Jared Crain, a research assistant professor of plant pathology, collaborates with CIMMYT on wheat genomics. Leading the Feed the Future Innovation Lab for Applied Wheat Genomics at K-State, Crain and his team annually analyze DNA from 19,000 plants.
CIMMYT’s role in developing the GAIA dashboard has played a pivotal role in guiding both public and private sector stakeholders to strategically allocate investments within the agricultural lime value chains in Tanzania, Ethiopia, and Rwanda.
Across all production environments in Kenya, early-maturity products demonstrate strong sales. This was revealed in a recent study by the CGIAR Initiative on Market Intelligence. During the long-rains season, farmers in higher rainfall production environments—wet, mid and high altitudes—purchased early-maturity seed products despite potentially lower yields. Also, the short-rains season, which represents almost one-fourth of total maize seed sales, was dominated by early-maturity products.
These insights were obtained through a panel of maize-seed sales data from 722 agrodealers in Kenya during two short-rains seasons and three long-rains seasons in 2020–2022. The study also offers insights into the extent the maturity level of seed products, purchased by farmers in Kenya, aligns with the production environment where they were sold. Market Intelligence applies eight criteria to identify seed product market segments (SPMSs) for CGIAR crop breeding. In the application of these criteria to maize in East Africa, two conditions distinguish the segments: production environment and maturity level. The other criteria do not vary. A key indicator for prioritizing breeding investments across segments is the relative size of SPMSs. In the case of maize, and other crops, teams generally use geospatial data to identify the area of production environments, with the assumption that farmers in each production environment would use the seed product with the maturity level designed for that environment.
The paper contends that a stronger focus on using sales data to inform breeding decisions in maize, and potentially other crops where retailers play an important role in seed distribution, should become a priority for market intelligence. Future work will engage stakeholders in maize seed systems in other countries of East Africa about the changes in demand for earlier-maturing products and the implications for segmentation.
The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop-breeding teams, and others to work together toward the design and implementation of a demand-led breeding approach. In 2022, the Market Intelligence Brief (MIB) series was created as a valuable communication tool to support informed decision making by crop breeders, seed-system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector, and non-governmental organizations (NGOs).
The author would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund. This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by Bill & Melinda Gates Foundation; Foundation for Food & Agriculture Research (FFAR); United States Agency for International Development (USAID); and United Kingdom’s Foreign, Commonwealth & Development Office (FCDO).
When one thinks of heat waves, the natural tendency is to consider high daytime temperatures. However, when most people are sleeping, a hidden factor of climate change is taking place: temperatures at night are not dipping as much as observed in the past, which has dramatic effects on many crops, including wheat. In fact, nocturnal temperatures are rising more rapidly globally than daytime temperatures, which is of great concern as research is starting to show the sensitivity of plants to warmer nights.
A group of researchers, from the University of Nottingham, the Sonora Institute of Technology (ITSON) and CIMMYT examined how different wheat lines reacted to the effects of rising nighttime temperatures treatments imposed in the field, for three years at CIMMYT’s Norman E. Borlaug experimental station in Ciudad Obregon, Mexico. Their results, Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses were published in New Phytologist.
Previous studies revealed that wheat yields decline 3-8% for every 1°C increase of the nighttime low temperature. For this research, the team subjected the selected wheat breeds to an increase of 2°C. The varieties were selected based on previous evaluations of their daytime heat tolerance.
Notably, the findings highlighted that genotypes classified as traditionally heat tolerant were sensitive to small increases in nighttime temperature even without daytime temperature stress, implying that adaptation to warm nights is likely under independent genetic control than daytime adaptation.
“These results are exciting as they offer new perspectives on the impact of night temperatures on diurnal photosynthetic performance and wheat yields,” said co-first author Liana Acevedo-Siaca. “Through this work we found that wheat yields decreased, on average, 1.9% for every degree that increased at night. Our hope is that this work can help inform future breeding and research decisions to work towards more resilient agricultural systems, capable of dealing with warmer day and nighttime temperatures.”
