Skip to main content

New postharvest storage technologies for Latin America

7178682264_898e3326d3The 2nd Latin American Convention on Airtight Storage sponsored by the global company GrainPro, Inc was held during 1-2 March 2013 in Antigua, Guatemala. More than 50 participants from Brazil, Ecuador, Colombia, Costa Rica, Honduras, El Salvador, Guatemala, Mexico, and the USA, and other countries attended the event.

Presented at the event were the latest airtight storage technologies used to ship, preserve, and maintain the quality of raw materials and food grains produced in the region. For example, Caribecafé SKN/ NKG (Colombia) explained how they apply new technology to high quality coffee, and Zamorano University (Honduras) described its uses in bean, maize, and sorghum. Luis Gerardo Ramírez (CIMMYT-México) described the MasAgro program which is currently evaluating GrainPro technology in the Mexican state of Chiapas. “We are ready to extend the technology to small farmers in other regions of Mexico through the MasAgro hubs,” added Ramírez.

Other technologies presented were plastic bags known as SuperGrainbagsTM-IVR, which were evaluated by CIMMYT and the Technological Institute of Monterrey under the supervision of Silverio García. Results indicated that the bags are appropriate for storing and protecting maize and other basic grains from postharvest pests. Furthermore, since they do not require insecticide use, they are environmentally friendly, as well as 100% recyclable. “If we can’t avoid postharvest losses, we can’t achieve food security,” said García. “By applying these technologies, we are opening a new chapter in the weakest link of the maize production chain in Latin America.”

In his speech, Jordan Dey, vice-president of Food Security, pointed out that according to UN estimates, global postharvest losses account for 25% of all grain production, an amount that would be enough to feed the world’s most vulnerable people.

Convention participants thanked CIMMYT’s Institutional Relations for Latin America, headed by Isabel Peña, for providing teaching materials and for its support during this new stage aimed at disseminating new postharvest technologies throughout the region.

Discussing future research and development in Afghanistan

Afghanistan1For over 10 years, CIMMYT has been working assiduously with the national agriculture research system of Afghanistan to contribute to the war-torn country’s sustainable agricultural growth and research and development. So far, the joint efforts have led to the release of 12 wheat, 4 maize, and 2 barley varieties. As wheat and maize together account for about 84% of cereal acreage and production in Afghanistan, the work continues. During 5-7 March 2013, CIMMYT director general Thomas Lumpkin visited Afghanistan to observe CIMMYT activities and initiate a dialogue on further cooperation.

During a tour of the Kabul-based research station of the Agricultural Research Institute of Afghanistan (ARIA) at Darulaman, station manager Gul Zaman informed Lumpkin that 70-80% of the field experiments carried out at the station were ARIA-CIMMYT wheat trials. Lumpkin observed that the station was in dire need of reconstruction, as it lacked proper infrastructure and all farm machinery was kept outside. Lumpkin also met with Qasem Obaidi (ARIA director), Abdullahjan Ahmadzai (Agricultural Extension and Development director general), Nasrullah Bakhtani (Policy and Planning director general), Haqiqatpal Rabani (Statistics and Marketing director), and S.D. Pakbin (ARIA technical advisor) to assess the needs of Ministry of Agriculture, Irrigation and Livestock (MAIL). Ahmadzai updated Lumpkin on the current involvement of CIMMYT-Afghanistan in drafting a longterm R&D strategy document for the country. “CIMMYT could also bring in the latest technologies, such as conservation agriculture, precision agriculture, and the use of cell phones for extension services,” commented Lumpkin. Other areas requiring assistance, according to Obaidi, include a gene bank, soil and pathological laboratories, technical support in basic research, capacity building, and R&D for agricultural machinery.

Abdul Ghani Ghuriani, deputy minister for technical affairs at MAIL, then hosted a dinner reception for Lumpkin and representatives from ICARDA, FAO, USDA, USAID, JICA, private seed enterprises, MAIL officials, and other partners. During the lively dinner discussion, the deputy minister suggested that CIMMYT submits a proposal to establish a permanent facility to provide long term R&D support to the national agriculture research system and other stakeholders in the country. Mir Dad Panjsheri, MAIL chief advisor, then highlighted the issue of sustainability of any intervention brought by development agencies, acknowledged the continued support from CIMMYT, and suggested new collaboration areas: “It is important to carry out multi-crop, interdisciplinary research. We would appreciate CIMMYT’s assistance with diversification of the cropping sequence in farmers’ fields, genetic resource conservation, and support of home-grown breeding programs.”

Prior to his departure, Lumpkin held a series of discussions with Kabul-based USAID, USDA, AusAID, and ACIAR officials. Both USAID and AusAID welcomed the idea of a BISA-type facility in Afghanistan, as it could act as a platform for other CG centers, in-country partners, and foreign universities to address Afghanistan’s R&D gaps programmatically and sustainably.Afghanistan2

Water-saving techniques salvage wheat in drought-stricken Kazakhstan

Kazakhstan’s 2012 drought and high temperatures cut the country’s wheat harvests by more than half from 2011 output, but wheat under zero-tillage practices gave up to three times more grain than conventionally cultivated crops. Two million hectares are currently under zero tillage, making Kazakhstan one of the top-ten countries for conservation agriculture and helping to avoid severe wheat shortages.

“If no-till practices had not been used this period of drought, we would have gotten nothing. It would have been an absolute catastrophe,” says Valentin Dvurechenskii, Director General of the Kostanay Agricultural Research Institute in Kazakhstan, giving his verdict on the 2012 wheat crop.

After farmers planted their wheat in April, Kostanay—the country’s main wheat growing region—went two months without rain. Making matters worse, daily temperatures were several degrees above normal. At the time, farmer and Director General of the Agrofirm Dievskaya, Oleg Danilenko, echoed the view of peers: “I’ve been a farmer for 35 years, and I’ve never seen anything like this.” Danilenko said the harsh conditions pointed up the advantages of conservation agriculture, which involves reduced or zero tillage, keeping crop residues on the soil, and rotating crops. “No other results have been nearly as successful.”

Wheat on Kazakhstani farms using conventional agriculture has been severely affected by 2012's drought and high temperatures. According to farmer Idris Kozhebayev, wheat crops in Akmola Region normally average 42 grains per spike, but this year are producing only 2-4 grains per spike.
Wheat on Kazakhstani farms using conventional agriculture has been severely affected by 2012’s drought and high temperatures. According to farmer Idris Kozhebayev, wheat crops in Akmola Region normally average 42 grains per spike, but this year are producing only 2-4 grains per spike.

Lack of rain darkens crop outlook

In the village of Tonkeris, 45 km from the capital Astana in the Akmola region, farmers’ fields had received no rainfall between May and September. According to farmers in the area, drought conditions used to be rare but are becoming more frequent. “I’ve been a farmer for 30 years,” said Idris Kozhabayev. “There was drought like this in 2000 and 2010. In recent years, it’s getting worse.”

Cultivated using conventional practices, the fields of Akmola were expected to produce only enough wheat for next year’s seed. “The farmers’ fields I work with all look like this. Some are worse,” said Daniyar Andibayev, an agronomist in the region.

Meanwhile, in Kostanay, many farmers had adopted conservation agriculture techniques that protected them from drought’s worst effects. With these, farmers reported yields of 2 tons per hectare, while some farmers using conventional practices lost their entire crop.

