Skip to main content

Conservation by the numbers: Reducing genetic drift in crop gene bank collections

CIMMYT E-News, vol 3 no. 1, January 2006

conserving1CIMMYT’s biometrics team receives special recognition for advancing the science behind crop genetic resource conservation.

The nightmare of a gene bank curator: You have a collection of 25,000 precious, unique samples of maize seed; one of the world’s most extensive. You store it carefully, keep it cold and dry, but—little by little over the years—the seed dies! Eventually you’re left with so many packets of useless kernels, and the precious genetic diversity they once embodied is lost to humanity forever.

To keep this very bad dream from becoming a reality, Suketoshi Taba, head of maize genetic resources at CIMMYT, and his team constantly monitor the germination capacity of collections. When it drops below 80-85%, they take viable seed from the endangered accession (the term for individual, registered samples in the bank), sow it under controlled conditions, and harvest enough from progeny to replenish the accession. Known as “regeneration,” the process sounds simple, but in fact must be done painstakingly to capture a faithful snapshot—rather than a faded copy—of the genetic diversity from the original accession.

The Crop Science Society of America recently bestowed the honor of “2004 Outstanding Paper on Plant Genetic Resources” on an article by CIMMYT biometricians that provides models for proper handling of repeated cycles of regeneration. Their work, which was funded by the Australian Grains Research and Development Corporation (GRDC), is particularly relevant for outcrossing, genetically diverse crops like maize, legumes, or sorghum, to name just a few.

conservation2

“For maize regeneration, we use artificial pollination, to avoid out-crossing with pollen from other maize fields,” says Taba. “But even the individuals in a maize population or accession are genetically diverse. How can we decide on the best way to pollinate the plants, or how many ears we need to harvest, or how many and which seeds to choose from each ear?” According to Taba, the danger is ending up with a sample that differs from the genetic make-up of the original. And with each successive cycle of regeneration, you can drift further and further.

Building on a strong body of work in this area by CIMMYT biometricians since the 1980s, the award-winning paper refines and expands the statistical model and provides reliable computer simulations. “Among other things, the simulation model shows exactly how many alleles are likely to be lost through various sampling and regeneration strategies,” says Jiankang Wang, CIMMYT biometrician who is first author of the study. “It describes how different strategies can affect the conservation of alleles and gives gene bank curators options that can be tailored for specific types of accessions.”

Jiankang Wang says he and his co-author, CIMMYT biometrician José Crossa, are now working with Taba to apply the paper’s model in managing CIMMYT’s maize gene bank collection. “Many other gene banks will find this approach useful,” says Crossa, explaining why their study received the award. “For example, we collaborate closely with the National Center for Genetic Resources Preservation in Fort Collins, Colorado, in the USA. They can apply the same principles in their regeneration work.”

Jiankang Wang was excited by the recognition and the fact that peers might find his work useful. “In middle school, teachers saw I had talent and told me to specialize in mathematics, but at the university I discovered that I was most interested in the practical applications of mathematics,” says Jiankang Wang. “Using science to help preserve the world’s crop genetic resources is a great satisfaction.”

For more information contact Jiankang Wang ( j.k.wang@cgiar.org)

When papa said no

CIMMYT E-News, vol 3 no. 7, July 2006

jul06A daring move by a young farmer in India has changed his life and his father’s.

Durgesh Kumar Singh shoulders a huge responsibility. When his father became too ill to work his small farm near Varanasi in the eastern Indo-Gangetic Plains, the 24- year-old student had little choice but to take on managing both the farm and his studies. His father was always there to give advice and share his farming knowledge, so when Durgesh decided to defy his father’s instructions, he was taking a big risk.

A team from the CIMMYT-convened Rice Wheat Consortium (RWC) for the Indo-Gangetic Plains had visited the villagers to enlist their cooperation in a demonstration of zero-till seeding technology. The team wanted village farmers to plant some of their wheat crop without plowing the soil first. Like people living on much of the vast plain below the foothills of the Himalayan Mountains, the farmers of Durgesh’s village plant wheat in the dry season, after harvesting the rainy-season rice crop. Preparing the land takes time and labor and for every day of delay after the optimal planting time, farmers lose about 1% of their potential harvest. A ten-day advance in wheat seeding results in 10% higher harvests. Plowing means waiting until a crew with a tractor and plow is available.

jul05

When the RWC team, which included Ramesh Chand and UP Singh from Banaras Hindu University, first visited the village, people laughed. “How can you expect the seed to germinate if you just throw it on the ground?” they joked. After two weeks of cajoling and pointing out that zero-tillage saves time, labor, and scarce water, the team convinced one farmer, Surindra Sharma Mayaran, to set aside a very small piece of his land for a trial. “If it works, OK, and if it doesn’t, OK,” he said. Even though the wheat germinated and grew, most villagers remained skeptical, especially Durgesh Singh’s father. He told Durgesh that he would die if his son tried to plant that way.

But seeing in that first trial a possibility for a brighter future, Durgesh decided to try zero-tillage for wheat on a small field that his father could not see from the house. He harvested at least as much as with the old methods, but gained something more precious. “We now have enough time to read,” he says. “My golden time is what I am saving.” This has not only let him continue his studies, but has reduced farm labor costs, making the family wheat crop more profitable. Now most of the villagers who were at first so skeptical are following his lead.

Even those who are nearly landless see benefits. Ram Dhari is what the village calls a “minimum landholder” with just a tenth of a hectare. He is extremely poor. He did not have the money to rent the zero-till seeding machinery, so the rest of the village let him use it for free and Banaras Hindu University provided seed. He had watched the others and wanted to follow. “I am looking forward to the profits,” he says.

This is one of countless stories of the success of a broad range of resource-conserving technologies on smallholder farms in India. RWC work, in India funded in large measure by the United States Agency for International Development (USAID), has won praise and awards. Recently the Minister of Agriculture for India, Sharad Pawar, said the use of such technologies, especially zero-tillage, was essential to the improvement of Indian agriculture.

