The Livestock Production Systems in Zimbabwe (LIPS-Zim) project implemented by CIMMYT and various research institutions in partnership with the government expects to increase incomes and ensure food security for more than 50,000 rural Zimbabweans.
Latin America is a particularly rich source of neglected crops, which have been replaced by a small number of modern varieties that have come to dominate global commodity markets. However, CIMMYT has utilized various methodologies and developed new initiatives to highlight the value of neglected crops and create market opportunities for smallholders.
What are the crucial practices, to help enhance the contribution to local communities and the preservation of their cultural heritage?
In plant breeding, efforts to increase the rate of genetic gains and enhance crop resilience to the effects of climate change are often limited by the inaccessibility and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology and data analysis has provided new opportunities for multiple scales phenotyping methods and systems. Among these, satellite imagery may represent one of the best ways to remotely monitor trials and nurseries planted in multiple locations, while standardizing protocols and reducing costs.
This is because relevant data collected as part of crop phenotyping can be generated from satellite images. For instance, the sensors onboard the SkySat satellite constellation of Planet Labs have four spectral bands—blue, green, red, and infrared—which can be used to calculate the normalized difference vegetation index (NDVI), which is a measure of vegetation and its greenness, and various canopy traits like ground cover, leaf area index and chlorosis. It can also be used to monitor plot establishment and phenological parameters.
High-resolution RGB orthomosaic of wheat experiments, assessing the effect of plot size and spacing in the spectral signature, collected from SkySat satellite images. (Photo: Gilberto Thompson)
The use of satellite-based phenotyping in breeding trials has typically been restricted by low resolution, high cost and long intervals between fly-overs. However, the advent of a new generation of high-resolution satellites—such as the SkySat constellation—now offers multispectral images at a 0.5m resolution with close to daily acquisition attempts on any place on Earth. This could be a game changer in terms of the scale at which yield trials can be conducted, enabling more precise variety placement and thereby increasing genetic diversity across farmer’s fields and reducing the probability of disease epidemics. It could also revolutionize the capacity for research in realistic field conditions, since traits can be measured throughout the cycle in a highly standardized way, over multiple sites at low cost. For example, an image which covers 25 km2 can monitor an entire research station at a cost of about US$300.
To test the suitability of this technology, a team of researchers from CIMMYT set out to evaluate the reliability of SkySat NDVI estimates for maize and wheat breeding plots of different sizes and spacing, as well as testing its capacity for detecting seasonal changes and genotypic differences.
Both their initial findings, recently published in Frontiers in Plant Science, and more recently acquired data, show that the SkySat satellites can be used to monitor plots commonly used in wheat and maize nurseries. While wheat yield plots usually are 1.2m wide, maize plots tend to consist of at least two rows, resulting in a width of 1.5m. Plot length ranges from 2-4m. The authors also discuss on other factors to be considered when extracting and interpreting satellite data from yield trials, such as plot spacing.
Through the successful collection of six satellite images in Central Mexico during the rainy season and parallel monitoring of a maize trial in Zimbabwe, the researchers demonstrate the flexibility of this tool. Beyond the improvement of spatial resolution, the researchers suggest that the next challenge will be the development and fine-tuning of operational procedures that ensure high quality, standardized data, allowing them to harness the benefits of the modern breeding triangle, which calls for the integration of phenomics, enviromics and genomics, to accelerate breeding gains.
This research was supported by the Foundation for Food and Agriculture Research, the CGIAR Research Program on Maize, the CGIAR Research Program on Wheat, and the One CGIAR Initiatives on Digital Innovation, F2R-CWANA, and Accelerated Breeding.
The importance of agroecological methods is starting to be a necessity across the Congo Basin. CIMMYT researcher, Prasanna Boddupalli, emphasises the importance of agroecological methods for biodiversity-smart agricultural development.
On August 15, 2023, CIMMYT organized the third series of the Catalysts of Change: Women Leaders in Science virtual seminar for a conversation on advancing women’s leadership in science, showcasing a wealth of power-packed insights and success stories.