 Wheat grown under conservation agriculture in the Kostanay region of Kazakhstan has stayed healthy and is set to give a good yield despite the year's severe drought and high temperatures.
Wheat grown under conservation agriculture in the Kostanay region of Kazakhstan has stayed healthy and is set to give a good yield despite the year’s severe drought and high temperatures.

Conserving where it counts

Kazakhstan is the world’s sixth largest wheat exporter. More than 14 million of the country’s 15 million hectares of wheat is rainfed, meaning the crop relies on precipitation and is thus vulnerable to dry weather. Reports in January 2013 said the 2012 drought had shrunk the wheat crop 57% from 2011’s record harvests.

Farmers are initially attracted to zero tillage and conservation agriculture because the approaches dramatically cut costs: farming this way requires less labor, machinery use, fuel, water, or fertilizers. In rainfed cropping, conservation agriculture can also boost yields.

Research has shown that conservation agriculture increases soil moisture by as much as 24% on most fields. In Kazakhstan the practices capture snow on the surface and improve water retention under heavy snowfall and subzero temperatures. Zero tillage also augments soil organic matter and cuts erosion by 75-100%. All this has helped to nearly double average wheat yields, from 1.4 to 2.6 tons per hectare, according to Dvurechenskii. In December 2011 Dvurechenskii was awarded the “Gold Star” medal and the rank “Hero of Labor of Kazakhstan” by the country’s President, in recognition of his work to promote conservation agriculture.

The findings of a 2012 FAO-Investment Centre mission to Kazakhstan1 suggest that adoption of zero tillage and conservation agriculture had raised domestic wheat production by almost 2 million tons. According to the mission report, this represents some US$ 0.58 billion more income over 2010-12, enough grain to satisfy the annual cereal requirements of almost 5 million people, and the sequestering of about 1.8 million additional tons of CO2 per year.

Pushing out with better practices

With the support of CIMMYT, FAO, ICARDA, the World Bank, the Ministry of Agriculture of Kazakhstan, and other international organizations and donors, Kazakhstan went from practically nothing under conservation agriculture in 2000 to 0.5 million hectares in 2007. In 2012, as a result of ongoing farmer engagement through demonstration plots, field days, and close work with farmer unions, conservation agriculture is now practiced on 2.0 million hectares—13% of the country’s wheat-growing area.”This amazing adoption is thanks to a few scientists who saw the potential, but more importantly to the pioneer farmers who perfected the techniques and put them into practice; farmers believe farmers,” says conservation agriculture expert Pat Wall, who, together with CIMMYT colleagues Alexei Morgounov and Muratbek Karabayev, initiated field trials with Kazakhstani scientists in the country’s northern steppes in 2000.

“The main achievement of CIMMYT in Kazakhstan has been the changing of the minds of farmers and scientists,” observes Bayan Alimgazinova, head of the Crop Production Department of KazAgroInnovation, a specialized organization created by the Ministry of Agriculture to increase the competitiveness of the country’s agricultural sector. Based on the positive results of research trials and tests in farmers’ fields, Kazakhstan’s current state policy calls for every province to pursue zero tillage.

“Kazakhstan has a wheat growing area of 15 million hectares presently and can increase it up to 20 million hectares,” added Murat Karabayev, CIMMYT representative in Kazakhstan. “This is extremely important for the food security of the country, the Central Asian region, and globally. There is a real opportunity to double yields using new advanced technologies and improved varieties. We’ve already seen this through conservation agriculture.”

For more information: Muratbek Karabayev, CIMMYT Representative in Kazakhstan (m.karabayev@cgiar.org)
CIMMYT’s conservation agriculture activities in Kazakhstan have been funded by the different sources, including from CIMMYT’s own resources and the comprehensive World Bank Agriculture Competitiveness Project (ACP). CIMMYT received two grants between 2008 and 2010 from the World Bank’s ACP to promote conservation agriculture practices in Kazakhstan.

Muratbek Karabayev, CIMMYT Representative in Kazakhstan (left) and Auyezkhan K. Darinov, President–Chairman, Republic Public Union of Farmers of Kazakhstan.
Muratbek Karabayev, CIMMYT Representative in Kazakhstan (left) and Auyezkhan K. Darinov, President–Chairman, Republic Public Union of Farmers of Kazakhstan.

Interview: Auyezkhan K. Darinov, 2012

Auyezkhan K. Darinov has been a farmer since 1993, and represents two million of his fellows as President-Chairman of the”Kazakhstan Farmers Union”. He works to unite and provide a voice to small and medium-scale farmers in Kazakhstan and to promote pro-farmer policies with the Ministry of Agriculture.

What are the main activities of the Kazakhstan Farmers Union?
We work with farmers to influence the government and to push for policies that can benefit farmers. The government sometimes doesn’t understand the issues farmers are facing. We meet with the Prime Minister, ministers, other officials every week to push for ideas for farmers. We organize events, meetings, and seminars and this has been our best strategy for getting conservation agriculture to farmers.

What strategies do you use to introduce conservation agriculture to farmers?
The Farmers Union was established in 2000. Since 2002, we have been working with farmers to introduce them to the merits of conservation agriculture. Now, we are working with farmers in all of the provinces and districts. Through our representatives, we have established a network of farmers who work on spreading the technology of conservation agriculture throughout the country. We are the largest NGO in Kazakhstan and we represent the interests of farmers in all levels of the social-economic and political spheres of the country. We are working with the government to develop policies for next year and to draft programs.

What does this year’s drought mean for farmers?
There are estimates of expected yields for this year which are being reported. However since we know the stories of farmers and the real situation of farmers’ fields, we know that the official estimates are higher than the reality. We’re expecting up to 2 million tons of grain less than official estimates. This year, many farmers are in crucial situations and need assistance from the government.

Do you think more farmers will be convinced to start using conservation agriculture following the drought?
Conservation agriculture is still a challenge in some areas, like Southern Kazakhstan. However, on the whole, farmers are already convinced of the merits of conservation agriculture, but it’s a problem of resources. There have to be changes in the agriculture system to equip small and medium-sized farmers with equipment that they can’t afford. It’s an expensive venture to make the shift from traditional practices to new technologies. That’s why we’re working with farmers to form cooperatives so equipment can be shared and lent to farmers.

What role has CIMMYT played in Kazakhstan?
Kazakhstan is now the most experienced in conservation agriculture in Central Asia. We worked with pioneers of conservation agriculture technologies such as Ken Sayre and Pat Wall. CIMMYT was one of the first and the best in conservation agriculture. In all large projects, CIMMYT invites the Farmers’ Union and similarly, the Farmers’ Union invites CIMMYT.

What are some of the main challenges you see for agriculture in Kazakhstan in the future?
All irrigation water is coming from neighboring countries. We need to change the agriculture system to use less water and produce higher yields. There is also a need to develop new varieties which are drought tolerant. That’s where the work of CIMMYT comes in. That’s why the work of CIMMYT in Kazakhstan is so important.

Wheat seems to have a special importance to farmers here. Why is that?
Wheat… it is our money. Basically, if farmers have wheat, they have money. We are a wheat and meat country. Other crops have importance, but not like wheat. Changing the volume of wheat changes the national economy. Farmers cannot imagine how they would survive without wheat. Farmers knew that this year would be dry. But nevertheless, they planted wheat. That’s how important wheat is in Kazakhstan.