Durgesh Singh, Ram Dhari and Surindra Mayaran see the impact in their village every day. At first Durgesh was a laughing stock. Now his zero-till fields have produced, and produced well. The father who said he would die if is son tried out such a foolish thing as planting without plowing now asks “Why didn’t you do the whole farm this way?”

For more information contact Raj Gupta (r.gupta@cgiar.org)

The call for maize mounts in Asia

February, 2005

1AsiaThe demand for maize in Asia is expected to skyrocket in the next two decades, driven primarily by its use for animal feed. In the uplands of seven Asian countries, however, demand is also increasing in the farming households who eat the maize crops they grow. CIMMYT and the International Fund for Agricultural Development (IFAD) have recently completed a project promoting food and livelihood security for upland farmers in Asia who depend on maize for food and feed.

By 2020, the International Food Policy Research Institute (IFPRI) estimates that demand for maize in all developing countries will surpass the demand for wheat and rice, with Asia accounting for over half of this growth. Responding to these predictions, teams of researchers visited farmers in the uplands of China, India, Indonesia, Nepal, the Philippines, Thailand, and Vietnam to discover ways in which maize technologies could improve livelihoods.

2Asia

To further develop maize improvement recommendations, national workshops and seven publications built upon the farmer surveys. Careful planning and appropriate procedures on the part of scientists and policy makers will ensure an easier transition as farmers face the oncoming demand. A clear message that emerged from the study in Vietnam, for example, was the need to help farmers apply sustainable practices to avoid degrading natural resources—particularly in fragile, marginal settings—as the demand intensifies.

These conclusions were drawn by researchers conducting rapid rural appraisals with farmers in commercial and semi commercial systems in the up- and lowlands of these seven countries. The second stage of fieldwork entailed more in-depth participatory rural appraisals in marginal, isolated areas and involved village leaders and groups of farmers. Details on the sociological, agro-economical, environmental, and technological aspects of maize production were assembled, and the resulting publications can be viewed, downloaded, or ordered here.

In addition to CIMMYT and IFAD, the project involved collaboration with IFPRI, Stanford University, senior officials of national research programs, and ministries of agriculture.

Bidding to Balance Color with Quality

CIMMYT E-News, vol 2 no. 8, August 2005

auction1Experimental auctions in Kenya gauge farmer interest in vitamin A-enriched maize.

Kenyan farmers bid for color or quality in experimental auctions to determine how well maize with enriched vitamin A will catch on. Traditionally, East Africans prefer white maize, but vitamin A maize, being developed by CIMMYT and HarvestPlus, the CGIAR Biofortification Challenge Program, will be yellow because of the increased beta-carotene content. Will the nutritional value of the yellow maize overcome East Africans’ color bias?

CIMMYT researchers tried to answer this question in a series of novel experimental auctions held in Vihiga and Siaya, western Kenya. By giving consumers real money to bid for real maize meal, they hoped to properly estimate a customer’s willingness to pay for vitamin A-enriched maize. The highest bidders won the auction and exchanged their bag of maize for their choice of white, yellow, or white vitamin-enriched maize, after paying the money. By creating an active market, researchers found a way to determine how much demand there would be for maize with perhaps an unpopular color but superior quality.

The HarvestPlus Challenge Program, an international consortium of collaborative partners that includes CIMMYT, aims to produce new crop varieties to reduce micronutrient malnutrition, also known as “hidden hunger.” They are working to develop maize that will have higher levels of vitamin A available to those who eat it. Vitamin A deficiencies plague over 50 million people in sub-Saharan Africa and Latin America. According to HarvestPlus, this deficiency damages the eye and severely weakens the immune system.

auction2Determining how consumers will balance their desire for nutritionally superior maize while sacrificing the color to which they are accustomed sheds light on whether or not biofortified maize will be readily adopted. “Despite a need for this knowledge, very few consumer studies of the rural poor in sub-Saharan Africa have been done,” says Hugo De Groote, CIMMYT economist.

“The results from the maize auctions agree with our previous consumer surveys of city dwellers,” says fellow scientist Simon Kimenju, “The auction was very realistic—these prices are similar to those found in Kenyan markets and grocery stores.” Although the auction was found to be the most realistic compared to other methods, it was also more expensive and took more preparation and training time.

In addition to discovering an accurate way to gauge consumer preferences, researchers found another upside of the auctions: “The one-on-one interactive nature of the auctions, using real products, and real money makes it great fun for the participants!” exclaims De Groote.

A full paper on this topic was presented at the African Econometric Society Conference, Nairobi, Kenya, 6–8 July 2005. It is available in PDF form here (270 kb).

For further information, contact Simon Kimenju (s.kimenju@cgiar.org) or Hugo De Groote (h.degroote@cgiar.org).

Wheat warriors: The struggle to break the yield barrier

CIMMYT E-News, vol 6 no. 6, October 2009

nov01In 2009, out of a global population of 6.8 billion people, more than 1 billion regularly woke up and went to bed hungry. By 2050 the population is expected to grow to 9.1 billion people, most of whom will be in developing countries. Unless we can increase global food production by 70%, the number of chronically hungry will continue to swell. To help ensure global food security, a new research consortium aims to boost yields of wheat—a major staple food crop.

There is no easy fix for world hunger. Any improvement will require complex collaborative efforts and funding to support them. With this in mind, wheat scientists and agricultural experts from diverse private and public institutions are joining to form a Wheat Yield Potential Consortium (WYC). This group will strive to improve wheat yields, which must increase 1.6% annually to meet a projected demand of 760 million tons by 2020.
The unofficial launch of the WYC happened in November 2009, when over 60 world-renowned experts gathered for a USAID-sponsored symposium at CIMMYT’s Mexico headquarters to integrate various research components into a common breeding platform for improving wheat yields.

