Skip to main content

Millets: Climate-resilient crops for food and nutrition security, experts reveal

A recent webinar organized by CIMMYT brought together three experts to discuss the importance of millets as key contributors to improving food and nutrition security and resilience to climate change. Offering a wealth of knowledge and insights, the panel discussion was moderated by Kevin Pixley, director of the Dryland Crops Program (DCP), who led a dynamic and engaging discussion highlighting CIMMYT’s work on dryland crops, the climate resiliency and versatility of millets, and biofortification initiatives.

“Millet improvement programs are central to regional dryland crop improvement networks”, stated Harish Gandhi, breeding lead for DCP. Providing a comprehensive overview of the program, Gandhi emphasized its significance in addressing food and nutrition security as well as climate resilience. “With partners, we are co-designing and co-implementing crop improvement strategies, catalyzing the development of effective and sustainable crop improvement networks”, he said. The dryland crop improvement networks bring together 17 National Agricultural Research and Extension Systems (NARES) in Western, Central, Eastern and Southern Africa working jointly to cultivate the potential and impacts of sorghum, pearl millet, groundnut, cowpea, bean, pigeon pea and chickpea. The program is aligned with CGIAR and the CIMMYT 2030 Strategy to transform agrifood systems through a dense network of impactful partnerships for enhanced sustainability, productivity and profitability.

The climate resiliency and adaptability of millets to arid and semi-arid regions make them a staple for smallholder farmers in Africa. “Millet is a drought-tolerant, climate-resilient crop with profound nutritional benefits. It’s rich in iron, zinc and other essential nutrients, making it a promising food against malnutrition and diet-related diseases”, emphasized Maryam Dawud, project lead at the Lake Chad Research Institute in Nigeria. Highlighting the significance of millets in building resilient agricultural systems, Dawud also explored innovations in millet consumption in diverse food products, including gluten-free options.

Biofortified pearl millets from South Asia and West Africa. (Photo: CIMMYT)

Mahalingam Govindaraj, senior scientist at HarvestPlus-Alliance Bioversity and CIAT, gave insights into crop biofortification, underlining the pressing need for crop nutritional enhancement due to widespread deficiencies, especially in the Global South. He introduced the HarvestPlus developed Biofortification Priority Index (BPI) which enables decision makers to make informed decisions about crop selection, target nutrients and countries. Additionally, Govindaraj highlighted the success of biofortification in enhancing essential micronutrients, especially in pearl millet, and discussed the science, technology and innovations that help to drive the mainstreaming of biofortification within CGIAR and NARES breeding and testing programs.

During the Q&A session, the speakers addressed questions from the audience of more than 150 participants, clarifying misconceptions and expanding on their subjects. Questions from the engaging audience span a wide range of themes and included the significance of different millet types and why they are frequently grouped together; the correlation between zinc and iron content in pearl millets, particularly in relation to their high fiber content; and the strategic approach of dryland crops in supporting capacity building for the NARES, among many other topics.

As the webinar came to a close, it was evident that millets are more than just cereals; they offer a promising solution to a variety of global food system challenges. From their resilience in harsh climates to their rich nutritional value and potential for innovation in various food products, millets stand as a beacon of hope in developing climate-resilient agriculture for a sustainable future.

The webinar is also accessible in Spanish, French and Hindi.

Breeding for the traits of tomorrow

Climate change poses a significant challenge to agricultural production and food security worldwide. “Rising temperatures, shifting weather patterns and more frequent extreme events have already demonstrated their effects on local, regional and global agricultural systems”, says Kevin Pixley, Dryland Crops Program director and Wheat Program director a.i. at CIMMYT. “As such, crop varieties that can withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximizing risk avoidance, productivity and profitability under climate-changed environments.”

In a new study published in Molecular Plant, scientists from CIMMYT, Alliance of Bioversity International and CIAT, the International Institute of Tropical Agriculture (IITA) and national agricultural research programs in Burkina Faso, Ethiopia, Nigeria, Tanzania and Uganda to predict novel traits that might be essential for future varieties of popular crops. Having surveyed nearly 600 agricultural scientists and stakeholders, they identify likely agronomic changes in future cropping systems seeking sustainability, intensification, resilience and productivity under climate change, as well as associated essential and desirable traits, especially those that are not currently prioritized in crop improvement programs.