1 Unpublished; see also a 2009 Investment Centre report on zero tillage in Kasakhstan.

Inspiring a new generation of scientists: The Borlaug-Ruan Internship

Liz-RocheMany scientists begin exploring at a young age; they try to figure out the things they don’t know, ask questions of others, and see how this information might be useful to them in creating new knowledge. The very lucky ones might have a mentor, or at the very least, a place where they are encouraged to cultivate their curiosity and use what they find out to help others.

This is one of the many reasons why CIMMYT participates in hosting Borlaug-Ruan Interns. Since 1998, over 180 Borlaug-Ruan Interns have traveled to Bangladesh, Brazil, China, Costa Rica, Egypt, Ethiopia, India, Indonesia, Kenya, Malaysia, Mexico, Peru, Philippines, Taiwan, Tanzania, Thailand, Trinidad, and Turkey; CIMMYT has proudly hosted 19 of these intelligent, ambitious individuals. One such student, Elizabeth Roche, visited CIMMYT-Mexico during the summer of 2011. “I loved every minute of my two month internship at CIMMYT,” she said. “Working in the wheat pathology lab enabled me to learn so much about agriculture and global food security.” Elizabeth is now majoring in Plant Pathology at Ohio State University. According to Hans Braun, Director of CIMMYT’s Global Wheat Program, by actively working alongside senior scientists, in the lab and the field, interns “really experience what science is. This is not sitting in a classroom reading from a textbook; it is about discovering a potential career and being inspired to further their scientific knowledge.”

Last summer, Tessa Ries left her hometown of Hastings, Minnesota, to conduct an internship at CIMMYT-Turkey. Based mainly at the field station in Eskisehir, Tessa worked alongside wheat pathologists screening wheat for resistance to crown rot and cereal cyst nematodes, two of the most serious constraints to wheat production in the region. Tessa is now studying at the University of Minnesota and has written a blog for the Global Agricultural Development Initiative about her time at CIMMYT. In 2013, CIMMYT hopes to welcome two more interns to its centers in Mexico and Turkey, continuing Norman Borlaug’s mission in inspiring young people worldwide to join the fight against hunger.

For more information on the Borlaug-Ruan International Internship click here.

Zinc-rich wheat reaches communities in eastern India

India6In the continuous effort to increase awareness of wheat biofortification and its use to improve health and quality of life in eastern India, Banaras Hindu University (BHU), Mahamana Krishak Samiti farmers’ cooperative, CIMMYT, and HarvestPlus, with support from M/s Shyam Seed Company, organized a series of farmer-scientist interactions and field visits on 5, 15, 20, 24, and 28 February 2013 in about 20 villages in the Mirzapur and Chandouli districts, Uttar Pradesh. The series focused on training and advocacy among women groups, monitoring and data recording in participatory variety selection trials, monitoring of seed multiplication undertaken by M/s Shyam Seed Company, problem resolution by farmers, seed multiplication strategies, pre-release of mini-kit trials, and varietal release. Over 70 farmers interested in HarvestPlus experiments participated at each location. “They were optimistic about zinc-enriched wheat varieties and keen to know when these varieties would be available for cultivation,” said CIMMYT wheat breeder Arun Joshi.

Prior to each event, the BHU/HarvestPlus team (Balasubramaniam Arun, Ramesh Chand, and Vinod Kumar Mishra) introduced the project’s objectives and the importance of biofortified wheat varieties. Chandra Prakash Srivastava and Girish Chandra Mishra covered the role of zinc and iron for human health, while soil scientist Satish Kumar Singh focused on crop production and zinc level distribution in different soil types. Saket Kushwaha from BHU explained the importance of a well-planned economic strategy to maximize the gains from nutrient-rich wheat varieties.

Participants attended a hands-on training on HarvestPlus trials sowing to learn about experimental design with focus on plot area, number of lines, and amount of seed to be sown, and to observe soil samples collection demonstrations. They later discussed conventional and zero-till drill for experimental planting, their experience with biofortified varieties and quality seed production, balanced use of nitrogen, phosphorus, potassium, zinc, sulfur, and boron based on soil analysis, and the importance of maintaining the purity and quality of tested and multiplied seeds.

BHU scientists along with Chhavi Tiwari, HarvestPlus research associate, organized women scientist interaction sessions to educate women on the importance and role of micronutrient-enriched wheat in daily lives and its subsequent positive impact on the society. The participating women ranged from school-going girls to working women, women farmers, housewives, and elderly women, representing various educational, economic, and social levels of the region. During the meetings, participants received a Hindi write-up on the importance of biofortified wheat in India, and discussed issues such as nutritious food, consequences of iron and zinc deficiency, and the women’s desire to work with BHU biofortification projects. Rekha, a farmer from the Pidkhir village said, “I did not know one type of wheat can be different from the other because it contains zinc. I did not know this nutrient is so important, or that I would be able to grow this wheat in near future.” The participants were also taught to identify good genotypes and most of them agreed that the new wheat varieties would have a great social impact through improving people’s health.

Wolfgang Pfeiffer from HarvestPlus lauded the farmers and national research systems for promoting the nutrient rich varieties and thus for contributing to eradication of the malnutrition problem in South Asia and elsewhere. “I’d like to encourage more women to participate in the HarvestPlus program. We are approaching the seed delivery phase and their views will be particularly important,” he added.

Following the farmers program, Ravi Prakash Singh, distinguished scientist and head of CIMMYT’s Wheat Improvement Program, visited BHU on 7 March 2013. He reviewed the collaborative research and praised BHU for its work within HarvestPlus. “I hope that BHU will take the lead and will be the first center to release the first ever biofortified wheat in South Asia,” Singh encouraged BHU’s scientists.

3rd International Wheat Yield Consortium Workshop: Latest news in wheat research

DSCN0994Over 100 stakeholders, scientists, and students from 28 countries were welcomed in Obregon, Mexico, by John Snape, CIMMYT Board of Trustees member, as he opened the 3rd International Workshop of the Wheat Yield Consortium (WYC). The meeting sponsored by SAGARPA (through MasAgro) was held at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad Obregon, Sonora, Mexico, during 5-7 March 2013.

Following the welcoming speech, Vicky Jackson (BBSRC) updated stakeholders on the current status of the new Wheat Yield Network (WYN) that supercedes the WYC with a plan to expand the funding basis and research agenda. CIMMYT wheat physiologist Matthew Reynolds then provided an overview of the current wheat yield situation: “Although production has increased steadily, the price of wheat continues to increase at a considerably faster rate.” WYN is an international network of scientists working together to address these issues. As wheat productivity will be crucial for food security in the future, WYN aims to achieve a 50% increase in genetic yield potential of wheat within 20-25 years through (1) increasing crop biomass by improving photosynthetic capacity, (2) optimizing partitioning to maximize agronomic yield, and (3) incorporating improved yield potential traits into elite breeding lines adapted to wheat agro-ecosystems worldwide. “We are establishing a balanced research portfolio with a strong output oriented agenda to provide solutions for wheat farmers and consumers throughout the developing world,” said Reynolds.