“Over the past year we’ve been pulling together experts in photosynthesis who have ideas on how to raise the overall biomass of the crop, as well as other experts in crop adaptation to make sure that increased biomass will also translate into better yields,” says Matthew Reynolds wheat physiologist and initiator of the WYC.

In recent decades, wheat yields have increased nearly 1% each year, but global population is growing roughly 1.5% annually. Climate change, unsustainable cropping practices, and changes in diet preferences further challenge wheat’s ability to meet the demands of a global population that relies on the crop for more than one-fifth of its caloric intake.

Meeting of the minds

“The international wheat community recognizes that each of us has different skills and that, though individually we cannot solve the problem of insufficient wheat yields, collectively we can,” said Richard Richards chief research scientist at Australia’s Commonwealth Scientific and Industrial Research Organization, Plant Industry, who has been commissioned to review a WYC project proposal under development.

The Consortium will pursue advanced approaches to increase wheat yields, including increasing the efficiency of photosynthesis, improving the plant’s adaption to target environments, and using physiological and molecular breeding. To date, selective, conventional breeding has been the main force behind yield improvement. Scientists breed a large number of high-yielding wheat plants, select early generations with good agronomic traits, populate trial fields with the offspring, and move the best forward in the breeding program. The cycle is then repeated. This system has been successful, but precedent suggests it will not be fast enough to overcome the combined challenges of population growth and climate change. “Instead of going straight to the end product —yield—we must look at every yield-determining physiological process and improve the efficiency of the limiting ones,” Richards said.

Powering up photosynthesis

Under favorable conditions, yield is a function of the interception, conversion, and distribution of solar energy. To increase yield, one or more of these components must be improved. Thanks to years of wheat improvement, the efficiency of solar energy intercepted is nearly 90% and energy distribution results in an almost optimal proportion of total biomass to grain, roughly 50%. “This leaves the conversion of sunlight into chemical energy—mainly controlled by photosynthesis—as the main yield component left to improve,” said Xinguang Zhu, group leader of Plant Systems Biology at the CAS-MPG Partner Institute of Computational Biology.

One way to do this is to increase carbon-fixing efficiency during photosynthesis. Plants that thrive at moderate temperatures, like wheat, tend to use C3 carbon fixation, a slow system that accepts both carbon dioxide and oxygen. The fixation of oxygen, called photorespiration, reduces the efficiency of photosynthesis. Plants that inhabit warmer locations, like maize, tend to use C4 carbon fixation, which increases chloroplastic CO2 concentration, reduces photorespiration, and improves energy-use efficiency.

The fact that the C4 system has evolved many times in nature has inspired scientists to look for ways to introduce parts of it into wheat, so that the plant can thrive at relatively high temperatures. This will be essential as temperatures in tropic and subtropic regions continue to climb. Studies show that for every 1°C of warming, wheat yields in these areas will fall 10%. Given that 95% of the world’s malnourished people live in these regions—which also have the highest rates of population growth—high-yielding wheat that can beat the heat could make a world of a difference.
For more information: Matthew Reynolds, wheat physiologist (m.reynolds@cgiar.org).

CIMMYT-KARI Project Takes Historic Step in Kenyan Agriculture President Mwai Kibaki Opens First Biosafety Greenhouse in East Africa

August, 2004

biosafe2The official opening on 23 June 2004 of a level-two biosafety greenhouse in Nairobi, Kenya was marked by happy fanfare, but more importantly, a serious commitment from the highest levels to use biotechnology to help solve Africa’s pressing agricultural problems.

The biosafety greenhouse, constructed as part of the Insect Resistant Maize for Africa (IRMA) project, is the first of its kind in sub-Saharan Africa outside of South Africa. A biosafety greenhouse is very similar to a normal greenhouse except that it has special features to prevent the transfer of pollen, seed, and other plant material from transgenic plants to the outside environment.

The first order of business for the Kenya Agricultural Research Institute’s (KARI) new biosafety greenhouse will be the continued development of maize that resists stem borers and is environmentally friendly. This is the IRMA project’s primary objective. Stem borers typically inflict losses of about 15% annually to the Kenyan maize crop, and IRMA’s farmer surveys indicate that their control is a high priority for both small- and large-scale farmers.

biosafeThe President of Kenya, his Excellency the Hon. Mwai Kibaki, officially launched the facility. He was joined by Masa Iwanaga, CIMMYT’s Director General; Romano Kiome, Director of KARI; Andrew Bennett, Executive Director of the Syngenta Foundation for Sustainable Agriculture, which provided funds for the new facility; Shivaji Pandey, Director of CIMMYT’s African Livelihoods Program (ALP); and the Hon. Kipruto Arap Kirwa, Minister of Agriculture.
“We must embrace and apply modern science and technology in farming,” President Kibaki said. “Indeed, there is evidence that countries that have embraced modern agricultural technologies have improved economic performance, reduced poverty, and ensured greater food security for their people.”
“In embracing biotechnology, I am fully aware of the ongoing debate on biotechnology and its products, particularly genetically modified organisms,” President Kibaki added. “We in Kenya have resolved to apply biotechnology in line with the existing biosafety frameworks, national statutes, and international obligations. The newly constructed Biosafety Greenhouse Complex symbolizes that effort and will provide the internationally required containment for genetically modified material at the experimental stage. This will facilitate high-tech research in support of current and future agricultural endeavors.”

Speaking to more than 500 dignitaries, scientists, and representatives of farmers’ and civic organizations, CIMMYT Director General Iwanaga clearly laid out the case for using high science to meet the needs of resource-poor farmers. “What we now need, as with the first Green Revolution, is technology that is well-suited to the economic and physical circumstances of the region’s farmers and the political will to support development of that technology and create conditions conducive to its adoption,” says Iwanaga. “With this greenhouse opening and the training of competent staff to manage it, Kenya and KARI have positioned themselves to be leaders in sub-Saharan Africa in using the tools of biotechnology to meet the rapidly growing need to increase food production.”