Featuring Catherine Bertini, an accomplished leader in international organization reform and a powerful advocate for women and girls, the TED talk meets fireside chat style seminar began with a pre-recorded message from Catherine highlighting how women as catalysts of change can play an essential role in breaking through gender barriers in leadership roles. “Each of us must define for ourselves what’s important to us. We should assume opportunities to lead and to improve. We need to reach out, look forward and say, I’m going to make a difference. We can all be a catalyst for change,” stated Catherine, the 2003 World Food Prize laureate.
CIMMYT Director General Bram Govaerts highlighted the importance of recognizing the immeasurable contributions of women leaders in science. “We want more women leaders in organizations like CIMMYT. Through the recently launched CIMMYT 2030 Strategy, we are taking one step further in ensuring that gender equality isn’t just a concept but a reality, he reiterated. “The CIMMYT 2030 Strategy leverages a systems approach to overcome barriers to achieving gender equity by providing more opportunities to hear and learn from current women leaders in all capacities,” explained Govaerts.
“Girls can do anything,” Catherine set the scene for her presentation, showcasing personal stories based on her remarkable career and leadership journey. She detailed her distinguished career of improving the efficiency and operations of organizations serving poor and hungry people around the world. Sharing behind-the-scenes insights and actionable takeaways, Catherine wanted participants to walk away remembering, “here are some of the things that I have learned that I’d like to share with you today: engage in meaningful networking opportunities; be intentional about the impacts you want to create; understand your own tolerance level; be grounded in your principles, and champion inclusive leadership by mentoring others.”
Natalia Palacios, a member of the Woman in Science group at CIMMYT, interviewed Catherine. “Catherine’s contributions have been instrumental in enhancing food security, nutrition, and gender equality. Her advocacy has shed light on the crucial roles that women play in food production, family nutrition and community resilience—areas that are aligned with CIMMYT’s mission,” said Natalia. Responding to Natalia’s question on proud moments, Catherine talked about the Trust Fund she created with her World Food Prize to support programs that increased opportunities for girls and women to attend school. “I created the Catherine Bertini Trust Fund for Girls’ Education. There are some wonderful stories of support we’ve given. I learned that nobody should underestimate their potential to be a role model,” she added.
Catherine also addressed questions from session participants on how to build inclusive organizations through a learning culture; tips to help employees adapt to new technology in the age of artificial intelligence (AI); and approaches to manage culture change: how to find the balance and address tensions and trade-offs.
The third session ended with closing remarks from Bram who expressed his gratitude to Catherine for participating in the Catalysts of Change Seminar Series, highlighting her incredible leadership journey and unwavering passion in accelerating the advancement of women in leadership. “This was such an inspiring conversation. There are two take home messages for me: let us appreciate the contributions of those who came before us; and we need more dialogue and to listen to each other much more,” he concluded, underscoring CIMMYT’s commitment to changing the leadership equation through greater representation of women leaders at CIMMYT and CGIAR.
To learn more about Catalysts of Change: Women Leaders in Science, click here to watch the seminar video or visit our website.
We are all aware the immense challenges countries face due to climate change, particularly its impacts on vital sectors like agriculture, forestry and livestock. The agriculture industry is profoundly affected by unpredictable weather patterns and frequent incidences of extreme events such as floods, droughts and landslides. Consequently, finding effective solutions to address these issues becomes of paramount importance. Climate-resilient agriculture necessitates the adoption of sustainable crop and land management technologies.
(Photo: Karen Conniff/IWMI)
In the context of South Asia, Sri Lanka stands out as one of the most severely affected countries by the impacts of climate change. The nation contends with a multitude of hazards, ranging from floods and landslides in the western and southwestern regions, drought and pest outbreaks in the northern region and coastal erosion along the coastal belts. These examples underscore the growing complexity and challenges associated with managing climate risks and patterns, especially when multiple hazards occur simultaneously.