DSCN0370The first day was dedicated to over 20 presentations covering all three major research areas. Chaired by Bill Davies (Lancaster University), the session on crop biomass improvement covered topics such as optimizing leaf and canopy photosynthesis and photosynthetic potential of spikes. Gemma Molero (CIMMYT) pointed out that while the importance of spike photosynthesis has been recognized for 50 years, no breeding programs has yet tried to systematically improve this trait. This session was followed by presentations on partitioning optimization chaired by Martin Parry (Rothamsted Research), and the day was concluded with updates on breeding for yield potential and research support platforms which was chaired by Bill Daniel Calderini (Universidad Austral de Chile).

The following day participants had the opportunity to visit the Mexican Phenotyping Platform (MEXPLAT) located at CENEB for a field day and presentations on wheat yield potential and wheat yield and stress adaptation. There they had the chance to see CIMMYT’s first blimp, which was launched during last year’s workshop, and observe the new airborne remote sensing platform AscTec Falcon 8 in action, as well as other tools used by CIMMYT PhD students and physiologists in their research. “For me all the presentations were interesting,” said Yosra Ellemsi, agronomist and CIMMYT conservation agriculture program trainee from Tunisia, showing that the workshop did not target only physiologists. “I was particularly interested in the presentation of Sean Thompson who used the ground penetrating radar as a phenotyping tool for roots. This tool is fascinating firstly because it allows for nondestructive ground penetration, and secondly because it could help breeders to phenotype and select optimal root biomass in breeding populations.” At the end of the program, Davies thanked Reynolds and his team for organizing the workshop and for their work to achieve the goals of WYC: “We believed in this when we first started talking about it and you have moved it forward. This workshop is a great opportunity to discuss the latest developments in the field as you always get to talk to very interesting scientists.

DSC00339

India’s Economic Survey and Budget 2013: What’s in store for agriculture?

In the latest Union Budget, which was presented by India’s finance minister P. Chidambaram to the Parliament on 28 February 2013, the Government of India re-emphasized its commitment to inclusive growth with special focus on human development and gender sensitivity, particularly in education, skill development, and health related programs, and on economically and ecologically sustainable development models.

According to the Economic Survey 2012-13, the average annual growth rate in agriculture and allied sectors was 3.6% during the 11th plan period (2007-12). While this is an improvement from 2.5% in the previous period, it is still below the expected growth of 4%, which is the minimum desired level and a prerequisite for an overall inclusive rural economy growth and development, and farm income enhancement. The agriculture sector needs urgent reforms to boost crop yields and private investment, motivate farmers, and feed the growing population. Therefore, a 22% budget increase has been announced for the Ministry of Agriculture; overall 4,943 million USD (Rs 27,049 crore) has been allocated to the Ministry of Agriculture and 624 million USD (Rs 3,415 crore) has been allocated for agricultural research. The agricultural credit target for 2013-14 is kept at 127.9 billion USD (Rs 7 lakh crore).

One of the targeted activities focuses on providing more affordable and accessible credit to small farmers to enable new technology adoption. Commercial banks have been included to cover short-term crop loans; farmers who have repaid their past loans in time will be entitled to receive another loan at a 4% interest rate. Other goals include matching equity grants to registered farmer producer organizations, credit guarantee funds for small farmers’ agribusiness corporations, and dedicated women banks.

To address the issues of supply-demand mismatch in oilseeds, high food inflation, declining water tables, climate change, meeting nutritional requirements, and achieving overall food security, the government announced establishment of two new institutions: Indian Institute of Agricultural Biotechnology in Ranchi, Jharkhand, and National Institute of Biotic Stress Management for Plant Protection in Raipur, Chhattisgarh. Furthermore, 91 million USD (Rs 500 crore) has been allocated to crop diversification programs in the next fiscal year to promote technological innovation and encourage farmers to grow crop alternatives. Other incentives in agriculture include introducing new crop varieties rich in micronutrients such as iron-rich bajra, protein-rich maize, and zinc-rich wheat, which is already among CIMMYT research areas. In addition, more budgetary support was announced to encourage the ongoing green revolution efforts in eastern Indian states.

For more information, contact Surabhi Mittal (s [dot] mittal [at] cgiar [dot] org).

Resource-conserving practices for smallholder farmers in Africa

“Today Embu farmers are reaping benefits associated with conservation agriculture, where SIMLESA started activities in 2010,” said Charles Wanjau, District Agricultural Officer, Embu East. “We hope that through CASFESA, the benefits that accrued from the SIMLESA project will spread to many more farmers in Embu and beyond for improved food security.”

Wanjau was referring to the project “Conservation Agriculture and Smallholder Farmers in Eastern and Southern Africa,” that begun in June 2012 in Ethiopia and January 2013 in Kenya, with EU-IFAD funding for a period of two and half years. The project will leverage institutional innovations and policies for sustainable intensification and food security in Ethiopia, Kenya, and Malawi, and demonstrate conservation agriculture as a sustainable and profitable farming practice in randomly selected villages. The effort is also meant to assess the effects of markets and institutions on adoption and impacts, through baseline and impact studies in both treatment and counterfactual (control) villages. In Kenya, activities are under way in 15 villages mainly in Embu-West and Embu-East Districts to establish researcher/farmer managed demonstration plots on the farms of two volunteer farmers per village. The demo plots are planted with farmer’s preferred maize and bean varieties using locally recommended seed rates and fertility inputs.

The first CASFESA stakeholder workshop in Kenya was held at Embu on 22 February 2013 and attended by 30 farmers hosting demo plots, 16 officers (mostly frontline extension agents) from the Ministry of Agriculture, and scientists from CIMMYT and the Kenyan Agricultural Research Institute (KARI). Other participants included the Kenyan Equity Bank, Kilimo Salama and Organic Africa representatives, providing farming credits insurance and inputs, respectively. The workshop included updates on project objectives and work plans, along with planning for the next year.

CIMMYT agronomist Fred Kanampiu presented on the fine points of conservation agriculture, followed by KARI-Embu agronomist, Alfred Micheni, who shared the KARI-SIMLESA experiences and take-aways for the CASFESA work plan. CIMMYT socioeconomist Moti Jaleta gave an in-depth talk on project objectives, meth odologies, selected sites, and plans for coming months.

Subsequent workshop discussions centered on demonstration planting details: between row and within row seed spacings, crop varieties to be sown, and land preparation. In-depth observations were drawn from farmers and the extension providers’ experiences. Also discussed were the Ministry of Agriculture recommendations, which encourage tillage, and when to inter-crop maize and beans. The varied labor roles of women and men came up in conversations, with the conclusion that women typically do the bulk of planting, weeding, and harvesting. There was an on-station demonstration of conservation agriculture practices— particularly ridge planting for maize—under the supervision of Kanampiu and Micheni. This was important because all (farmers and extension providers) needed to see a successful case before embarking on establishment of proposed demos based on furrows and tillage conservation tillage practice. The workshop ended with some notable positives, such as an agreement among stakeholders regarding planting procedures and periods, as well as great enthusiasm among farmers.