In addition to constructing the biosafety greenhouse, the IRMA project is a pioneer in several other respects. To date, the project has focused on using Bt genes produced by the public sector and on using “clean genes” by removing antibiotic and herbicide resistant marker genes from the final products. Considerable effort has gone into collecting and characterizing the organisms typically found in maize fields in order to assess possible environmental impacts from the Bt maize. They have conducted extensive farmer and field surveys, which enable scientists to develop strategies that smallholders can employ to prevent the Bt resistance buildup by stem borers.

“We’ve set high goals for ourselves in terms of environmental safety, public awareness, farmer and stakeholder participation, developing human capacities where needed, and in developing effective products for farmers,” says IRMA coordinator Stephen Mugo. “It’s not often you see an international agriculture project moving forward successfully on so many fronts at one time.”

biosafe3

For more information: Dr. Stephen Mugo

The pen shows its might at CIMMYT

November, 2004

A group of 14 Mexican journalists visited CIMMYT’s research station at El Batán, Mexico, on 17 November, for an introduction to center activities and field, seed bank, and laboratory tours. Coming at the invitation of CIMMYT and the Mexican public relations firm, Arvizu Communications, the visitors included correspondents from leading Mexico City dailies and several agricultural periodicals. Presentations covered the center and partners’ work in conservation agriculture, the conservation and use of crop genetic diversity, and biotechnology. Particular interest centered on CIMMYT’s research in transgenics, in the context of media reports of transgenic maize in the Mexican countryside. In a wrap-up with the group, CIMMYT research director John Dodds and a diverse group of scientific staff emphasized that genetic engineering is a small portion of the center’s total research portfolio—roughly 0.5%. “CIMMYT engages in limited work with GMO technology because of the potentially important benefits to small-scale farmers in the developing world,” Dodds explains. “Ultimately, the decision whether to use GM crops or not is up to each nation.”

Ecuador’s wheat awakening

nov05In a determined effort to shield consumers against food price volatility, the government of Ecuador has renewed its investment in food crop research, including a vigorous program to restore wheat production and reduce the nation’s perilous dependence on imported grain.

The mild irony of putting on a festival to release a drought-tolerant wheat variety after days of unseasonably rainy weather was not lost on Esteban Falconí and Jorge Coronel of Ecuador’s National Institute of Agricultural Research (INIAP). They could not have imagined a more fitting demonstration of the “crazy climate” that has emerged in recent years, altering the long-established weather patterns that govern the cropping season.

In the days before the variety launch, held on 15 July in the Saraguro area of Loja Province, Falconí, who leads INIAP’s cereals program, and Coronel, who heads up the program’s work in southern Ecuador, worried about the bad weather’s real and immediate consequences. Occurring at harvest time (which should have been accompanied by clear skies and intense heat), it threatened to spoil the grain in experimental plots and wreak havoc on farmers’ harvests of wheat, barley, and other crops. The rain also posed a hazard to INIAP’s carefully orchestrated release event.

As luck would have it, the morning of the event, the rains ceased and the harsh Andean sun shown brightly, not only reducing the risk of crop damage but also ensuring that researchers, farmers, political leaders, and other invitees could fittingly celebrate the official arrival of the new wheat, INIAP Vivar 2010 (named after scientist Hugo Vivar). It is among the first products of a campaign launched in 2008 to renew Ecuador’s diminished wheat production.

nov-HVivarA posthumous tribute

Deviating just this once from their custom of naming wheat varieties after Ecuador’s highest mountains, researchers dubbed their latest release ‘INIAP Vivar 2010’ in honor of the late Hugo Vivar. He worked as a barley breeder for 16 years with the International Center for Agriculture in the Dry Areas (ICARDA), which posted him at CIMMYT to serve the Latin American region. Subsequently, CIMMYT employed Vivar for another 9 years.

A native of Ecuador’s Loja Province, Vivar spent brief periods during his childhood at the family farm in Saraguro. One of the farmers attending an event held to release the new wheat variety recalled that her mother had been one of his playmates. As a scientist, Vivar returned to Saraguro often, helping design a long-term project in collaboration with INIAP, which confronted with remarkable success problems that have kept agricultural productivity low and rural poverty high in this remote mountainous region.

Having tested Vivar for several years in their own plots, farmers attending the event knew that it would bring higher yields of good-quality grain and offer a buffer against increasingly common drought, another sign of the crazy new climate.

A hole in the food basket
Planted in small plots on steep mountain slopes, Saraguro’s wheat and barley crops appear in the distance like yellow stamps stuck on huge crumpled sheets of green and brown paper.

Against that backdrop, INIAP’s release event celebrated both a new agricultural technology and southern Ecuador’s vibrant rural life. Speeches, displays, and an outdoor banquet drew attention to the new wheat as well as to the region’s rich popular culture, passionate politics, deep religious faith and hard-working people.

Despite the event’s local flavor, it had far-reaching repercussions, including creating public awareness (partly through mass media coverage) of a new technology that represents concrete and rapid progress in an ambitious plan to revive Ecuador’s wheat production.

The plan forms part of this country’s decisive response to the global food price crisis of 2008. Across the developing world, the crisis showed how quickly food security can deteriorate, aggravating the plight of millions of poor and reflecting fundamental weaknesses in the global food system which had been overlooked for years.

In Ecuador, the crisis revealed one gaping hole in an otherwise sturdy basket of staple foods. The country is self-sufficient in rice and produces abundant supplies of beans, cassava, maize, and potatoes. However, Ecuador imports nearly all of its wheat for bread, which figures importantly in the diets of rural and urban consumers alike.