In response, Sri Lanka has implemented climate-smart agricultural interventions, including the development and introduction of stress-tolerant crop varieties, rainwater harvesting, the introduction of energy-efficient irrigation systems, implementation of soil and water conservation programs and crop diversification. However, the agricultural sector still faces formidable challenges. There is a lack of up-to-date information on climate change and its impacts, a fragmented institutional setup, overlapping mandates and limited capacity for information sharing. To address these issues, we require zone-based planning and institutional collaboration. Integrating spatial considerations into rehabilitation and development interventions is the main consensus among stakeholders. All ongoing and planned programs need vulnerability information, and there is a consensus among stakeholders on the need to integrate spatial considerations into rehabilitation and development interventions.
This is where the Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project becomes an invaluable asset in expediting Sri Lanka’s journey towards climate-smart agriculture. Recent evidence highlights the need for a comprehensive assessment of location-specific climate actions to bridge knowledge gaps within the country. Through the Atlas, we will quantify localized climatic risks today and, in the future, assess their likely impacts on agriculture and identify key adaptation options to mitigate these risks. This knowledge will strengthen Sri Lanka’s food security and reduce its vulnerability to climate-related hazards. By complementing traditional methods of risk characterization with novel approaches like intensity and frequency analysis of hazards and historical crop yields, our efforts will gain added efficacy.
ACASA, therefore, offers us a unique opportunity to foster collaboration, share knowledge and develop evidence-based innovative solutions to confront the challenges posed by climate change in Sri Lanka. It serves as a platform to connect hazards, practices, tools and adaptation options. By intertwining various aspects of climate change and gaining a deeper understanding of its spatial and temporal dimensions through the Atlas, Sri Lanka is steadfast in its commitment to building resilience and creating a sustainable future for generations to come.
Bram Govaerts, CIMMYT director general, participates in the World Food Prize and Borlaug Dialogue. (Photo: CIMMYT)
The award honors the legacy of Robert Glenn Anderson (1924-81), eminent Canadian agricultural scientist and former CIMMYT wheat research director who helped ignite in India the “green revolution,” a rapid modernization of agriculture during the 1960s-70s and by which that nation went from grain shortages and hunger to becoming a leading grain exporter.
A bioscience engineer and soil scientist who is a PhD graduate from Belgium’s Katholieke Universiteit Leuven and has worked in Africa, Asia, and Latin America, Govaerts will give the keynote address “Agrifood system for a food and nutrition secure world: From efficiency to resilience,” describing in part the relevance of CIMMYT and its partners’ work.
“Early warning and surveillance systems are key to building resilience in food insecure communities and regions,” said Govaerts. “Supporting this, in concert with national agricultural research systems and private partners, CIMMYT crop breeding programs yearly disseminate dozens of disease resistant, climate resilient varieties of maize, wheat, and dryland cereals, where they are most needed.”
“The Center’s science and partnerships have helped prevent the spread of deadly crop pests and diseases in sub-Saharan Africa and South Asia,” he added, “and we have new ‘Glenn Andersons’ who are doing exactly what is needed to strengthen global food security, with plant health innovations and systemic thinking.”
Borlaug’s wish: Take it to the farmer
Working with scientists, training specialists, extension agents, farmers, and communications and technology experts, a CIMMYT program led by Govaerts for over a decade in Mexico applied the admonition of Norman E. Borlaug, Nobel laureate and colleague of Anderson, to “take it to the farmer,” combining the right seed with the right conservation agriculture production practices embedded in integrated markets, while recognizing and incorporating farmer knowledge.
“Ongoing efforts of the Center and national and local partners are promoting the adoption of conservation agriculture-based sustainable intensification to transform food systems throughout the Global South” Govaerts explained. “The training offered, and the advisory systems supported by CIMMYT’s work aim to empower women and disadvantaged social groups, while offering opportunities for fulfilling livelihoods to a new generation of farmers who will grow nutritious food for all.”