CASFESA-stakeholkders-planning-meeting_Embu_Kenya

Thomas Lumpkin and Marianne Bänziger visit CIMMYT offices and projects in Bangladesh

35Thomas Lumpkin, CIMMYT director general, and Marianne Bänziger, deputy director general for research and partnerships, visited CIMMYT-Bangladesh during 20-23 February 2013 to meet with CIMMYT-Bangladesh personnel, government officials, and representatives from key national agricultural research systems. They toured the fields of the Cereal Systems Initiative for South Asia in Bangladesh (CSISA-BD) and visited the Bangladesh Agricultural Research Institution (BARI) stations at Jamalpur and Gazipiur.

On 20 February, Lumpkin and Bänziger accompanied the staff of CIMMYT-Bangladesh —cropping system agronomists T.P. Tiwari (country liaison officer), Mahesh Kumar Gathala, and Timothy Krupnik, and agricultural economist Frederick Ross— to a dinner meeting with Ministry of Agriculture (MoA) Secretary Monzur Hossain, MoA Additional Secretary M.A. Hamid, Bangladesh Agricultural Research Council (BARC) Executive Chairman Wais Kabir, BARI Director General Rafiqul I. Mondal, and government scientists. The dinner discussion covered the general state of agriculture in the country and the long-standing collaboration between the Government of Bangladesh (GoB) and CIMMYT, a partnership established in 1973 and formalized in 1982. Hossain and Kabir highlighted the importance of the collaboration and lauded CIMMYT for its continuous support in terms of enhancing BARI capacity to promote maize and wheat in Bangladesh as part of the quest to achieve food security in the country. “CIMMYT-Bangladesh has a very strong presence with a great, proactive team,” added Kabir. Lumpkin then briefed the distinguished guests on CIMMYT’s regional focus, including the latest developments regarding the Borlaug Institute for South Asia (BISA), and thanked the GoB for facilitating CIMMYT’s work in the country.

The following day, Dinabandhu Pandit, CIMMYT-CSISA cropping systems agronomist, organized a field tour to the Mymensingh Hub of the CSISA-BD project. Accompanied by farmers and staff of partner organizations (IRRI, BARI, Department of Agriculture and Extension, Bangladesh Agricultural University, CARE Bangladesh, and ASPADA), Pandit led the team across the Old Brahmaputra River to Char Jelkhana to observe on-going activities initiated in the 2011/12 winter season. The location used to be limited to black gram cultivation and grazing, but thanks to the successful demonstration of maize and wheat by CIMMYT-CSISA on this charland (charlands are islands formed by river sedimentation) and in neighboring villages, local farmers have expanded the area under maize and wheat cultivation by 743% (4.7 ha to 39.4 ha). They are planning to further expand these crops next year.

Upon their return to Dhaka, the team visited the BARI campus in the Gazipur District. Mondal welcomed the CIMMYT director general and deputy director general and explained BARI’s focus and reach before a tour of the station to observe wheat and maize breeding work coordinated by senior wheat breeder Naresh Chandra Barma and BARI Hybrid Maize Program leader Bhagya Rani Banik.

On the last day of the visit, a breakfast meeting was held with USAID representatives David Yanggen and Anar Khalilov. Lumpkin and Bänziger acknowledged and thanked USAID for supporting CIMMYT-Bangladesh through the CSISA-BD project, and briefed USAID on CIMMYT’s focus in the region. They discussed the importance of diversification and sustainable production of maize in Bangladesh, as well as ways to enhance adoption of new technologies. Yanggen and Khalilov agreed that the forthcoming proposal from CIMMYT emphasizing agricultural mechanization and surface irrigation for southern Bangladesh is a very exciting initiative that USAID is keen to support. They appreciated CIMMYT’s work in Bangladesh and encouraged CIMMYT-CSISA to continue developing short, simple, and effective communication materials on successes in the field.

Following breakfast, Lumpkin and Bänziger visited the office of CIMMYT-Bangladesh to meet the staff, discuss their thoughts and concerns, and thank everyone for their good work.21

CIMMYT-Bangladesh, February 2013: distinguished guests and donors

VIP-in-GangladeshAs farmers in southern Bangladesh –the country’s most impoverished region– face increasing costs of agricultural labor and negative effects of climate change, CIMMYT-Bangladesh partners with farmers and agricultural service providers throughout the region to turn these challenges into opportunities. This work to improve farmers’ livelihoods by developing affordable irrigation and efficient machinery has drawn attention from donors and distinguished guests, many of whom recently visited some of the region’s areas to see the changes brought by CIMMYT in action.

On 06 February 2013, Saharah Moon Chapotin (team leader for agricultural research at USAID) and Tony Cavalieri (Bill & Melinda Gates Foundation, BMGF) visited activities conducted under the Cereal Systems Initiative for South Asia in Bangladesh (CSISA-BD) funded by USAID’s Feed the Future initiative with support from the BMGF. CSISA-BD is a collaborative project of CIMMYT, the International Rice Research Institute (IRRI), and WorldFish aiming to sustainably increase productivity of cereal-based farming systems by developing innovative agricultural technologies –including small-scale agricultural machinery and conservation agriculture– and market linkages to raise household incomes. Accompanied by cropping system agronomists Timothy J. Krupnik and Samina Yasmin (CIMMYT-CSISA), Global Wheat Program associate director and wheat pathologist Etienne Duveillier (CIMMYT), regional agronomist Andrew McDonald (CIMMYT), and director of IRRI in Bangladesh Timothy Russell, the team visited the Patuakhali region of southern Bangladesh, where preliminary results of rainfed maize field trials managed by farmers showed both yield increase (1.5 t/ha) over conventional management practices and reduced production costs. Farmers have seized this opportunity and are increasingly growing maize to sell to tourists at premium prices in the nearby beach district. The guests also visited IRRI rice screening trials, WorldFish activities to introduce micronutrient dense fish species, and women’s producer groups involved in maize cultivation.

The following week, the US Ambassador to Bangladesh Dan Mozena and USAID Mission Director in Bangladesh Richard Green visited CSISA-BD activities in the Shatkira district. After a welcome from CIMMYT agronomists Krupnik and Md. Shahjahan, and IRRI and WorldFish delegates, they learned about CIMMYT’s efforts to test, refine, and extend labor-saving and cost-reducing conservation agriculture machinery to farmers through agricultural service networks, and through the study and promotion of two-wheel tractors to power fuel-efficient, surface water irrigation pumps (axial flow pumps, AFPs) used particularly for bed-planted maize fields. Ambassador Mozena commented, “I have seen a CIMMYT project funded by USAID and working with the Government of Bangladesh to help increase food security. Wonderful things are happening right here. I saw a beautiful maize field grown with new technology. If you don’t have this machinery and you are using only day labor, it is very hard to cultivate enough land. This machinery really works.”

Two days later, a European Union delegation visited the EU-funded Agriculture, Nutrition and Extension Project (ANEP) in Barisal, Bangladesh, one of the poorest regions subjected to tidal flooding and low annual crop productivity. ANEP is a partnership between CIMMYT, International Development Exchange (iDE), Save the Children, WorldFish, Community Development Center (CODEC), CEAPRED, and BES-Nepal. The EU delegation included Philippe Jacques (head of EU cooperation in Bangladesh), João Anselmo (attaché to the EU delegation), Marion Michaud (ANEP-EU task force manager based in Nepal), and Roselyn Mullo (ECHO regional nutrition coordinator). ANEP focuses on increasing cropping intensity in Barisal to enable farmers to grow two economically viable crops per year. Krupnik and Yusuf Ali demonstrated how small-scale machinery used for strip tillage and bed planting can help farmers to plant dry season crops such as wheat, maize, and legumes, while reducing costs and saving irrigation water. “Within ANEP, CIMMYT partners with iDE to develop seasonal crop production business plans tailored to specific villages and farmers’ organizations. These production plans help farmers to make better decisions on how to assure timely harvesting, aggregation of grain, and delivery of maize to the market to obtain premium prices,” added Krupnik.