“When wheat prices spiked in 2008, Ecuador’s government cushioned the blow by temporarily subsidizing imported wheat at great cost,” explains Julio César Delgado, INIAP’s director general. Well aware of the flaws in such a policy, he says, government policy makers, at the prompting of president Rafael Correa, sought INIAP’s help in formulating a plan to revitalize wheat production and reduce the country’s excessive dependence on the international wheat market.

The near-death experience of Ecuador’s wheat sectorThe sector’s marginal status is a relatively recent development. Until the 1970s, farmers in the mountainous regions stretching from the north to the south of the country produced enough wheat to satisfy about half of domestic demand, with the rest being imported. Given the diversity of the country’s agricultural economy and its new income from petroleum, this seemed like a reasonable balance.

But the equilibrium was lost as successive governments, relying heavily on income from petroleum, began to ignore food agriculture as well as the research needed to keep it strong and competitive. Domestic wheat production was particularly neglected, because low international prices and the political clout of the nation’s wheat millers made it easy and profitable to import ever larger quantities of the grain (currently about 5,000 metric tons annually). The resulting decline in Ecuador’s wheat area (from around 100,000 hectares to just a few thousand) precipitated the demise of wheat research.

Segundo Ceballos, who labored as a field worker with the cereals program at INIAP’s Santa Catalina Experiment Station from 1966 until 2009, offers a unique perspective on this near-death experience. He vividly recalls the “golden age” of wheat research in the 1970s, when dozens of scientists, technicians, and field workers tended to 15 or 20 hectares planted to international wheat nurseries from CIMMYT, evaluating the new lines and returning the results to center headquarters in Mexico. Norman Borlaug, father of the Green Revolution, visited periodically to observe the team’s progress and to cheer them on.

By the turn of the century, however, the work had lost momentum. Only a handful of staff continued sowing a few improved wheat lines each year. They probably would have stopped altogether, says Esteban Falconí, leader of the revitalized national cereals program, were it not for lingering habits and for CIMMYT’s willingness to continue providing the nurseries on request free of charge.

Resilient wheat for a rugged environment

INIAP itself had suggested such action many times before, but the message had always fallen on deaf ears. Shaken by the 2008 food crisis, the government took the initiative this time, setting out realistic goals and providing about USD 4.3 million over 5 years for intensified wheat research and promotion.

The central aim of the new initiative is to expand Ecuador’s wheat area to about 50,000 hectares, enough to satisfy at least 30% of domestic demand. That would be up from just 3% currently covered by local production. This assumes that farmers will adopt new varieties and apply adequate quantities of fertilizer, for which they will receive credit on reasonable terms.

“A major challenge will be to produce and provide enough improved seed,” says Walter Larriva, director of an INIAP experiment station near the city of Cuenca. The new funding will help, and so will INIAP’s years of experience in helping establish farmer seed production groups, he explains.

Less than two years after the 2008 decision to renew Ecuador’s wheat research and production, INIAP is already releasing improved varieties, including Vivar for southern Ecuador and San Jacinto (released later in July, along with a new barley variety) for the country’s central and northern zones. Those are the first wheat varieties to be released in Ecuador since the early 1990s, when Cojitambo became available. Much of the country’s limited wheat area is planted to that and older varieties.

Vivar is far more resilient than its predecessors under rugged conditions, offering a consistent yield advantage of about 80%. Based on a line developed by CIMMYT and named Berkut, it was introduced into Ecuador during 2003. Vivar’s good tolerance to drought probably comes from a line in its pedigree that resulted from crosses made at CIMMYT between domesticated wheat and related wild species. The excellent performance of the new variety bodes well for INIAP’s initiative to reduce Ecuador’s dependence on imported wheat, but it could generate further benefits as well.

One of the farmers present at the release, Patricio Ordóñez, describes how he invested extra income from improved wheat in the production of high-value tropical fruits. Ordóñez is one of more than a dozen community leaders trained under a project carried out jointly by INIAP and CIMMYT in Saraguro from 1995 to 2008, with the aim of reducing rural poverty through more diverse and sustainable agricultural systems.

A renaissance of research results
INIAP was able to release Vivar and San Jacinto so soon after the start of the new national wheat initiative for two reasons. One was CIMMYT’s unswerving support for local wheat research even during its time of relative dormancy in Ecuador. If that service had ceased, INIAP’s new wheat team would have been forced to start essentially from scratch, adding many years to the process of variety development.

Just as important was the government’s decision in the wake of the food crisis to thoroughly refurbish INIAP’s research infrastructure as well as to hire and train dozens more scientists and technicians.

“Many years of neglect,” says Delgado, “had left our facilities in a poor state and had undermined the ability and motivation of our scientists to deliver results.” As director general, Delgado’s main achievement was to restore what he refers to as “la mística del trabajo” (or work ethic), leading to a renaissance of research results, as demonstrated by Vivar and other new varieties.

Segundo Ceballos, who worked in INIAP’s barley and wheat plots for more than four decades, is very happy about the new varieties and the wheat research revival. For they vindicate years of struggle to keep a central pillar of his country’s food security from falling.

 

For further information: Hans Braun, director, global wheat program (h.braun@cgiar.org)

 

New Seed Initiative for Maize in Southern Africa III

Few agricultural inputs are as important as seed, for it is the nature of the seed that determines the basic potential of any cropping enterprise. Without good quality seed of adapted, improved and appropriate varieties, farmers will struggle to attain food security and profitable farming. In southern Africa, great strides have been made in the development of suitable varieties of maize for small-holder farmers. Many of these new varieties have been registered by national maize programs and seed companies, but the rate of scale-up and dissemination is insufficient to impact large numbers of house-holds. Therefore, more concerted efforts are required to progress towards the vision of the New Seed Initiative for Maize in Southern Africa (NSIMA).

The NSIMA Phase III is focused on increasing the uptake of improved maize varieties by small-holder farmers in Southern African Development Community through enhancing the effectiveness of the seed value chain.

