs. It was supported by AGG-Maize and the CGIAR Accelerated Breeding Initiative (ABI) and formed part of ongoing efforts to modernize NARI breeding programs under AGG-Maize.

Yoseph Beyene, Accelerating Genetic Gains-Maize Project leader, makes introductory remarks at the start of the Senior Breeders Training in Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

Over the course of five days in Nairobi, Kenya, participants from 13 countries where AGG-Maize is implemented worked to develop their skills in the use of new technologies and approaches to improving genetic gains and breeding efficiencies. Topics covered included the prioritization of market segmentation and product profile development, application of quantitative genetics principles in maize breeding, seed production research, improved designs for regional on-farm trials, and much more.

“The training was an eye opener supported by detailed explanations on applications of diverse research methodologies in maize breeding,” said Isiah Aleri, a research assistant for the International Maize and Wheat Improvement Center’s (CIMMYT) Maize Program in Kenya. “I met teams who had different views on some breeding techniques, but later received guided explanations from trainers on why certain standards and requirements are set for effective decision making.”

Veronica Ogugo, a research associate in the same CIMMYT program, agreed saying: “It was very educative and in-depth in all the areas that were covered by the different specialists. The best part was that each of the components complimented one another.” She added that the training also offered a good opportunity for interaction with other experts.

B.M. Prasanna, CIMMYT Global Maize Program director, speaks at the Senior Breeders Training in Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

What and whom to breed for

In his opening remarks at the training, B.M. Prasanna, Global Maize Program director at CIMMYT, noted the need for efficient use of limited resources, and encouraged scientists to work smartly, for instance, by leveraging available germplasm across phenotyping networks from other regions to diversify germplasm base for increased genetic gains. He emphasized the importance of clearly determining market segments and developing product profiles that have clear objectives, as well as the key traits to be considered, such as tolerance to drought, heat, and pests and diseases like fall armyworm.

Prasanna highlighted zinc as an example of an important feature to focus on, pointing out the micronutrient’s vital role in mental well-being and its immune boosting properties, especially in children. “Different geographies have different ways of using maize,” he explained. “In general, maize provides 15-56% of total calorie intake in the rain-fed tropics, hence its importance for improving not only smallholder farmer incomes but also food and nutrition security.”

He also outlined how important partnerships with national programs and seed companies are for achieving the fullest impact of CIMMYT’s work. “The strong regional collaborative maize breeding and seed systems is fundamental for impact,” he said. “It is also the reason for arguably the largest public sector maize germplasm testing network in the Global South, in rain-fed stress-prone tropical environments.”

Food security is a national security issue everywhere

By: Professor Lindiwe Majele Sibanda, Chair, CGIAR System Board

With conflict in Ukraine, Sudan and elsewhere, the relationship between instability, migration and food security is increasingly apparent.

The Russia Ukraine crisis, is affecting food systems around the world, driving up the price of grains and fertilizers with countries that can least afford it hit the hardest. At the same time, broader food insecurity is contributing to forced migration and rising social tensions.

Accelerating climate change amplifies the risks, with yields for some crops in sub-Saharan Africa set to fall by up to 35 per cent by 2050.

Read the full story in English here.

This article was originally published in Swedish by Global Bar Magazine.

Healthy Eating Week 2023: Sustainably feeding a growing world

The International Maize and Wheat Improvement Center (CIMMYT) has a proven history of improving the lives of smallholder farmers and their families through innovative crop science and strong global partnerships.

CIMMYT celebrates Healthy Eating Week (June 13 – June 18) in the context of strengthening sustainable agrifood systems, which facilitate the production and consumption of healthy foods, against the impacts of climate change and the cost-of-living crisis.

Nutritious diets contribute to human health and productivity. Diversified cropping, whereby staple cereals like maize and wheat are grown in associations or rotations with legume or horticulture crops, help to conserve soil and water. They boost the climate resilience of farms while reducing their ecological impacts, also lowering costs for small-scale farmers and improving the nutrition of rural communities.