“Sky Walker” advances phenotyping in Southern Africa

Thermal-imageTo free phenotyping of the varietal development bottleneck label, many new tools have been developed to enable an easier plant growth and development characterization and field variability. Until recently, these tools’ potential has been limited by the scale on which they can be used, but this is changing: a new affordable field-based phenotyping platform combining cutting edge aeronautics technology and image analysis was developed through collaboration between researchers from the University of Barcelona, Spain; Crop Breeding Institute, Zimbabwe; Instituto Nacional de Innovación Agraria, Peru; AirElectronics; and Sustainable Agricultural Institute of the High Research Council, Spain. The project was funded by MAIZE CRP as part of Strategic Initiative 9 activities focusing on new tools and methods for national agricultural research systems and small and medium enterprises to increase genetic gains in maize breeding.

DSC_2733The new platform uses ‘Sky Walker,’ an unmanned aerial vehicle which can fly at over 600-meter with an average speed of 45 km/h. The vehicle has thermal and spectral cameras mounted under each wing, and its flight path and image capturing are controlled via a laptop using Google Earth images. Jill Cairns and Mainassara Zaman-Allah tested the platform at CIMMYT-Harare along with José Luis Araus (University of Barcelona), Antón Fernández (AirElectronics president), and Alberto Hornero (Sustainable Agricultural Institute of the High Research Council) to establish the optimal flight path (distance between plane passes and height) for plot level measurements. Field experiments were phenotyped for spectral reflectance and canopy temperature within minutes; these will be compared to results from the GreenSeeker.

The measurement speed of the new platform helps to overcome problems associated with changes in cloud cover and the sun position. It will be used by the Crop Breeding Institute to assist in developing new maize hybrids with heat stress and drought stress tolerance under elevated temperatures.

DSC_2607

Women driving changes in agriculture

Marianne Bänziger is the Deputy Director General for Research and Partnerships for CIMMYT.

mbanziger_womensDayMarianne started her career with CIMMYT as a post-doctoral fellow in 1994 working in Maize Physiology to develop varieties tolerant to low soil fertility and drought. She was based at the CIMMYT office in Zimbabwe during 1996-2004, after which she was appointed Director of the Maize Program, based in Nairobi. In 2009 Marianne became the DDG-Research. In that capacity, she led the development of the CGIAR research programs for maize and wheat.

Why did you choose agriculture?

I chose agriculture because it’s a science that impacts people’s lives. It’s as simple as that. I was also attracted to that it builds up on a wide range of disciplines – biology, chemistry, math, socioeconomics.

Your maize breeding work in Eastern and Southern Africa had, and still has, an enormous impact. Do you think that as a woman you gave a specific gender perspective to your research?

I lived in Africa for almost 15 years and it was impossible to ignore the people — the families — who struggled to improve their livelihoods. I saw them every day. We interacted frequently with both men and women farmers. In the environments we worked, the concern of the women farmers was more on avenues that improved household food security while the men were more concerned about selling their crops and generating income. Of course, families need both: Enough food to eat and income to pay for education fees, health costs, and things like farm inputs.

Another very obvious learning was that Africa has many strong women who drive change across the continent. You find them among farmers, among professionals, and among researchers alike.

Did you work differently as a woman breeder?

There have been books written about differences in men and women “behavior” or “traits” – In my opinion, these are stereotypes and they often break down. Every person puts their imprint, their personality, on their work, for better or worse, whether with “male” and “female” stereo-typed traits.

Did you have rural women in mind when you were developing different varieties of maize?

Interacting with farmers in Africa, I tried to understand how they make decisions and how those decisions link with and meet up with real options in the value chain. For instance, there was a stronger preference for hybrids by male farmers while female farmers preferred OPVs (open-pollinated varieties, which allow farmers to save seeds). We created an integrated breeding program that offered both OPVs and hybrids. The first generation of successful products was OPVs, “women typed” products. However, the reason for them to become available early on had to do with the seed sector ability to scale them up more rapidly as compared drought tolerant hybrids, not whether they were “female” or “male” preferred. The lesson learned is that researchers can craft gender differentiated options, we however need to understand the value chain to ensure that those options indeed become available and accessible at farm level.

Why did women prefer OPVs?

It gave them a greater sense of security about their ability to feed their families. Because they could save seed from year-to-year they felt more in control of their lives. Men preferred hybrids because they had a higher yield which meant more money in the market.

Unfortunately, preferences too often get treated as an either/or issue. We involved schools in rural areas in executing on-farm trials. I remember one particular instance talking to the headmaster of a school located in a drought prone area. I learned that classes had only one schoolbook which they had to share and pass around more than 50 children. Except for two old benches everybody was sitting on the floor. I asked him if the children – under these circumstances – were able to get a quality education and go to secondary school later on. He said the greatest concern wasn’t the lack of benches or books but that the children came to school and fell asleep because they were hungry. They were hungry because they only got one meal a day.

That school was in a drought-prone area and it made me once again realize how real and prominent food insecurity was. So, if you are a mother in such an environment, clearly the first thing you are concerned about is feeding your family and have a sense of control that you can achieve that. Setting food security as a priority does not mean that the woman would not want to grow hybrids as her family becomes more food secure. She also wants income for books and school fees. She would like to see her children learning a profession and likely leave agriculture. We must understand that poverty and hunger are intertwined and do our best to address both.

What do you think are the priorities to empower rural women in regions where we work?

Last week, I was in India at a meeting with farmers – both men and women – and one of the women stood up and said, “We want to have the same access to information and opportunities as men have.”

In the past, women have been deprived of information, of access to credit, and of the same opportunities offered to men. Fortunately many organizations including governmental organization begin to put more proactive gender strategies in place. We can and must ensure that more women get access to empowering information and opportunities. In our case, we are right now engaging in a gender audit of our projects, looking for new avenues to empower women. This is not just about analyzing how women or men think, but asking ourselves how we can empower women through our interventions. We however also have to accept that certain, indeed many, interventions have benefits to men and women alike. So doing a gender audit isn’t about being able to tick off the box and say ‘we addressed the gender aspects of this project’. It is about enriching our understanding how interventions, people, society, value chains, opportunities connect and then choosing more effective interventions that improve the livelihoods of the poor.

What advice would you give to young women scientists?

Pursue your dreams and be what you would like to be. I’d offer that advice to everyone, independent of whether they are a woman or a man, tall or short, or one nationality or the other.

My research engages gender in multiple ways

IMG_1965Emma Gaalaas Mullaney is a researcher studying gender and agriculture. She has served as a Youth Representative to the United Nations Convention on Biological Diversity and Commission on the Status of Women since 2010.

What is your field of research?