Focusing on six crops which hold vital importance for African food security and CIMMYT and CGIAR’s mission—maize, sorghum, pearl millet, groundnut, cowpea and common bean—the authors review opportunities for improving future prioritized traits, as well as those they consider ‘blind spots’ among the experts surveyed.

Predicting future essential traits

The results of the study speak to the need for considering cropping systems as central to climate change resilience strategy, as well as the need to reconsider the crop variety traits that will eventually become essential.

Overall, experts who participated in the survey prioritized several future-essential traits that are not already targeted in current breeding programs — mainly water use efficiency in pearl millet, groundnut, and cowpea; adaptation to cropping systems for pearl millet and maize; and suitability for mechanization in groundnut. The survey confirmed that many traits that are already prioritized in current breeding programs will remain essential, which is unsurprising and consistent with other recent findings. While smarter and faster breeding for currently important traits is essential, the authors suggest that failure to anticipate and breed for changing needs and opportunities for novel characteristics in future varieties would be a big mistake, compromising farmers’ resilience, improved livelihood opportunities, and food security in the face of changing climate.

Groundnuts. (Photo: CIMMYT)

Importantly, the authors explain, the predicted future-essential traits include innovative breeding targets that must be prioritized. They point to examples such as improved performance in inter- or relay-crop systems, lower nighttime respiration, improved stover quality, or optimized rhizosphere microbiome, which has benefits for nitrogen, phosphorous and water use efficiency.

The authors emphasize that the greatest challenge to developing crop varieties to win the race between climate change and food security might be innovativeness in defining and boldness to breed for the traits of tomorrow. With this in mind, they outline some of the cutting-edge tools and approaches that can be used to discover, validate and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision and speed.

Read the full study: Redesigning crop varieties to win the race between climate change and food security

Seed fairs set for Mwenezi, Masvingo

CIMMYT holds the fourth edition of seed and mechanization fairs in Mwenezi and Masvingo rural districts, and introduces a groundbreaking mechanization component thanks to the Feed the Future Zimbabwe Mechanization and Extension Activity.

Read the full story.

Canola’s opportunities abound as breeding, uses advance: IRC

The future direction of oilseeds appears to be closely tied to patents around seed technology, as industry and governments plan for a net-zero future. CIMMYT’s germplasm bank is available worldwide and relies heavily on collaborations with public and private entities, where breeding is a critical part of partnerships to further foster thriving markets.

Read the full story.

 

Breaking barriers in agriculture

Nepal’s traditional farming system faces labor shortages, and climate-induced risks to crop production, infrastructure, investment, and agro-advisory tools. This calls for urgently redesigning agriculture practices and addressing the challenges and a noticeable shift in farmers’ interests in farming practices.

The International Water Management Institute and CIMMYT, in collaboration with local governments in Gurbakot Municipality of Surkhet and Haleshi Tuwachung Municipality of Khotang, conducted research on Sustainable Intensification of Mixed Farming System (SI-MFS), the research found a noticeable shift in farmers’ interests in farming practices.

Read the full story.

Farewell to the “Father of the Green Revolution in India”, M.S. Swaminathan

CIMMYT joins with members of the international development community to mourn the passing of renowned wheat geneticist and “Father of the Green Revolution in India,” Monkombu Sambasivan Swaminathan who died on September 27 at the age of 98.

Swaminathan devoted his life to sustainably feeding the world. His vision reshaped India almost overnight to a breadbasket for South Asia, through adoption of innovative high-yield wheat varieties and efficient farming techniques for Indian farmers. TIME magazine acclaimed him as one of the twenty most influential Asians of the 20th Century, making him one of three from India to be named alongside Mahatma Gandhi and Rabindranath Tagore.

M.S. Swaminathan. (Photo: MSSRF)

Swaminathan began his career in the world of academia. After earning his Ph.D. in plant genetics from Cambridge University in 1952, he moved to the United States to continue his research as a professor; however, his home country India eventually called him back home. With the crisis of a rapidly increasing population and low food production, Swaminathan returned to become a scientist at the Indian Agricultural Research Institute (IARI), where he later served as Director from 1961 to 1972.