A CIMMYT scientist since 2007 as a Post-doctoral Fellow, Maize and Wheat based Cropping Systems Management, and current director general, in 2014 Govaerts received the World Food Prize’s “Norman Borlaug Award for Field Research and Application from the World Food Prize” for the development and spread of sustainable agricultural systems. He is A.D. White Professor-at-Large at Cornell University and, in 2020, was elected a Fellow of the American Society of Agronomy (ASA) for outstanding contributions to the field of agronomy.
The Robert Glenn Anderson lecture series on the security of the world food supply was first given at joint meetings of the Canadian Phytopathological Society (CPS) and American Phytopathological Society (APS) in 1986 and an endowment fund was then established by the CPS. More recently, the Lecture has been given at the International Congresses of Plant Pathology (ICPP1998 to 2018).
As a Robert Glenn Anderson lecturer, Govaerts enters the hallowed company of other distinguished scientists who have been invited to give the address, including Norman E. Borlaug (1992); Per Pinstrup-Andersen, Emeritus Professor of Cornell University (2000), South African researcher Jennifer A. Thomson (2015); and late World Food Prize laureate and CIMMYT wheat director, Sanjaya Rajaram (2019).
For more information or interviews:
Ricardo Curiel Communications manager to the director general
CIMMYT r.curiel@cgiar.org
CSISA collaborates with Chaudhury Charan Singh Haryana Agriculture University to provide students with opportunities to engage in the latest agri-research and big data management. (Photo: CIMMYT)
Working alongside smallholder farmers, the Cereal Systems Initiative for South Asia (CSISA) project, has forged partnerships at the state and center levels to bridge the gap between innovation and the adoption of sustainable agricultural systems. In its current phase (2022-2025) in India, CSISA is helping mainstream innovation processes into the programing of national and state institutes through joint extension and research activities, including capacity building initiatives. Chaudhury Charan Singh Haryana Agriculture University (CCSHAU) is one of Asia’s biggest agricultural universities, located at Hisar in state of Haryana, India. Initially a campus of Punjab Agricultural University, Ludhiana, it became an autonomous institution in 1970 and contributed significantly to both the Green and White Revolutions in India.
Together with CCSHAU, CSISA recently initiated a landscape diagnostic survey (LDS) under the university’s rural agricultural work experience (RAWE) program for students graduating with an honors Bachelor of Science in agriculture. The twin objectives of this initiative were to gain an understanding of the existing challenges and opportunities for different cropping systems in Haryana through a bottom-up approach and to prepare students for careers in agriculture by building their practical skills in digital agriculture and big data management. This, explained CCSHAU Vice Chancellor B.R. Kamboj, who led the collaboration with CSISA, would provide recent graduates with the opportunity to “design a survey schedule, collect data in digital format, understand how farmers are adopting new technologies, and the learnings and challenges associated with each cropping system.”
Developing solutions for tomorrow’s problems
The predominant cropping systems practiced within the three ecologies of Haryana state are: the rice-wheat cropping system (RWCS); the cotton-wheat cropping system (CWCS); and the pearl millet-mustard cropping system (PMCS). The landscape diagnostic survey was carried out in parts of Sirsa and Hisar districts (for CWCS), Rewari and Mahendergarh districts (for PMCS) and Panipat, Yamunanagar, and Kurukshetra districts (for RWCS). The entire survey design was based on farmers’ participatory engagement and the cropping system framework.
A thorough process of survey design, including the training of master trainers, followed by orientation for students, was undertaken by the university’s RAWE faculty with support from CSISA’s technical team and participating KVKs. Students collected data from farming households using questionnaires and analyzed them using different analytical tools and techniques. Based on farmers’ responses, important data points about the region’s three crucial cropping systems were recorded and a book entitled Cropping Systems of Haryana – Challenges and Opportunitieswas published earlier this year, documenting the research process, data generated, results, and conclusions.