I am currently pursuing a dual-PhD in Geography and Women’s Studies at Pennsylvania State University. My dissertation centers on an ethnography of maize production in the eastern Central Highland region of Mexico. I lived in the region for over a year, conducting livelihood studies and oral histories with small-scale, commercially-oriented maize farmers in the Amecameca Valley, and with agricultural extension technicians and scientific researchers working in the nearby Texcoco Valley.

How does gender figure into your research?

My research engages gender in multiple ways. For example, I work closely with farming households and analyze the gendered divisions of labor and decision-making involved in agricultural production. I conducted the oral histories and participatory observation with both female and male members of a given family who are involved in different aspect of maize cultivation, use, and marketing. I also work with both female and male agricultural extension agents and scientists, examining commonalities and differences in their work experiences and practices. I am interested in how gender interacts with other forms of social difference to shape our work and our everyday lives.

What drew you to this work?

I was raised in the rural Midwest (United States), and my extended family has grown corn and soybeans in south-central Wisconsin for generations. The lived experiences of those who work in agriculture has always been a deep interest of mine. I have found that paying close attention to what’s going on with food producers – or with farmers who no longer produce food for human consumption, as is the case for corn growers in the United States – can yield important insight into the strengths and failings of our society. Over the years, as my interests in agriculture and social justice have taken me through many different spaces of formal education, policy negotiation, and scholarly debate, I often gain the most inspiration and understanding while hanging out in fields, in kitchens, and in street markets. Ultimately, my work as a researcher is guided by and accountable to what’s happening on the farm.

When you were gathering the oral histories did certain themes or consistencies emerge?

The oral histories offer rich detail into the livelihoods of different actors and the challenges they face in their daily work routines. As these narratives make abundantly clear, each of the farmers, extension agents, and researchers with whom I spoke is an expert in her or his field. Moreover, they all expressed a high degree of ingenuity and innovation in their work, though this creativity was not necessarily rewarded by their respective institutions. The oral histories also highlighted the gendered divisions of labor among these agricultural workers. Though both women and men worked in leading positions – whether as farmers and maize vendors, as directors of extension teams, or as heads of research departments – the women consistently faced greater risks and uncertainties in their job. In every case I encountered, women took primary responsibility for the household management and decision-making that fell outside of their official job (childcare, bills, etc), putting them in a more highly pressured and less predictable position than their male counterparts. Women were also more likely to find their innovative ideas and contributions dismissed by colleagues on a regular basis, and many described feeling consistently like an outsider in their own work environment.

When you were gathering the oral histories what surprised you?

I did not expect to find such dramatic differences in the level of authority and control that women had over their own work among farming households as compared to women working as extension agents or scientific researchers. Though strict gender roles are perhaps more obvious in the rural farming communities of the Amecameca Valley – where men take charge of the planting, harvesting, and other fieldwork and women handle much of the food preparation, seed selection, and selling of maize in regional street markets – women in these communities are the undisputed experts in the work that they do, which grants them a great deal of space for creative problem solving and risk management on behalf of their family and the local maize economy. In contrast, women working as agricultural technicians, engineers, and researchers are in an environment where gender equality is an explicit priority, but where the standard worker in their position is, and has historically been, male. These women described finding themselves competing for recognition in a setting that often undervalues their individual insights and capabilities.

Do you think there are misconceptions about the research you’ve chosen to pursue?

Well, judging by a common response to my academic affiliation, many people mistakenly assume that, since I come from a Women’s Studies Department, I must begin my research by looking around for women. In fact, I begin my research by asking how particular agricultural systems work, and who is empowered or excluded by these systems. Gender is a force that shapes the agricultural practices and opportunities of both women and men around the world, and it is therefore necessary that I am well trained in gender analysis in order to ask the questions that I do. Gender, interacting with other forms of social difference, dictates who does what kind of work, whether that work is recognized or valued, who has access to resources such as land and credit, and who is allowed to speak with authority on a given subject. Understanding how gender functions is therefore essential to understanding how agriculture is happening and how to improve it. This is true even, perhaps especially, when I walk onto a cornfield, or into an office or lab and encounter only men.

Generally speaking, what are the conclusions your research revealed?

Given that I am still in the process of analyzing data from my dissertation research, I have not yet finished drawing conclusions about maize production in the eastern Central Highlands and its implications for development and biodiversity conservation. At the same time, there are clear themes that have emerged over the course of my fieldwork and which resonate with existing interdisciplinary research. By far the most prominent are the interdependence of innovation and diversity, and their combined importance in agricultural production. Diversity, in terms of maize germplasm, cultivation strategies, and economic systems, is both a resource for and product of innovation in agricultural production, and is a primary source of resilience for small-scale farming households in the Amecameca Valley. A diverse set of perspectives, specialties, and lived experiences is also an obvious source of creativity and innovation among agricultural extension agents and scientific researchers. My research highlights that the strongest and most productive work environments are those that foster these forms of diversification.

What did you discover about gender and agriculture in Mexico?

The most important lessons that I learned about gender and agriculture, after over a year of fieldwork in Mexico’s Central Highlands, are for the most part not new discoveries at all. Decades and decades of extensive research has shown that gender is not merely one social factor among many, one that may or may not be relevant in a given situation. Rather, gender is a dominant social institution that is guaranteed to play a role in shaping agricultural outcomes, even though this process takes many different forms in different places. That Mexico, along with countries around the world, including the United States, currently has such a high degree of gender inequality has devastating consequences for those whose work is ignored or undervalued, and for agricultural production as a whole. Perhaps the new lesson offered by my research is that these very old patterns of inequality still persist today.

What types of changes (policy, research, etc.) do you think would help women and families in Mexico?

There must be public accountability for gender inequality and violence. The different types of gender injustice occurring in Mexico today are not equivalent, but invisible women farmers, gender discrimination in the workplace, and femicide are all products of a society that systematically devalues women’s work and their lives. This is not a problem that is caused by individuals acting alone, nor is it one that can be solved at the individual level; public policy must be held responsible for the fact that gender inequality continues to increase in the face of economic restructuring and global climate change. One important starting point, that is also an important part of any ongoing solution, would be for researchers and policymakers alike to listen carefully to the many women who are already struggling for change.

Finally, I’d like to express my heartfelt thanks to everyone who has worked with me in my research. I am indebted to all the farmers, extension agents, and researchers who graciously allowed me to interview them and to poke my nose into their lives. They do such important, inspiring work, and I look forward to building on these relationships in future research.

 

Women entering the workforce raises wheat consumption

MasonNicole Mason is an assistant professor of International Development at the Department of Agricultural, Food, and Resource Economics at Michigan State University.

Currently on long-term assignment with the Indaba Agricultural Policy Research Institute in Lusaka, Zambia, Mason completed her PhD in Agricultural Economics at MSU in August 2011. Her research focuses on various dimensions of agricultural input and output subsidy programs in Africa, including political economy aspects as well as program effects on smallholder farmer behavior, poverty, inequality, and maize market prices. Prior to joining MSU, Mason served as a Peace Corps volunteer in Guinea and worked with the Partnership to Cut Hunger & Poverty in Africa. Mason was an invited speaker at the conference “Wheat for food security in Africa: Science and policy dialogue about the future of wheat in Africa,” held in Addis Ababa, Ethiopia, during October 2012, and organized by the Ethiopian Institute of Agricultural Research (EIAR), CIMMYT, ICARDA, IFPRI, the African Union, and WHEAT-the CGIAR research program.