Period: 2011 – 2013
Objectives: Develop and stimulate  production, marketing and use of improved maize varieties with increased productivity, nutritional value and acceptance under the stress-prone conditions of resource-poor farmers.
Partner countries: Angola, Botswana, D.R. Congo (Katanga Province), Lesotho, Malawi, Mozambique, Swaziland, South Africa, Zambia and Zimbabwe.

Funding institutions: Swiss Agency for Development and Cooperation (SDC)
Key Partner Institutions: CIMMYT, NARES, GART, Africa Harvest, the Private Seed Sector, NGOs, and  Community Farmer Organizations in SADC countries.
Principal coordinators: CIMMYT, Zimbabwe
Principal investigators & other associated scientists:  
Expected outputs:  
Project organization: NSIMA Regional Steering Committee for Maize working through National Coordinating Units in Participating Countries, supported by a Regional Coordination Unit based in CIMMYT-Zimbabwe.
Highlights: Highlights of phase II
Presentations:
Publications  
Proceedings:
Capacity building:
Contact details:

No maize, no life!

CIMMYT E-News, vol 6 no. 4, June 2009

In Morogoro, a drought-prone area in Tanzania, farmers are using certified maize seed and urging other farmers to grow a new drought tolerant variety, TAN 250, which they say is like “an insurance against hunger and total crop failure, even under hot, dry conditions like those of recent years.”

Continue reading

Value from building human capacity

CIMMYT E-News, vol 4 no. 6, June 2007

CIMMYT helps build scientific strength in Turkey.

When you first meet Gul Erginbas and Elif Sahin standing side by side in an experimental wheat plot in Turkey, what stands out are the differences between them. One is dressed very traditionally, head and body covered, the other is in close-fitting denim jeans. It seems these two young postgraduate students could not be less alike. But when it comes to science the external differences disappear. These are two committed and talented young people who hope to make a difference in their own country. They are already making a difference for CIMMYT.

“I really depend on them,” says Julie Nicol, the CIMMYT soil-borne disease pathologist, based in Turkey. “We work in close collaboration with the Turkish Ministry of Agriculture and several universities. Both women have started working on their doctoral degrees, supervised by key university experts and myself. This is a highly effective way to build capacity in applied research both for Turkey and the world.” Having bright and committed students on the ground is also very beneficial to CIMMYT.

The Anadolu Research Institute at Eskisehir is one of Turkey’s oldest and most important agricultural research stations, especially for winter wheat breeding. It is about a three-hour drive east of the capital city, Ankara, on the broad and rolling Anatolian plateau. At this station CIMMYT (together with ICARDA and Turkey) works in winter wheat breeding and also in Nicol’s area of specialization, finding ways to reduce the threat to wheat from pathogens in the soil, the microscopic worms and fungi that cause damage underground long before the impacts are seen in the part of the wheat plant that is above the ground.

Both Sahin and Erginbas have supervisors at their own universities in Turkey but having a CIMMYT scientist like Nicol as a co-advisor really helps. “She brings us a global perspective and makes sure we work with care and precision,” says Elif. “And she really knows the field. It is easy to learn from her,” adds Gul. “With this experience, I hope I can contribute to science in Turkey in the future.”

jun07Erginbas is just beginning work on a project to screen wheat for resistance to a disease called crown rot. It is caused by a microscopic fungus in the soil called Fusarium culmorum (related to but not the same as the Fusarium fungus that causes head blight in wheat) and can cause farmers serious loss of yield. Her first tests have been with plants grown in a greenhouse on the station. Later she will expand her work to the field and as part of her program will spend some time in Australia with the Commonwealth Scientific and Industrial Research Organization (CSIRO). Since there is some evidence that the fungus that causes crown rot can survive for up to two years in crop residues, there is a great interest in this work as more farmers adopt reduced tillage and stubble retention on their land.

Sahin is focusing on an underground pest called the cereal cyst nematode, a tiny worm that can cause great damage to the root system of the plant. It can be responsible for losses of up to 40% of rainfed winter wheat in Turkey and there is evidence that the nematodes are very widespread in west Asia, North Africa, northern India and China. Sahin, funded by a scholarship from the Turkish funding body TUBITAK, is looking for sources of resistance to the pest.

jun06These pathogens are especially damaging when wheat is grown under more marginal conditions, and so the work in Turkey that these two young students are doing may have its greatest impact where farmers struggle the most.

For more information: Julie Nicol, pathologist (j.nicol@cgiar.org)

Farmers Say: “Kill Striga!”

CIMMYT E-News, vol 3 no. 2, February 2006

feb_strigaKenyan farmers’ verdict is out: “Ua Kayongo is the best Striga control practice and we will adopt it.”

Farmers in western Kenya overwhelmingly favor imidazolinone-resistant (IR) maize seed coated with a low dose of this herbicide to kill Striga, a highly-invasive parasitic weed that infests 200,000 hectares of Kenya’s farmland and causes crop losses worth an estimated US$ 50 million each year. This was a key finding of a recent, independent study commissioned by the African Agricultural Technology Foundation (AATF) to the Western Regional Alliance for Technology Evaluation (WeRATE; includes non-governmental organizations, farmer associations, and extension workers). Nearly 5,300 farmers in 17 districts of western Kenya evaluated eight recommended Striga management practices.

Farmers have dubbed the winning maize “Ua Kayongo”—literally, “kill Striga” in a mixed vernacular. In July 2005, the Kenya Agricultural Research Institute (KARI) and private seed suppliers started to commercialize four hybrid varieties of Ua Kayongo in Kenya.