This has been a unique experience for both students and faculty that culminated in a research program with hands-on training. In the long run, this approach to capacity building for students is expected to support fieldwork and studies that help develop solutions to tomorrow’s problems in agricultural development. “The commitment of CCSHAU to implement a strong RAWE program under the technical guidance of CSISA, with support from the district KVKs, and student participation made this publication a strong endorsement and reference for similar RAWE programs across states and central universities,” acknowledged Peter Craufurd, CSISA project lead for India.
Lessons from the field
The survey helped build students’ capacity to design and understand data collection methods, analysis, and management with actual field exposure. Additionally, the qualitative data-gathering experience allowed them to develop their understanding of farmers’ perspectives in adopting or rejecting a particular technology or recommendation. Sharing her experience of the field sessions, RAWE student Muskan– group leader for the rice-wheat cropping system survey, said, “This process of data gathering, and field exposure is very motivating. I have a better understanding of our farmers’ practices and challenges.”
Another participating RAWE student and group leader for the cotton-wheat cropping system survey, Nilanchal Nishan said, “this exposure has helped me understand how policies and technology advancements affect farmers and their interaction with these changes over the years”.
“The entire process, from training to data management and curation, was fascinating for us,” said Aman Kumar, who led the pearl millet-mustard cropping system (PMCS) survey. He added that such field exposure will make students more aware of the trends and prevalent practices in the agricultural sector and help them choose their future field of research and study in a way that is in sync with real-time developments. These sentiments were echoed by RC Aggarwal, deputy director general for education at the Indian Council of Agricultural Research (ICAR), who called for more collaborations and capacity development exercises of this nature to be initiated in other state agriculture universities.
In July 2023, CIMMYT launched a new seminar series on women’s leadership — Catalysts of Change: Women Leaders in Science. Pitched as a ‘TED Talk meets fireside chat’, the series shines a spotlight on successful women who are leaders in their fields, providing a platform for them to share insights from their lives and careers. Taking into consideration the fact that leadership can take make many different forms, the talks will highlight women who are leaders in all sorts of disciplines and capacities.
Altagracia emphasized that social and political changes across the world present new opportunities for women to advance in leadership roles. (Photo: CIMMYT)
“We want more women leaders in science organizations and institutions like our own,” explains CIMMYT Director General Bram Govaerts. “To achieve this goal we need proper representation, and we need role models that balance science, business insights and decision-making to provide opportunities to hear from women leaders about their life journeys, lessons and insights.”
Disruption without destruction
The second event in the series, held online on July 18, featured presentation by Altagracia Gómez Sierra, a leader in sustainable business, Chair of Mexico’s Western Business Promoter Council, and one other the most influential women in agribusiness and energy within the region. During her talk, Gómez emphasized that while many challenges persist, social and political changes across the world are presenting new opportunities for women to advance in leadership roles.
“As we enter a time of absolute change in this new decade, I think women have their best shot at stopping the reproduction of poverty and entering into leadership positions that were previously denied to them,” she said. “And in doing so, we should learn to be disruptive without being destructive. We should build on what we already have and keep pushing it forward.”
Gómez pointed to the advantage of being trained to develop soft skills, which companies and recruiters increasingly see as equally valuable as technical ones. “I think women are trained, even as young girls, to be very effective communicators. They are trained to be part of larger teams or communities and to advance forward without leaving people behind,” she told attendees. “I think that’s an attribute that women — and you as women in science — can bring to the table and communicate. And that is something that I believe, whether it’s in the short or long term, does eventually get recognized.”
Help girls aspire to leadership
Gómez also outlined the importance of supporting women’s leadership at all ages, and crucially even before entering the workforce. “What we sometimes fail to realize is that true innovation comes from the small businesses that constitute up to 76% of new jobs worldwide. And that 90% of companies are still family-run. So, when we think about changing companies, we need to think about changing families and how families work,” she explained. “Because if we truly want to give women a shot, we need to give girls a shot.”
Altagracia and Maria Itria spoke on the importance of representation and having role models. (Photo: CIMMYT)
“I would invite every one of you, if you have girls at home, to encourage them not only to be prepared to take on leadership roles, but also to aspire to them,” she added. “You can do this by setting an example of how to thrive.”