Conserving biodiversity in crops, livestock, aquaculture, fisheries, and forestry results in more robust food production systems, able to provide reliable supplies of nutritious grain, meat, vegetables, and seafood.

Rising temperatures, freshwater depletion, more erratic and extreme weather, market swings, and human conflict are threatening agrifood systems as never before, exacerbating food and nutrition insecurity.

Smallholder farmers and their households, which the World Bank estimates to number 0.5 billion globally and comprise a large proportion of humans living on less than $2 a day, produce much of the world’s food. At the same time, they and food system workers disproportionately bear the brunt of environmental and socioeconomic shocks.

To protect them and meet the world’s rising demand for food, CIMMYT joins global calls to leverage agrifood systems to ensure equitable access to food for all, as well as greater investment in and use of technology that supports more intensive, climate resilient, and ecologically sensible food production.

Read four stories about CIMMYT’s efforts to support access to healthy food through seed health initiatives, global partnerships, and crop biofortification.

Seeds of Discovery

The discovery and use of powerful genetic traits from maize and wheat seed collections can strengthen crops, help produce healthy foods, and improve livelihoods.

Science and partnerships are critical to reach G7 food security goals

The recent six-page statement from the G7 warns of the increased global risk of famine. CIMMYT offers innovative science and partnerships to help the G7 achieve its stated ambitions for global food and nutrition security.

The G7 statement lays out detailed actions, policy goals, and partnerships to respond to the immediate food security crisis

Miguel Ezequiel May Ic, San Felipe Orient, Quintana Roo (Photo: Peter Lowe/CIMMYT)

A sustainable solution to micronutrient deficiency

In the absence of affordable options for dietary diversification, biofortification through crop breeding offers a viable way to reduce the micronutrient deficiencies that hamper the health and productivity of billions of humans, particularly in developing countries.

Zinc and provitamin A biofortified maize genotypes have potential to reduce hidden hunger in Nepal.

Farm worker Bharat Saud gathers maize as it comes out of a shelling machine powered by 4WT in Rambasti, Kanchanpur, Nepal. (Photo: Peter Lowe/CIMMYT)

CIMMYT endorses and implements expert recommendations to drive the transformation towards Zero Hunger by 2050

The Chicago Council of Global Affairs published a new paper that identifies the main obstacles to transforming food systems and eradicating hunger.

Silvia Chinda an organic soya farmer posing in front of her soya crop. (Photo: Tawanda Hove/CIMMYT)

The lessons of Indo-US cooperation in agriculture

The International Maize and Wheat Improvement Center (CIMMYT) played a significant role in India’s agricultural development during the 1950s and 1960s. A brief history of this involvement – through the Green Revolution – is useful to understand CIMMYT’s journey of strengthening global partnerships.

Read the full story here.

CIMMYT at the Group of 20

The G20 MACS is composed of the ministries or governmental bodies responsible for agricultural research in each G20 state and leading research institutions, including CIMMYT as part of CGIAR, which strategically advise these decision makers. The G20 MACS addresses diverse global challenges in agriculture affecting the people and planet through joint agricultural research and innovation strategies and implementation of initiatives under new cooperation formats.

“CIMMYT is working for a world with resilient agri-food systems and protecting biodiversity with a multi-crop, multi-institutional, and multi-disciplinary approach,” said Govaerts during the recent MACS meeting. “70% of wheat and over 50% of maize varieties sown worldwide are derived from CIMMYT materials, and we are improving livelihoods in over 50 countries.”

Wheat and maize plots at the CIMMYT experimental station in El Batán, Mexico. (Photo: Alfonso Cortés/CIMMYT)

In its efforts to ensure biodiversity, CGIAR genebanks hold over 770,000 accessions, of which 80% are immediately accessible. As an added measure of security, duplicates of 78% of the seeds reside at the Svalbard Global Seed Vault.

Because wheat provides 20% of the global population’s daily protein intake, protecting it from disease, pests, and the effects of climate change is paramount. And to keep pace with the growing population, yields must increase in sustainable manners. To meet those challenges, CIMMYT coordinates the International Wheat Improvement Network, which involves hundreds of partners and testing sites worldwide. The Network has established a global phenotyping network, with platforms hosted locally so that environments are optimal for specific trait phenotyping.