It was during this time that he began his collaboration scientist Norman Borlaug, future Nobel Prize laureate and soon to be leader of CIMMYT wheat research. Swaminathan saw the value of the Mexican semi-dwarf wheat varieties, which were developed by Borlaug, for wheat production in India and requested that Borlaug send him a range of breeding materials containing the Norin dwarfing genes. The seeds arrived in 1963 along with Borlaug and the pair travelled the wheat-belt of India. Swaminathan arranged multi-location trials for the varieties and established an inter-disciplinary team to adapt the new varieties for Indian conditions.

Norman Borlaug with Swaminathan and Kohli, key promoters of modern varieties, in a seed production plot, India, 1964. (Photo: CIMMYT)

The next step was convincing local farmers to grow the varieties. By 1966, Swaminathan had established 2,000 model farms where farmers could see for themselves the benefits of the new wheats. Swaminathan’s final act in kickstarting the Green Revolution in India was to successfully lobby the Indian government to import 18,000 tons of the Mexican seed.

Just 4 years later India’s wheat harvest had doubled to 20 million tons, ending the nation’s dependence on wheat imports and saving millions from starvation. Swaminathan continued to work with the Indian government to maintain food security and long-term self-sufficiency across the country and the impact of his work earned him the first World Food Prize in 1987.

Swaminathan held a number of leadership roles in world agricultural and conservation organizations over his lifetime, including the FAO council, the International Union for the Conservation of Nature and Natural Resources, the World Wide Fund for Nature (India), and the National Academy of Agricultural Sciences. He also served as Director General of the Indian Council of Agricultural Research (ICAR), and Secretary to the Government of India at the Department of Agricultural Research and Education from 1972-79, as well as Director General of the International Rice Research Institute in the Philippines from 1982-88.

A humanitarian at heart

Not just a scientist, Swaminathan was an advocate and humanitarian. Shortly after winning the World Food Prize, he used the award funds to establish a research center, the M.S. Swaminathan Research Foundation (MSSRF), in Chennai, India. The MSSRF allowed him to work on his other passion, sustainable development, where he coordinated research and action on conservation of endangered species, protection of coastal ecosystems, precision farming, ecotechnology, community education and technical training, and programs for rural internet access.

M.S. Swaminathan won the World Food Prize in 1987. (Photo: World Food Prize)

He has received 84 honorary doctorate degrees from universities around the world and multiple awards including the Padma Shri (1967), Padma Bhushan (1972) and Padma Vibushan (1989) – the fourth, third and second highest civilian awards in India. He has also won numerous international awards including the 1994 UNEP Sasakawa Environment Prize, the UNESCO Gandhi Gold Medal in 1999 and the Franklin D. Roosevelt Four Freedoms Award in 2000.

“He was a real gentleman with a sharp memory,” recalls CIMMYT distinguished scientist Ravi Singh. “I always admired his capacity and his ability to link complicated topics into a nice synthesis.”

He was an inspiration to thousands and will be greatly missed for his scientific brilliance, his pioneering advocacy and humanitarianism, and his life mission to reduce world hunger through improved technology for citizens from all levels of society.

The CIMMYT family extends its deepest condolences to the Swaminathan family.

CIMMYT director general gains insights into breeding activities at Kiboko research facility

In a September 12 visit to CIMMYT facilities on the agricultural research station of the Kenya Agricultural and Livestock Research Organization (KALRO) at Kiboko, Bram Govaerts, CIMMYT director general, extolled the longstanding partnership with KALRO and suggested creating a platform to speed access of national researchers to improved breeding lines and populations.

Located 155 kilometers southeast of Nairobi in a dryland area better suited to raising cattle, goats, sheep, and camels than row crops, the Kiboko station comprises more than 15,000 hectares, with controlled irrigation systems, and has allowed efficient selection for tolerance to drought and insect pests in Africa-adapted maize, as well as the development of dryland crops such as pigeon pea, sorghum and groundnuts.

“Our recent work where we open up our maize and wheat research platform for dryland crops highlights CIMMYT efforts to diversify cropping options for farmers in challenging settings, enhancing their livelihoods and farming system resilience,” Govaerts said.

Govaerts, Das and Beyene listen to laboratory staff explain advances in climate-resilient maize. (Photo: Marion Aluoch/CIMMYT)

Yoseph Beyene, CIMMYT maize breeding coordinator for Africa, described collaborative efforts to speed the breeding and deployment of climate-resilient varieties. “This work covers maize breeding and seed system networks, participatory engagement with farming communities through on-farm trials, interactions and sharing with global partners, and documenting the adoption of stress tolerant maize in sub-Saharan Africa,” Beyene explained.