“I believe that the decade of the 2020s, in spite of all the challenges, is truly a wonderful opportunity for girls and women across the world — especially in science.” She ended her talk by encouraging attendees to do anything they can to enhance inclusion — particularly enhancing the accessibility of infrastructure, technology, and education for rural communities — in order to advance business objectives with social as well as economic profitability.
Gómez’ presentation was followed by a Q+A session led by Maria Itria Ibba, head of the Wheat Quality Laboratory and cereal chemist at CIMMYT. The full discussion can be viewed online here. Spanish and French-language audio is also available.
The Rockefeller Foundation announced the passing late last month of Gordon Conway, former Rockefeller Foundation President, from 1998 to 2004.
Conway developed integrated pest management programs in Malaysia and worked to extend the benefits of the Green Revolution to Africa. During his tenure as President of the Rockefeller Foundation, he sought to address urban poverty by developing low-income housing and other solutions as part of the “Living Cities” program. Under his leadership, the Foundation also launched the International AIDS Vaccine Initiative (IAVI), which has since connected nearly a million Africans to treatment for HIV, and the Mother to Child Transmission Plus Initiative, which provided long-term care to women living with HIV in Africa and Asia.
“Gordon was a pioneer of sustainable agriculture committed to eradicate hunger who challenged our thinking”, said Bram Govaerts sending heartfelt condolences to Conway’s friends and relatives on behalf of CIMMYT.
CIMMYT will continue his efforts, in partnership with the Rockefeller Foundation, to improve food and nutrition security for communities around the world.
The International Water Management Institute (IWMI) and CIMMYT call on policymakers and research-for-development organizations to stay informed about the evolving El Niño event and its potential implications in the Limpopo Basin. El Niño is considered the biggest climate oscillation on Earth. IWMI and CIMMYT have utilized various methodologies and climate models to project and assess the potential impacts of the El Niño event.
What are the crucial practices, especially under the changing climatic conditions about the evolving El Niño event?
Nepal is an agricultural country, where the sector provides the major source of income for half the population. Despite this, the sad reality is that the country is not able to produce enough crops to meet its needs, and major grains like rice, maize, and cereals are mostly imported.
One factor influencing this is an aging population of farmers, alongside decreasing interest in agriculture among the country’s youth. Many young people do not see agriculture as a viable option for employment, opting instead for work opportunities outside the country. However, there are still some youth who see agriculture as a profitable business, like Pradeep Morya.
“It is better to work hard in your home country rather than going abroad and working tirelessly every minute and hour,” says Morya, a 24-year-old farmer from Banke, Nepal, who finds happiness in living close to his family and helping to support national food security. “I love being in the field,” he explains. “I have cultivated spring maize on one hectare. My day-to-day business is to provide care to the spring maize along with pumpkins and beans that I have added for additional income on a small plot of land.”
Morya grows spring maize, pumpkin, and beans (Photo: CIMMYT)
Working alongside his eldest brother, Morya has cultivated 30 kattha of land (equivalent to 0.36 hectares) using the spring maize varieties Pioneer 1899 and DK 9108. His brother, a member of Mahatarkari cooperative in Duduwa, western Nepal, has been providing him with the knowledge and expertise needed for maize cultivation.
Mahatarkari is one among 50 cooperatives working in partnership with the Nepal Seed and Fertilizer project (NSAF), which is implemented by CIMMYT. NSAF works with the cooperatives to provide technical knowledge and training to farmers, to hone their potential and support them in the adoption of modern technologies which can improve their livelihoods. After participating in programs organized by NSAF, Morya makes sure that the suggestions he receives — on soil preparation, weed management, harvesting, and more — are implemented in his field.
Returning to the family farm
A few years back, the situation was different. Like many youths in the country, Morya also went abroad to try his luck on the international job market. He worked hard for two years in Malaysia but was forced to return to Nepal during the COVID-19 pandemic.