Battling pests

In efforts to combat the threat of wheat blast, CIMMYT has established a regional collaboration which includes testing centers (over 15,000 lines tested), surveillance networks, and the release of blast resistant varieties in India, Nepal, and Bangladesh. In addition, CIMMYT has trained 100 extension agents from 10 countries in wheat blast identification and surveillance protocols.

Examining Ug99 stem rust symptoms on wheat. (Photo: Petr Kosina/CIMMYT)

Fall armyworm, is a voracious pest in both Africa and Asia, has caused up to $13 billion per year in crop losses in sub-Saharan Africa since 2016, threatening the livelihoods of millions of farmers throughout the region. CIMMYT has developed hybrid maize varieties resistant to this pest by identifying and validating sources of native genetic resistance.

International Year of the Millet: 2023

Within its presence in CGIAR, CIMMYT is working in networks with African NARS and private sector partners to share resources and knowledge and innovating sustainable crop and crop-livestock systems. This will directly support the Millets And Other Ancient Grains International Research Initiative (MAHARISHI), inaugurated at the G20 MACS conference. The initiative facilitates research collaboration on climate-resilient and nutritious grains, including millets and other underutilized grains. CIMMYT is also initiating and supporting crop improvement programs for sorghum, millet, groundnut, pigeon pea, and chickpea, in a model that empowers the national research centers.

Malawian farmer in her groundnut plot under conservation agriculture. (Photo: T. Samson/CIMMYT)

This work dovetails with the recently announced Accelerated Innovation Delivery Initiative (AID-I), in which CIMMYT is catalyzing efforts to scale up existing and high potential innovations, technologies, and business models as opposed to starting new ones in Malawi, Tanzania, and Zambia.

Creating sustainable solutions

CIMMYT is also pioneering the development of a hub network which supports adaptive research and integrated development for sustainable agrifood systems. With particular attention paid to inclusivity, these hubs are changing the perception of women’s roles in agriculture.

“CIMMYT is building towards future-proof solutions that foster empowerment through raising family income and food security, working with partners in the Global South for the benefit of the Global South,” said Govaerts.

Science and partnerships are critical to reach G7 food security goals

Miguel Ezequiel May Ic, San Felipe Orient, Quintana Roo (Photo: Peter Lowe/CIMMYT)

In a world where more than 800 million women, men, and children still go hungry, the International Maize and Wheat Improvement Center (CIMMYT) offers proven science and formidable partnerships to help achieve the recently stated ambitions of prosperous nations for global food security and nutrition.

Meeting in Hiroshima, Japan, the weekend of 19 May 2023, the grouping of seven wealthy nations known as the G7 released a public statement recognizing that the world faces the highest risk of famine in a generation and the need of working together to build more resilient, sustainable, and inclusive agriculture and food systems.

“Realizing resilient global food security and nutrition for all is our shared goal for a better future for each human being,” reaffirmed the leaders of Japan, Australia, Brazil, Canada, Comoros, the Cook Islands, France, Germany, India, Indonesia, Italy, the Republic of Korea, the United Kingdom, the United States of America, Vietnam, and the European Union, in a joint statement.

The six-page statement lays out detailed actions, policy goals, and partnerships to respond to the immediate food security crisis, in which more than 250 million persons in 58 countries need emergency food assistance, as well as preparing for and preventing future crises.

Research with impacts for marginalized, small-scale farmers

Recognizing the key role of applied research to boost food production while addressing climate shocks, the leaders advocated promoting climate-smart agriculture, including “…agro-ecological, nature-based solutions and ecosystem based approaches and other innovative approaches as appropriate, drawing on the knowledge and evidence base developed by the FAO, IFAD and CGIAR.”

Established in 1971, CGIAR is a global partnership dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources. A founding member and leader in CGIAR, CIMMYT is responsible for major impacts in the productivity of two key food crops, according to Bram Govaerts, director general of CIMMYT.