CIMMYT data show that drought-tolerant maize varieties derived from shared research of the Center, CGIAR and partners are being sown on more than 6 million hectares in 9 countries of eastern and southern Africa, benefitting an estimated 38 million people and producing additional grain worth as much as US$1.5 billion each year.

Beyene added that the expansion of on-farm testing to over 1,000 locations in eastern and southern Africa has enabled CIMMYT to assess preferences and genotype-by-environment interactions which, along with support from the seed systems team regarding small-scale farmers’ acceptance of drought-tolerant maize hybrids, have underpinned the development of successful hybrids.

A prominent stop on Govaerts’s tour was the maize double haploid (DH) facility established in Kiboko in 2013, with funding from the Bill & Melinda Gates Foundation.

Govaerts examines improved fall armyworm tolerant experimental varieties. (Photo: Marion Aluoch/CIMMYT)

Long used by private seed companies, the double haploid approach generates inbred lines that are completely “homozygous,” wherein genes on each pair of chromosomes are identical. It achieves this in a single year, compared to three to four years for conventional inbreeding, which can produce lines that may not be purely homozygous and are thus less useful for breeders.

“The facility offers double haploid line production services for organizations throughout Africa and is key to increasing genetic gains in maize breeding,” said Aparna Das, technical program manager for CIMMYT’s Global Maize Program.

Govaerts also visited the fall armyworm (FAW) artificial screening site and experiments in which CIMMYT scientists are evaluating five new FAW-tolerant experimental varieties for possible sharing with partners. In the fall armyworm screening facility, a team works to integrate and test ecofriendly crop management solutions against fall armyworm, critical research to safeguard agricultural production against this highly destructive insect pest.

“The excellent teamwork and facilities at Kiboko point up multiple opportunities for KALRO and CIMMYT to continue joint work that advances agricultural science to benefit farmers and consumers,” Govaerts concluded.

The world’s future wheat will need to withstand the climate crisis

As hotter temperatures and drought become the norm in places used to growing wheat, yields will be reduced, climate change will have some effect on most of the world’s wheat. CIMMYT is working to strengthen seed systems as demand for staple crops like wheat is only expected to increase as the climate crisis makes the world’s food system more vulnerable.

Read the full story.

CIMMYT takes part in the 113th edition of the Zimbabwe Agricultural Show

CIMMYT scientists, researchers and subject experts participated in the Zimbabwe Agricultural Show (ZAS) from August 28–September 2 in Harare, Zimbabwe. The 113th edition ran under the theme “Sustained Growth. Adaptation. Productivity. Linkages.”

“CIMMYT has a long history of working with local partners in Zimbabwe. Together with these partners, we work to improve the livelihoods and resilience of smallholder farmers, through innovations we develop like stress resilient maize or wheat varieties, together with conservation agriculture technologies,” said Mainassara Zaman-Allah, CIMMYT Zimbabwe country representative.

Smallholder farmers and practitioners learned about the latest mechanization technologies. (Photo: CIMMYT)

With an average of 200 visitors per day at CIMMYT’s stand, stemming from small-scale farmers, government representatives, seed companies, university personnel, NGOs and media among others, this platform continues to pave the way for synergies, learning and networking. Beyond raising awareness on the progressive work being done, CIMMYT used this opportunity to interact with local seed companies (SEEDCo, Agriseeds, K2, among others) and get valuable feedback from farmers, including those involved in the maize regional on-farm variety evaluation.

The place to be for agricultural development in Zimbabwe

The Zimbabwe Agricultural Show, organized by the Zimbabwe Agricultural Society, is a dynamic event that serves as the premier platform for the facilitation and promotion of agricultural development in Zimbabwe. With over 550 commercial exhibitors, 700 farmers, 200 micro enterprises, the show presents a unique business opportunity for national and regional organizations.

The event provides a platform to showcase brands, market services, and engage in various business discussions targeting important sectors. The show is capped by the Annual National Agribusiness Conference.

Advancing innovation in Zimbabwe

The Zimbabwe Agricultural Show served as an ideal platform for CIMMYT to share its research findings, exchange knowledge and foster collaborations with farmers, policymakers and other stakeholders in the agriculture sector.