“I had imagined my shining future abroad. However, when I reached there, the reality was different,” recalls Morya. “I returned to my own country just before the lockdown in April 2021 with some small savings. Upon my arrival in Nepal, I was clueless about my future. I dropped my education after grade five. With no educational qualifications and skills in hand, it was difficult to get a decent job.”
Agriculture has provided Morya with a sustainable source of income in his home country. (Photo: CIMMYT)
Since the country was in lockdown, Morya chose to stay at home and support his family on the farm. It was here that his eldest brother guided him into farming, and Morya soon learned the knowledge needed to run the farm and began earning money from it. This attracted him towards farming as a longer-term career option, and he has now discovered a prosperous future in agriculture.
“Agriculture needs continuous effort,” he says. “With the support of technology, it is easy and efficient to work. I work every day so that I can reap crops on a large scale to make a profit. I manage weeds, irrigation, and control pests.”
“I also have livestock. I get adequate fodder for my cows and buffalo from weeds and from the spring maize. I sell milk in the market. In addition to this, I also make sure to produce off-season vegetables so that I receive a decent price for additional income.” With the support of his family, Morya has recently purchased an e-rickshaw, which he uses to transport and sell his produce.
To further support his endeavors, Morya has also been participating in Nepal’s Maize Commercialization Network and using the Geo Krishi mobile app to learn about current market prices. “Before knowing about the commercialization of crops, it was hard to receive good amounts from buyers,” he explains. “Now, I make a call to the local retailers and buyers to learn the best value of my grain. Sometimes I also explore the market. Then, I analyze the rate and sell my maize.” He uses a similar system for his off-season vegetables, selling either in the local market or directly to consumers for a premium price. “I make a saving of around 1500 Nepalese rupees (approximately US$ 11) per day,” he says.
A prosperous life
With the profits from his agricultural business, Morya has been able to fulfill his dream of purchasing a bike, as well as contributing to the construction of a new eight-room house, where his family is now living comfortably. “I love to roam on my bike with my friends in the evening. I also take my mother for a ride,” says Morya with a bright smile. “Now, I have a dream to live a prosperous life with my family.”
Morya fulfilled his dream of buying a bike. (Photo: CIMMYT)
Thanks to the support provided by the NSAF project with generous funding from USAID, young people like Morya can pursue a better life for themselves and their families. Agricultural training programs have not only helped young people fulfill their basic needs, but also to achieve their dreams. It is hoped that ongoing efforts to empower farmers through science and innovation will continue helping young farmers like Morya break the chain of unemployment, for both their own benefit and that of Nepal.
Maize ears of the newly released set of CIMMYT maize lines. (Photo: CIMMYT)
CIMMYT is pleased to announce the release of a set of 32 new CIMMYT maize lines (CMLs). These maize lines have been developed by CIMMYT’s Global Maize Program by a multi-disciplinary team of scientists in sub-Saharan Africa, Latin America, and Asia. The lines have diverse trait combinations and are suitable for the tropical/subtropical maize production environments targeted by CIMMYT and partner institutions.
CMLs are freely available to both public and private sector breeders worldwide under the standard material transfer agreement (SMTA).
CIMMYT seeks to develop improved maize inbred lines for different product profiles, with superior yield performance, multiple stress tolerance, and enhanced nutritional quality. CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses, besides optimum (non-stress) conditions in the target population of environments. Suitability as either female (seed) or male (pollen) parent is also evaluated. As done in the last announcement of CMLs in 2021, to increase the utilization of the CMLs in the maize breeding programs of the partner institutions, all the new CMLs are tested for their heterotic behavior and assigned to specific heterotic groups of CIMMYT: A and B.
The release of a CML does not guarantee high combining ability or per se performance in all the environments; rather, it indicates that the line is promising or useful as a parent for pedigree breeding or as a potential parent of hybrid combinations for specific mega-environments. The description of the lines includes heterotic group classification, along with information on their specific strengths and their general combining ability with some of the widely used CMLs or CIMMYT coded lines under different environments.