Celia Agustina Magaña Magaña in her milpa field (Photo: Peter Lowe/CIMMYT)

“Maize and wheat together sustain billions of people worldwide, providing around a fifth of humanity’s nutritional protein and carbohydrates, generating nearly $50 billion in trade each year, and covering 400 million hectares of land — that’s approximately one quarter of the world’s farmland,” said Govaerts. “We stand ready to support G7 efforts.”

“Fully half of the maize and wheat varieties grown in low- and middle-income countries carry CIMMYT breeding contributions,” Govaerts explained. “This and our research on more productive and efficient farming methods for those crops generate approximately $3.5-4 billion each year in enhanced benefits to farmers and consumers.”

As part of its decades-long cropping systems research, CIMMYT has studied and promoted conservation agriculture, a soil- and water-saving approach involving reduced tillage, keeping a cover of crop residues, and growing multiple crops together or in rotations. This approach has become highly relevant for farmers in places such as South Asia, where rising temperatures and fresh water scarcities threaten more than 13 million hectares of crop production. As part of its “cropping systems” approach, CIMMYT has diversified its expertise to groundnut, pigeon pea, chickpea, pearl millet and sorghum, with a strong focus on nutrition and resilience, while maintaining the Center’s foundational work in seed production and seed marketing systems.

The G7 statement cites the importance of dryland cereal and legume crops in settings such as sub-Saharan Africa and South Asia, and CIMMYT has undertaken initiatives to improve the livelihoods of small-scale producers and consumers of sorghum, groundnut, cowpea, common beans, and millets. Among other things, the work generates and shares data on the performance and the availability of seed of improved varieties of those crops.

CIMMYT is co-leading the CGIAR initiative Digital Innovation, which is working across 13 countries in Africa, Asia, and Latin America to improve the quality of information systems and strengthen local capacities to realize the potential of digital technologies, thereby boosting small-scale farmers’ adoption of better practices, their incomes, and their resilience to climate shocks, while reducing the gender gap and managing food system risks.

Partner connections and funding power success

These impacts would not have been possible without CIMMYT’s longstanding, effective relationships with hundreds of public and private partners worldwide, a number of which are mentioned in the G7 statement, as well as the global reach of the jointly-generated, freely-shared knowledge from those collaborations, according to Govaerts.

Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot (Photo: Shiela Chikulo/CIMMYT)

“A 2022 study in Nature Scientific Reports showed that the Center’s climate science, associated with some 90% of its research, appears on academic and research platforms as well as in social media and government and international organization websites across the Global North and South, contributing to the decolonization of science and the democratization of scientific debates,” he said.

CIMMYT partnerships with and support for private seed producers and dealers have helped fuel the adoption and spread of drought tolerant maize varieties in Africa. A 2021 study shows that, during 1995-2015, nearly 60% of all maize varieties released in 18 African countries came from research by CIMMYT or the International Institute of Tropical Agriculture (IITA), bringing yearly benefits as high as $1.05 billion and gaining mention in a blog by Bill Gates.

Regarding support for CIMMYT’s work from prosperous nations, including several G7 members, the Center receives generous investments on the order of $170 million each year from diverse funders including the Bill & Melinda Gates Foundation, the US Agency for International Development (USAID), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, the government of Mexico, and CGIAR.

Reviving Nepal’s agriculture

Mixed farming can boost Nepal’s income, food security and resilience to climate change.

CGIAR Research Centers such as the International Water Management Institute (IWMI) and the International Maize and Wheat Improvement Center (CIMMYT) are organizing pilot activities to promote sustainable intensification of mixed farming systems (SIMFS) as a vital strategy. SIMFS has the potential to enhance the current mixed farming system by utilizing the same quantity of natural resources and employing effective crop management.

Read the full story here.

Scientists breed new cereals

A well-functioning seed system is key to timely access to low cost and quality seed by farmers. Improved varieties are critical to increase grain production in terms of both quality and quantity.

CIMMYT is working with the National Agricultural Semi-Arid Resources Research Institute (NaSARRI) to strengthen seed systems for millet, sorghum, and groundnuts.

Read the full story here.