CIMMYT staff provided information regarding its ongoing initiatives and the transformative potential of innovations. We encouraged participants, partners and value chain players to visit the CIMMYT booth to engage with researchers, explore our latest research and discuss innovative agricultural practices.

CIMMYT staff shared research highlights and new partnerships. (Photo: CIMMYT)

“Our work in Zimbabwe, like promoting the increased adoption of climate-resilient innovations in mixed crop-livestock production systems and strengthening local food systems through agroecological advances, would not be possible without the strong collaborations with local partners,” said Isaiah Nyagumbo, regional cropping systems agronomist. “And the Zimbabwe Agricultural Show is the best place to continue those partnerships and start new linkages.”

ZAS and CIMMYT

Established in 1895 and operating from The Business Hub (Formerly Exhibition Park), the ZAS is the epicenter for the promotion and facilitation of national agricultural development. It is the oldest convenor and host of agricultural, commercial, and industrial shows in Zimbabwe.

CIMMYT is a core CGIAR Research Center dedicated to reducing poverty, enhancing food and nutrition security, and preserving natural resources in the Global South.

Championing Global Cooperation to Crack Global Challenges

Thomas A. Lumpkin, talks to China Today about his views on global coordination and cooperation, and reiterates his belief that China and the U.S. should play a leading role by working together. Lumpkin also discusses his interest in China’s traditional farming techniques and calls for stronger bilateral cooperation to address common global challenges.

Read the full story.

Public and Private Plant Breeding: Finding Common Ground

Seed the World Group hosted a webinar to find a common ground between public and private breeding programs in North America and some possible paths forward. Fernando Gonzalez, a retired plant breeder from CIMMYT mentioned a noticeable uptick in the involvement of the private sector in breeding programs in Mexico.

Learn more about the primary goals underlying public and private breeding efforts.

 

 

 

Fodder Technology Chops Backbreaking Labor in Half for Bangladeshi Women

Women play a critical role in the future of food security. Female farmers face a significant disadvantage before they ever plow a field or sow a seed. Farming is a challenging profession, and it is even more challenging for women when they perform these functions whilst facing numerous constraints.

Nur-A-Mahajabin Khan, communications officer, showcases how fodder chopper technology is improving the lives of women farmers in rural Bangladesh.

Read more.

Conservation agriculture helps smallholder farmers to be more resource efficient

Millions of rural Indians, mostly farmers, are at the mercy of changing weather and climate change. Rising temperature and heat stress, unpredictable rainfall patterns, increasing drought-like situations, soil erosion and depleting water tables are leading to poorer yields and reduced income for farmers. While the agricultural sector and farmers are most affected by the adverse impacts of climate change, it is also one of the sectors significantly responsible for greenhouse gas emissions, contributing about 14% of the total greenhouse gas emissions in the country.

Farmer Rahul Rai prepares his field for wheat plantation with zero tillage – Buxar, Bihar (photo: Deepak K. Singh/CIMMYT)

Good agronomy and soil management through conservation agriculture practices such as no-till farming, crop rotation, and in-situ crop harvest residue management are resource efficient and help reduce greenhouse gas emissions significantly. The intensification of these conservation agriculture practices by the Cereal Systems Initiative for South Asia (CSISA)—a regional project led by CIMMYT to sustainably enhance cereal crop productivity and improve smallholder farmers’ livelihoods in Bangladesh, India, and Nepal—and partners is helping smallholder farmers to improve their yield and income with less input costs.

Climate smart agriculture

Over 70% of Bihar’s population is engaged in agriculture production, with wheat and rice as the two major crops grown in the state. Bordering Uttar Pradesh, Buxar, is one of the many rural districts in Bihar, with over 108,000 hectares of land used for agriculture. The area is plain, fertile and has good irrigation facilities. The rice-wheat cropping system forms the dominant practice here, and pulses and other non-cereal crops are grown additionally during winters.

CSISA began promoting zero tillage in wheat cultivation in the area in 2010. Along with Krishi Vigyan Kendras (KVKs), and local agriculture departments, awareness and frontline demonstrations on different best management practices were conducted to inform farmers of alternative approaches to cultivating wheat and rice sustainably. Farmers were used to conventional farming methods, with more input costs and labor-intensive practices. In addition, as farmers were growing long-duration rice varieties, they typically sowed wheat in late November to early December, which meant harvesting in late April/May. Harvesting wheat this late caused yield losses due to terminal heat stress at the grain filling stage. With increasingly hot temperatures in recent years due to climate change, yield loss in wheat is imminent.