What drew you to international development research and outreach?

During my undergraduate studies at Allegheny College, I took a class entitled “Understanding Environmental Problems in Africa,” taught by the applied economist and returned Peace Corps volunteer Dr. Terrence Bensel. He piqued my interest in Africa and the Peace Corps, and I decided to join the Peace Corps after college. I had the privilege of serving as a volunteer in the rural community of Dalein in the Fouta Djallon region of Guinea in West Africa. I worked with smallholder farmers and women’s gardening cooperatives and saw firsthand the critical role that agriculture plays in the livelihoods of so many rural Africans. These experiences inspired me to pursue a career in international agricultural development research, capacity building, and outreach.

What drew you to work on the trends and drivers of wheat consumption in sub-Saharan Africa?

In the summer of 2007, I worked with colleagues from the Food Security Research Project and the Zambia Central Statistical Office to implement an Urban Consumption Survey in four cities in Zambia (Lusaka, Kitwe, Mansa, and Kasama). We interviewed over 2,000 households and asked them about all of the food and non-food items they had consumed in the preceding 30 days. We also visited many food retail outlets in the four cities, including supermarkets, bakeries, small grocers, and roadside and mobile vendors. I was struck by how popular bread and other wheat products were among respondents of all income groups. It was also interesting to see the long queues for bread in the supermarkets and the vendors selling bread at a slight markup right outside the supermarket to people who wanted to avoid the long lines inside. I learned that similar things were happening in other African cities and towns, and decided to work with MSU agricultural economist Thomas S. Jayne and CIMMYT socioeconomist Bekele Shiferaw to delve into the factors driving rising wheat consumption in Africa.

What did you discover?

I expected urbanization to be a key factor driving rising wheat consumption in Africa but surprisingly, our results suggest that after controlling for other factors like GDP, total population, and the prices of bread and products that are complements or substitutes for bread, changes in the percentage of the total population that resides in urban areas don’t have a significant effect on country-level wheat consumption. This was surprising because in most countries in Africa (Ethiopia is an exception), wheat consumption is much higher in urban than in rural areas. We’re still investigating this finding to unpack what is going on. One possibility is that it’s not urbanization per se that drives wheat consumption but rather the demographic and socioeconomic changes that go along with it. These are things like rising incomes and increased labor force participation by women.

What did you observe about gender and wheat consumption in Africa?

A key finding of our study related to gender is that rising labor force participation by women—especially if it rises faster than labor force participation by men—has a significant, positive effect on country-level wheat consumption. We suspect that this is because wheat products (bread, pasta, chapati, etc.) take less time to prepare than many other popular staple carbohydrates like maize meal porridge (called nshima in Zambia and consumed widely in eastern and southern Africa). When women work more outside of the home, they have less time to devote to food preparation and may prefer quicker options like these wheat products.

What types of changes (policy, research, etc.) do you think would help women and families in sub-Saharan Africa?

This is really broad. But in general, I believe women provide most of the labor for agricultural production in Africa but often don’t have much control over the revenue from the sales of products they helped to produce. Women also tend to have less access to productive assets and technologies that could help raise agricultural productivity. Empowering women—for example, through formal education as well as adult education on improved farming practices and business/management skills, improving their access to credit, etc.—is critical not only for improving the well-being of women but also that of their children, families, and communities.

To see the full study on rising wheat consumption in sub-Saharan Africa by Mason, Jayne, and Shiferaw,  please visit http://fsg.afre.msu.edu/papers/idwp127.pdf

 

Published 2013

Maize lethal necrosis: Scientists and key stakeholders discuss strategies as the battle continues

29A recently-emerged disease in Eastern Africa, maize lethal necrosis (MLN), remains a serious concern. A regional workshop on the disease and its management strategies was held during 12-14 February 2013 in Nairobi, Kenya. Organized by CIMMYT and the Kenya Agricultural Research Institute (KARI), the workshop brought together nearly 70 scientists, seed company breeders and managers, and representatives of ministries of agriculture and regulatory authorities in Kenya, Uganda, and Tanzania, as well as experts from the U.S.A.

The key objective of the meeting was to “establish a strong interface between research and regulatory institutions in Eastern Africa to effectively tackle the MLN challenge, including the ongoing efforts and further steps to identify and deploy disease-resistant germplasm, and to create a system that can ensure a constant flow of varieties,” explained B.M. Prasanna, CIMMYT Global Maize Program director. Prasanna highlighted the difficulties faced by the maize farming community from the disease, and emphasized the need to accelerate deployment of MLN resistant maize varieties and to generate necessary awareness among the relevant stakeholders on management strategies. “It is necessary to break the MLN disease cycle and tackle the problem from multiple perspectives,” added KARI director Ephraim Mukisira. He mentioned that besides partnering with CIMMYT on breeding for MLN resistant varieties, KARI will also be distributing seed of alternative crops to farmers in affected areas. “As a dairy farmer, I will be planting napier grass instead of maize this season,” noted Mukisira.

The first signs of a new disease appeared in 2011 and 2012 in the Rift Valley Province, Kenya. A team of CIMMYT and KARI scientists identified it as MLN, a disease caused by a double infection of the maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) and transmitted by insects. According to Godfrey Asea, plant breeder and head of the Cereals Program at the National Crops Resources Research Institute (NaCRRI), Kampala, MLN was also identified in Uganda. Furthermore, symptoms of MLN have been cited in Tanzania, said Kheri Kitenge, maize breeder at the Selian Agricultural Research Institute (SARI), Arusha.

Scientists, particularly breeders, have made significant progress in tackling the disease. Studies are already underway at two field sites (Naivasha and Narok) where responses of a wide array of inbred lines and pre-commercial hybrids are being evaluated under high natural disease pressure and artificial inoculation. Participants visited the Sunripe Farm in Naivasha, where they observed KARI-CIMMYT MLN trials under natural disease pressure. A trial under artificial inoculation in Naivasha featuring nearly 175 commercial maize varieties is showing high levels of susceptibility to MLN. Researchers remain hopeful as some of the elite inbred lines and pre-commercial hybrids developed under projects such as the Drought Tolerant Maize for Africa (DTMA) or Water Efficient Maize for Africa (WEMA) are showing resistance to the disease.

During the farm visit, KARI pathologist Anne Wangai and her team showed how to generate artificial inoculum for MCMV and SCMV, as well as the enzyme-linked immunosorbant assay (ELISA) based technique for pathogen diagnosis at the national agricultural research laboratories at the KARI campus. The participants observed an artificial inoculation of maize seedlings in the field, followed by a discussion on some of the major changes in maize seed demand resulting from MLN incidence. “The maize seed industry is under stress in Kenya due to the need to replace some popular but MLN-vulnerable varieties as soon as possible,” explained Evans Sikinyi, Seed Trade Association of Kenya (STAK) executive officer. All stakeholders agreed that the foremost priority is to identify and speed deployment of MLN resistant maize varieties. “We also have to enhance the diagnostic capacity in the labs and ensure there is a rapid response and surveillance on MLN,” added Esther Kimani, general manager of phytosanitary services at the Kenya Plant Health Inspectorate Service (KEPHIS).

In the concluding session of the workshop, stakeholders identified key research areas and discussed partnership opportunities.