Plants at night
While plants do not “sleep” in the way animals do, nighttime for plants has long been thought of as a time of repose compared to daylight hours when photosynthesis is taking place. However, recent findings have revealed that plants are more active than previously thought at night, for example in transpiration, which is the process of plants gathering liquid water from the soil and releasing water vapor through their leaves.
“An interesting result of our research was that we found varieties characterized as heat tolerant, showed some of the greatest declines in yield in response to warmer nights,” said co-first author Lorna McAusland, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham. “These are the varieties wheat farmers are being recommended for increasing daytime temperature, and so there is a worry that advantages gained during the day are being lost at night.”
“There is likely a goldmine of opportunities related to genetically improving nighttime processes in crops, as very little research has been conducted in that space. Useful genetic variation can be expected, since ‘night’ traits have never been considered or needed before now,” said co-author Matthew Reynolds, who leads the CIMMYT’s Wheat Physiology Lab that collaborates globally with experts via HeDWIC (https://hedwic.org/) and uses physiological pre-breeding as a conduit for cutting edge technologies to impact mainstream breeding.
Wheat DEWAS, funded by the Bill & Melinda Gates Foundation and the UK’s Foreign, Commonwealth & Development Office, is expanding to strengthen wheat resilience in East Africa and South Asia. The collaborative effort is led by CIMMYT and Cornell University, which includes 23 organizations across continents.
During his visit to the CIMMYT, Governor Little initiated conversations between the center, the University of Idaho College of Agriculture and Life Sciences, and various Idaho commodity groups. These discussions aim to explore potential collaborations in wheat breeding, sustainability initiatives, and the advancement of bean seed development.
In Zimbabwe, CIMMYT is studying the long-term effectiveness of integrated farming practices, including tillage, no-tillage, mulching with maize residues, and cowpea rotation. This experiment in a distinct agricultural context provides insights into sustainable strategies and soil carbon stocks.
CIMMYT and partners in Kenya recently marked the 10th anniversary of two major facilities that have been crucial for maize breeding in sub-Saharan Africa. The Maize Doubled-Haploid (DH) facility and the Maize Lethal Necrosis (MLN) screening facility at the Kenya Agriculture and Livestock Research Organization (KALRO) centers in Naivasha and Kiboko, respectively, have made immense contributions to the rapid development of higher-yielding, climate-resilient and disease-resistant maize varieties for smallholder farmers across the continent.
An aerial photo of the Naivasha Research Center. (Photo: CIMMYT)
“These two facilities have been instrumental in furthering KALRO’s mission to utilize technology in the service of Kenya’s smallholder farmers,” said KALRO Director General/CEO, Eliud Kireger. “They also exhibit the spirit of cooperation and collaboration that is necessary for us to meet all the challenges to our food systems.”
“Deploying a higher yielding maize variety may not be impactful in eastern Africa if that variety does not have resistance to a devastating disease like MLN,” said CIMMYT’s Director General Bram Govaerts. “These two facilities demonstrate the holistic methods which are key to working towards a more productive, inclusive and resilient agrifood system.”
Maize DH facility
Hybrid maize varieties have much higher yields than open-pollinated varieties and are key to unlocking the agricultural potential of maize producing countries. The doubled haploid process is an innovative technology producing within a year genetically true-to-type maize lines that serve as building blocks for improved maize hybrids.
Unlike conventional breeding, which takes at least 7 to 8 generations or crop seasons to develop parental lines, DH lines are generated within two seasons, saving significant time, labor and other resources. DH maize lines are highly uniform, genetically stable, and are more amenable to the application of modern molecular tools, making them perfect resources for breeding elite maize hybrids.
Workers in the Kiboko Double Haploid facility. (Photo: CIMMYT)
The aim of CIMMYT’s maize DH facility is to empower the breeding programs throughout the low-and middle-income countries in Africa by offering a competitive, accessible, not-for-profit DH production service that will accelerate their rate of genetic gain and fast-track development of improved maize varieties for farming communities.