To help curb these yield losses, researchers and officials began promoting early sowing of wheat through a technology called zero tillage in the region, with sowing recommended before mid-November. As expected, this helped farmers to escape high temperature stress at the time of the dough stage, thus, saving grain shrinkage and yield loss at harvest. Zero tillage technology is a tested method with the potential to increase crop productivity through better time management and reduced input cost.

Deepak Kumar Singh, scientist at CSISA who has been supporting agri-extension efforts in the region for nearly a decade recalled how CSISA and partners were able to get more farmers on board with zero tillage and early wheat sowing:

“The best practices of zero till technology and early wheat sowing were encouraged widely through exposure visits, demonstration trials on progressive farmers’ fields, and providing support from local KVKs for machines and quality seeds, including the promotion of private service providers,” he said.

As more farmers were reached through field events, with visible on-field results during public harvest activities held at demonstration fields by CSISA and KVKs, the region gradually adopted early wheat sowing, zero tillage and direct seeded rice technologies. Currently, in the district, it is estimated that over 40% of wheat cultivation under the rice-wheat system is through zero till, helping farmers obtain better yield and profits.

Rice-wheat cropping systems, resilient and sustainable in increasingly changing climate

Rajapur, a small village in Buxar district, boasts 100% adoption of zero tillage in wheat cropping. We met farmer Rahul Rai whose family has been involved in farming for generations. The family owns over thirty acres of land with agriculture as the primary source of income. His father and his siblings were used to conventional farming methods. The produce from their farm was sufficient for household consumption and with the little extra left, they sold and made some income. On the significance of agriculture and farming for his family, Rahul Rai says, “this farmland has been feeding and supporting 17 members in our joint household.”

When young Rahul Rai got down to work in the family fields in the early 2000s, he was keen to explore possibilities to improve the income generated from the farm. Initially, like many others, he was engaged in intensive farming. According to Rai, “with the input costs rising daily, including scarce labor and soil health deterioration, bringing in some extra income seemed unsustainable”.

He first met researchers from the CSISA project and local KVK scientists in early 2011 in the neighboring village. The team was there to inform farmers about conservation agriculture practices and how to better manage yield and maintain soil health. Rai soon became more curious about the benefits of adopting these new methods over conventional practices. He started with a few acres with zero tillage and began sowing wheat by early November, as recommended by the scientists. In Rabi 2022-23, his wheat fields were sown by November 11, compared to the early years when the sowing date was around December.

Wheat yield data gathered meticulously over a decade from Rahul Rai’s fields (Data: CSISA MEL team)

With more participation and engagement with CSISA, in 2017, he joined other farmers from the region on an exposure visit to Patna organized by the CSISA-KVK network. In Patna, at the Indian Council of Agri Research – Research Complex for Eastern Region (ICAR-RCER), Rai and the visiting farmers were introduced to conservation agri-technologies for rice-wheat and other cropping systems. During the visit, they were informed about crop rotation and diversification, new seed varieties that are resilient and adaptable to changing climates, efficient use of plant protection chemicals and fertilizer and various subsidies from the center/state government to farmers. He later accompanied other progressive farmers on a CSISA-led travel seminar to Gorakhpur in 2017, where he observed acres and acres of wheat fields cultivated through zero tillage and early sowing that had yielded 6-7 tons per hectare (t/ha) on average.

At present, Rai’s family cultivates only zero till wheat in their fields and direct seeded rice on a few acres where irrigation facilities are well established. Rai asserts that until 2014, the wheat yield was about 10-15 quintals per acre (3.5-4 t/ha), rising to around 20-25 quintals per acre on average (5.5 t/ha in 2023) in recent years, thanks to conservation agriculture practices.

Today, the CSISA team has system optimization and demonstration trials on fields owned by Rai’s family where they conduct trials to demonstrate the importance and feasibility of different agri-practices and compare yields at harvest. Rai, a champion farmer who has been involved with CSISA for nearly a decade, said, “I am a collaborator with CSISA now. The data gathered from my fields on the compounding benefits of conservation agriculture technologies is used to promote the best practices and technology adoption across our district and state.”