The maize’s herbicide resistance is based on a natural mutation in the crop. Its development into Ua Kayongo was through global cooperation involving CIMMYT; KARI; the Weizmann Institute of Science, Israel; and BASF-The Chemical Company, funded by the Rockefeller Foundation and BASF. In the new practice, Ua Kayongo seed is coated with BASF’s Strigaway® herbicide, which kills Striga seedlings below ground. This prevents them from fastening to the roots of maize seedlings, from which they suck away water and nutrients.

feb_graphFarmers in the WeRATE evaluations were able to plant the new maize using their normal husbandry methods, including intercropping with legumes and root crops. “I’ve been pulling and burying Striga on my 5-acre farm for the past 17 years and the problem has only grown worse,” said Rose Katete, a farmer from Teso; “Ua Kayongo has provided the best crop of maize that I’ve ever grown!”

Katete’s observations bear out CIMMYT and partners’ findings from several years of field trials: “Under Striga-infested conditions, the new maize hybrids out-yield the checks by more than 50%, and provide near-total Striga control,” says Marianne Bänziger, Director of the CIMMYT Maize Program.

Over the next five years, the new Striga control package will be made available to farmers in Tanzania, Uganda, and Malawi, and eventually, other countries of sub-Saharan Africa with a Striga weed problem.

For more information contact Fred Kanampiu (f.kanampiu@cgiar.org)

Blind to borers

CIMMYT E-News, vol 3 no. 7, July 2006

jul01Convincing risk-averse, resource-poor farmers to adopt a good technology is hard enough when they can see the enemy, but what if the enemy hides from view?

Maize farmers in Africa struggle every day to protect their crop from pests. Some are obvious and relatively easy to control. After all, you can throw stones at a baboon that comes in for a meal and scarecrows and slingshots can stop birds.

One of the most damaging pests though does everything by stealth, virtually invisible to farmers. The moths that are parents to a class of pests called stem borers lay their eggs at night, on the underside of the emerging leaves of young maize plants. The caterpillars that hatch from the eggs soon make their way into the stalk itself, safe from all predators, including farmers.

“Many farmers in Kenya don’t even know their maize fields have a stem borer problem, yet these insects cost them some 400,000 tons in lost harvest each year,” says CIMMYT maize breeder Stephen Mugo.

He says the stealthy biology is one reason stem borers are sometimes thought to be less important than other quite visible maize pests like cutworms, armyworms, earworms and beetles. Storage pests like beetles and weevils, together with fungi are also rated high in importance, because their effects can be easily seen. “Farmers routinely attribute the damage to their crops to these pests, and not their ‘invisible’ enemy, the stem borer,” Says Mugo.

jul02

Chemical pesticides could control the two main species of stem borer found in eastern and southern Africa, says entomologist Dr. Macharia Gethi, the Director of the Embu Center of the Kenya Agricultural Research Institute (KARI). “Eggs are laid soon after the maize seedling emerges, around a fortnight after planting, and this is when stem borer control should be applied.” But this rarely happens. “Even farmers who know about stem borers only notice the damage after it’s too late for chemical control. A seed-based technology is what we need,” says Mugo.

In Muconoke village of Embu, located in the dry mid-altitude zone of eastern Kenya, farmers do know about borers and try to fight back. Elizabeth Njura has to apportion her meager budget to buy maize seed, fertilizer, and insecticide. She explains, “If I want a good maize harvest I have no choice but to buy all three.” Smallholder farmers like Njura have little cash for the inputs they need and lack reliable information about pesticide usage. As a result, the hidden borers happily grow in the maize stalk, starving the growing plant of nutrients. Mary Ngare says she is also disappointed with her maize harvest, even though she used the only pesticide she had to try to stop the borers. Unfortunately, what she had was intended for seed treatment and even then she applied it too late. The borers had already penetrated into her maize stalks.

Mugo is convinced that by embedding resistance technology into the maize seed itself, either by conventional breeding or biotechnology, farmers will have access to varieties that show far less borer damage.

jul03
With funding from the Syngenta Foundation for Sustainable Agriculture and the Rockefeller Foundation, CIMMYT is collaborating with the Kenya Agricultural Research Institute (KARI) to develop maize varieties that are resistant to the two most important stem borers in Kenya, Chilo partellus and Busseola fusca, using both conventional breeding and biotechnology. The work, coordinated by Mugo, is part of the Insect Resistant Maize for Africa (IRMA) project.

“Maize that resists stem borer damage would take the guesswork out of stem borer pesticide usage by eliminating it altogether,” says Mugo. He is excited that six of IRMA’s conventionally bred varieties are now in the national variety performance trials in Kenya, and is hopeful that some of these will reach smallholder farmers in the near future.

For more information contact Stephen Mugo (s.mugo@cgiar.org)

Simple Screening for a Complex Problem

February, 2005

oldBlackMagicA CIMMYT research team is using an old but effective technique to get a head start on some very advanced crop science. Their aim is to breed high yielding maize that also resists infection by a dangerous fungus. As part of a USAID-funded project, the team uses ultraviolet or black light to identify maize that inhibits Aspergillus flavus, a fungus that produces potent toxins known as aflatoxins.

The fungus is particularly widespread in maize-growing regions of Africa, and the aflatoxins it produces can cause health problems in those who ingest it in high doses. By starting with elite maize varieties, those that already cope well in drought and high temperatures, and that resist damaging insects, the project hopes to produce a “package deal” for farmers: maize lines can survive these conditions and resist Aspergillus flavus.

No continent is immune from the Aspergillus problem. During 1988-1998, losses from aflatoxin damage in the US exceeded USD 1 billion. The United States has set an upper permissible aflatoxin level of 20 parts per billion in food, and the European Union has even stricter tolerances. A carcinogen, aflatoxin was recently linked with the deaths of more than 50 people who consumed contaminated grain in Kenya. A study in West Africa found a strong association between aflatoxin levels in children’s blood and stunted growth. “There is no easy quick-fix to this problem,” says Dan Jeffers, CIMMYT researcher overseeing the project, “but when a solution is found, everyone wins.”