Food systems in marginal areas of Zimbabwe are vulnerable to climate variability and economic shocks. During the COVID-19 outbreak, governments imposed strict lockdowns that adversely affected local food systems and supply chains. Rural communities that already had difficulty feeding their families found themselves in a more desperate situation. The recurring challenges and the COVID-19 outbreak made it clear that there is a need to transform local food systems to achieve sustainable food and nutrition security. The transition is even more urgent owing to the acute labor shortages due to the accelerated trend of rural labor outmigration and an aging population in smallholder farming communities of the country. Agroecology has emerged as an approach to facilitate and champion a transformative shift to sustainable local food systems.
Mower cutting grass. (Photo: CGIAR Initiative on Agroecology)
The Agroecological Initiative is at the forefront of providing science-based evidence for the transformative nature of agroecology and its potential to bring about positive changes in food, land, and water systems, including identifying institutional innovations to promote uptake. Agroecology is a holistic approach to agriculture that emphasizes integrating ecological principles and practices into farming systems. The 13 principles of agroecology guide sustainable and regenerative agricultural practices.
Thirteen consolidated agroecology principles (Wezel et al. 2020)
The initiative employs a multi-disciplinary approach, integrating ecological and social methods to co-create and manage localized food systems and monitor the 13 interconnected principles. While agroecological methods hold promise, the transition process is labor and knowledge-intensive and requires addressing power dynamics within and beyond households to address food and nutrition security. Building on the findings of the completed ACIAR-funded project Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) and Harnessing Appropriate-scale Farm Mechanization in Zimbabwe (HAFIZ), CIMMYT is working in Zimbabwe with 200+ farmers and four service providers in Murehwa and Mbire districts as ambassadors of the community through Agroecological Living Landscapes (ALLs).
Trailer for transportation. (Photo: CGIAR Initiative on Agroecology)
Mechanization plays a crucial role in the initiative implementation in Zimbabwe, covering a wide range of farming and processing equipment. The equipment ranges from simple and basic hand tools to more sophisticated and motorized tools. The machinery eases and reduces drudgery associated with agricultural practices, relieves labor shortages, improves productivity and timeliness of agricultural operations, optimizes resource utilization, enhances market access, and helps mitigate climate-related hazards.
“Machinery supports synergies, reduces labor, and reduces human and wildlife conflict as it reduces livestock grazing time because you can now make feed for your cattle and cutting grass reduces veld fires,” said Musandaire.
Within the Agroecology Initiative, CIMMYT considers mechanization in its technological, economic, social, environmental and cultural dimensions when contributing to the sustainable development of localized food systems and actors. In Mbire and Murehwa, a service provider model was adopted to introduce appropriate scale machinery within the respective communities. The service providers were equipped with a two-wheel tractor, ripper, mower, chopper grinder, and bailer. Training was offered on equipment operation, repair, and maintenance.
The business aspects were also discussed to broaden the participants’ knowledge of service provision. Important aspects covered include business model, entrepreneurship, record keeping, cost and profit calculations, customer care, target setting, and machinery operation planning.
To date, the service providers offer services including ripping, transportation, chopper grinding for livestock feeds and humans, and baling and mower for grass cutting at a fee.
“Mechanization has proven efficient and relevant in our district since livestock is one of our main value chains. Our service providers make hay bales for us, which we buy to feed our livestock. They also grind feed which is good for pen-fattening,” said Chimukoro, councilor in Mbire.
Preliminary findings indicate that appropriate scale mechanization enhances synergies in smallholder farming systems by facilitating more efficient and integrated agricultural practices.
“Our trailer reduces labor and saves time better than scotch carts. We used to leave much biomass in the fields because we didn’t know how to transport and process it after aggregation. But now we can recycle our biomass,” mentioned Mushaninga, local leadership in Murehwa.
By streamlining labor-intensive tasks and promoting holistic farm management, mechanization encourages complementarity among various elements of agroecosystems, contributing to more sustainable and productive smallholder farming. Target communities can pave the way for a more resilient and sustainable food system through the Agroecological Initiative.