One village at a time

Presently, Rajapur village has 100% zero tillage adoption. Despite most farmers being smallholders, this level of zero tillage adoption in wheat is impressive. Zero-till-based crop establishment, with appropriate diversification in crops grown, is economically beneficial and improves soil health. All these practices and technologies ensure lower greenhouse emissions and support climate change mitigation efforts. Above all, smallholder farmers are food secure and contributing in their small way to national and global food security.

To scale the adoption of conservation agriculture practices, CSISA and partners are collaborating with farmers in the district/state – many of whom are already 50-80% in zero tillage adoption. The team on the ground are conducting system optimization trials on farmers’ fields to generate data and evidence to support and strengthen policies and assist in integrating market intelligence to support access and availability of technology to all smallholders. Every year steadily, through a smallholder farmer, a village, a district, the effort is to slowly expand the area under conservation agriculture across the state and region and ensure increased system productivity and sustainability of agriculture.

Show that you can thrive and excel in all environments

On August 29, CIMMYT held the latest installment of its seminar series on women’s leadership—Catalysts of Change: Women Leaders in Science. The online event featured a presentation from Lindiwe Majele Sibanda, an animal scientist by training, who has previously worked as policy advisor for numerous African governments and global institutions and currently serves as chair of the CGIAR System Board.

In her opening talk, Sibanda outlined the many and varied roles she has held throughout her career, including professor, farmer, and business owner. Discussing her early education in a segregated colonial Zimbabwe (then Rhodesia), her time as an undergraduate student in Egypt, or the challenge of starting a family alongside developing her career, Sibanda was keen to highlight the lessons learned at each stage of life and emphasized the importance of creating cross-cultural friendships, nurturing professional networks, establishing priorities, and promoting continuous learning.

A learning spirit

Sibanda has over 15 years of experience working as a governor at national, regional, and international levels, but it took some time to initially build her confidence in the role. She recalled feeling daunted during her very first meetings because she had not been trained, but her learning spirit helped carry her through. “I always looked around the room and chose my mentors—based on something I liked about their values—something I liked about the way they asked questions, or something I liked about their demeanor and how they engaged with others—and I started learning.”

This approach has garnered her a large circle of mentors—and friends—and having served on more than 12 different boards she now feels this is a space that she enjoys, particularly as there are still opportunities for learning. “I think it’s the spirit of continuous thirst for knowledge, for new information, that has kept me going.”

“And it’s all about integrity,” she added. “What people see in me is what they get. I’ve never had to be fake. What I know, I make sure I know very well. What I don’t know, I’m not shy to say I don’t know.”

Convince each other that it can be done

Having unpacked her life as a scholar, mother, working professional, and governor, Sibanda explained that her current focus is on giving back. For her, supporting the next generation of women in the workplace is a key part of leadership. She cited Graça Machel and Mama Mary Robinson as inspirations, both for their work ethic and their ability to connect with people at different levels. “But most importantly, they give it to other women,” she said. “They love mentoring girls and other women.”

In her own experience, some of the major obstacles she faces as a woman, a farmer, and an African are the specific biases associated with each of those three things. “Women need to be helped, they are disadvantaged; farmers are poor, especially if they come from Africa; and mothers need to spend more time at home and not be globetrotting to meetings.” To counter these biases, she explained, it is important to show that you can thrive and excel in all environments. “It’s not about either or, it’s about showing we can do it, regardless of the circumstances.”

“Women are natural agents of change, and all they need is a conducive environment. As women, we should be spending more time with other women, making sure we share our stories, our successes, and our struggles. The whole idea is to convince each other that it can be done.”

Sibanda’s presentation was followed by a Q&A session led by Ana Luisa Garcia Rivera, senior regional genotyping coordinator at CIMMYT. Watch the recorded session below.

Mechanisation to re-configure smallholder production

The introduction of mechanisation in agricultural practices has ensured the promotion of technology and conservation of agriculture to stimulate smallholder production and the preservation of climate-proofing farming practices in Zimbabwe.

CIMMYT hosted a meeting, to discuss how the HAFIZ project has set the foundation for harnessing farm mechanization in Zimbabwe, shaping the future of mechanisation policies and interventions in Zimbabwe. As well as future initiatives to improve technology to sustain growth and master the impact of climate change.

Read the story.