By collaborating with scientists in the US, CIMMYT is better able to accomplish its goal of helping resource-poor farming households who consume their own maize. “We want to combine useful traits that will lessen the incidence of aflatoxin in the crop,” says Jeffers. “By crossing maize varieties that already are drought tolerant with those that resist Aspergillus, commercially viable and attractive lines should emerge.” This holistic approach will provide better varieties to collaborators and eventually to farmers.

The kernels vibrate as they shuffle down the tray of the light box. Healthy kernels appear faded under the black light, but the infected grain glows. Jeffers and his team will use the fluorescence data to choose the maize lines that show the least amount of fungal infection. “The most promising materials will then be used in further studies to look at aflatoxin levels,” Jeffers says.

Helping to Reinvigorate Agriculture in Afghanistan

CIMMYT E-News, vol 2 no. 8, August 2005
whtVariety
Ghulam m Aqtash, Executive Director, KRA

“The maize brought by CIMMYT and implemented by Kunduz Rehabilitation Agency is doing wonders.”
Years of war (1979-1989) and subsequent internal instability, plus a prolonged drought and an earthquake, devastated Afghanistan’s agricultural infrastructure, production capacity, and agricultural research capabilities. As a result, agricultural production fell to an estimated 45% of 1978 levels, with crop yields declining to about 50% of pre-war levels.
Wheat is the number-one staple crop in Afghanistan, and maize is the third. Together they occupy 80% of the area planted to annual crops in the country. A central aim of CIMMYT in Afghanistan is to make improved, high quality seed of both crops available to farmers, along with appropriate crop management technologies. To date CIMMYT has responded to Afghanistan’s most urgent needs by:

  • Distributing 300 tons of quality seed of the locally-adapted wheat MH-97 to 9,000 farmers in four provinces of Afghanistan.
  • Producing and delivering tons of breeder’s and foundation maize seed.
  • Planting 35 wheat variety trials at 6 sites and 24 maize trials at 8 sites to identify additional materials suited to farmers’ needs.
  • Training Afghan researchers through courses in-country and at CIMMYT in Mexico.

CIMMYT has collaborated with Afghan researchers for over three decades—even during the war. Thanks to the Swedish Committee for Afghanistan and the FAO, Afghan researchers maintained contact with the Turkey-CIMMYT-ICARDA International Winter Wheat Improvement Program (IWWIP) and continued to select the best new wheats from international nurseries. The new seed moved from farmer to farmer; without it, people would have suffered even more hunger and malnutrition than they did. All winter and facultative wheat cultivars currently registered in Afghanistan are derived from those nurseries. In total, several hundred CIMMYT wheat and maize nurseries have been evaluated in Afghanistan over the past 30 years.

Recent Update from the Field

kunduzAn important component of a current ACIAR-funded project (“Wheat and Maize Productivity Improvement in Afghanistan”) has included collaborative work with farmers and non-government and international organizations to verify in farmers’ fields the performance and acceptability of improved wheat and maize varieties. For wheat, the project uses two approaches:

  1. A traditional approach where demonstrations are planted in farmers’ fields and the farmer assessments are recorded informally through topic focused interviews during field days. The varieties included in these demonstrations are released in the country and made available where security allows. Using this approach in Parwan Province, farmers showed a keen interest for the variety ‘Sohla,’ which yielded well and showed superior resistance to diseases like rust. The project is helping to ensure that demand for seed of the variety is met.
  2. A participatory technology development approach implemented by the Aga Khan Foundation brings farmers to research stations to observe yield trials of promising varieties. Farmers identify preferred varieties with red tags; their assessments determine the selection of wheat lines for advancement and subsequent release.

For maize, the project provided non-government organizations with seed of open-pollinated varieties that were distributed to rural communities. Farmer testing and feedback resulted in the identification of two promising varieties: Rampur 9433 and PozaRica 8731. Farmers said the varieties performed well but did not mature quickly enough to fit local cropping systems, so project participants are identifying earlier-maturing varieties. To offer farmers sufficient seed, the project is pursuing two approaches:

  1. A formal scheme whose main partners are the Agricultural Research Institute of Afghanistan (ARIA) and the FAO, through the Improved Seed Enterprise (ISE), and under which breeder’s seed will be offered to recognized producers of certified seed.
  2. Informal farmer-to-farmer distribution systems, which have resulted in up to a 10-fold increase in some areas under improved varieties. For example, the Norwegian Project Office-Rural Rehabilitation Association for Afghanistan (NPO-RRAA) reported that farmers who had planted open-pollinated varieties from the project in 2003 had bartered and sold more than two tons of seed of the varieties in 2004.

afghanFarmers

The project has built human capacity through in-country, technical workshops, five of which have been conducted since 2000 on topics including: agricultural development potential and constraints in specific zones; yellow rust and field scoring for the disease; research methodologies; variety evaluation; and several field days. The workshops have drawn 70 participants, including farmers, workers from non-government organizations, and officers from research stations.

CIMMYT partners in Afghanistan include:
  • The Future Harvest Consortium to Rebuild Agriculture in Afghanistan, funded by USAID and coordinated by ICARDA.
  • AusAID and the Australian Centre for International Agricultural Research (ACIAR).
  • The FAO.
  • The International Fertilizer Development Center (IFDC)-USAID.
  • The French non-government organization, ACTED.
  • The Aga Khan Development Network.
  • Improved Seed Enterprise.
  • The Afghan Ministry of Agriculture.
  • ARIA.

For further information, contact Mahmood Osmanzai (m.osmanzai@cgiar.org).

This write-up draws on contributions from Alma McNab, former CIMMYT science writer and the CIMMYT team in Afghanistan, including team leader Mahmood Osmanzai and former CIMMYT maize agronomist Julien de Meyer. De Meyer manages the Effective Development Group (EDG), a non-government organization based in Australia and has been commissioned by ACIAR to assist the Afghanistan project in data analysis, training, planning workshops, and reporting.