Since 2017, the DH facility has delivered 280,000 DH lines from 1,840 populations of which 20% were delivered to public and private sector partners. CIMMYT maize breeding programs and partner organizations have embraced the use of DH technology, with many of the newest maize hybrids released in Africa being derived from DH lines. The facility has also served as a training ground so far for over 60 scientists and hundreds of undergraduate students in modern breeding technologies.
“Before 2013, DH technology was mainly employed by private, multinational corporations in North America, Europe, Asia and Latin America,” said CIMMYT’s DH Facility Manager, Vijay Chaikam. “But the DH facility operated by CIMMYT at the KALRO Kiboko research station is specifically targeted at strengthening the maize breeding programs by the public sector institutions as well as small-and medium-size enterprise seed companies in Africa.”
The maize DH facility at Kiboko, Kenya, was established with funding support from the Bill & Melinda Gates Foundation and inaugurated in September 2013. The facility includes an administrative building, seed quality laboratory, training resources, artificial seed dyer, a cold-storage seed room, a chromosome doubling laboratory, greenhouse and a state-of-the-art irrigation system to support year-round DH production in the 17-hectare nursery.
MLN screening facility
MLN is a devastating viral disease that can decimate farmers’ fields, causing premature plant death and unfilled, poorly formed maize ears, and can lead to up to 100 percent yield loss in farmers’ fields. Though known in other parts of the world for decades, the disease was first identified in eastern Africa in 2011. By 2015, MLN had rapidly spread across eastern Africa, including Kenya, Uganda, Tanzania, South Sudan, Rwanda, Democratic Republic of Congo and Ethiopia. CIMMYT scientists quickly discovered that almost all the commercial maize cultivars in eastern Africa were highly susceptible to the disease.
Against this backdrop, CIMMYT and KALRO recognized the urgent need for establishing a screening facility to provide MLN phenotyping service and effectively manage the risk of MLN on maize production through screening of germplasm and identifying MLN-resistant sources. The facility was built with funding support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture, and inaugurated in September 2013.
Resistant and susceptible line at the Maize Lethal Necrosis facility. (Photo: CIMMYT)
“The MLN screening facility is a key regional resource in breeding for resistance to a devastating viral disease. The facility is indeed one of the key factors behind successful management of MLN and helping stem the tide of losses in eastern Africa,” said Director of the Global Maize Program at CIMMYT and One CGIAR Plant Health Initiative, B.M. Prasanna. “Fighting diseases like MLN, which do not respect political boundaries, requires strong regional and local collaboration. The successes achieved through the MLN Screening facility in the past 10 years embody that spirit of collaboration.” Indeed, farmers in the region now have access to over twenty genetically diverse, MLN-tolerant/resistant maize hybrids released in eastern and southern Africa.
The facility is the largest dedicated MLN screening facility in Africa and has evaluated over 230,000 accessions (over 330,000 rows of maize) from CIMMYT and partners, including over 15 national research programs, national and multinational seed companies. The facility covers 20 hectares, of which 17 hectares are used for field screening of germplasm. Dedicated laboratories and screen houses cover the remaining 3 hectares.
“MLN phenotyping service is conducted under stringent quarantine standards and the high-quality data is shared with all the CGIAR and public and private partners. The MLN screening service has helped breeding programs across the continent, aided in undertaking epidemiological research activities, and supported capacity building of students from diverse institutions, and regional stakeholders regarding MLN diagnosis and best management practices,” said CIMMYT’s Maize Pathologist in Africa, L.M. Suresh.
“The output of MLN resistant lines and hybrids has been remarkable,” said Director of Phytosanitary and Biosecurity at the Kenya Plant Health Inspectorate Service (KEPHIS), Isaac Macharia. “And the facility has strictly adhered to quarantine regulations.”
In Uganda, the MLN facility was crucial in the “release of the first-generation MLN tolerant hybrids and dissemination of MLN knowledge products that minimized the economic impact of MLN,” said the Director of Research of the National Crops Resources Research Institute, Godfrey Asea.
Peter Mbogo, maize breeder with Seed Co Group, said, “This is the only quarantine facility in the world where you can screen against MLN under artificial inoculation. It has been an excellent return on investment.”
CIMMYT, in partnership with CGIAR and Viamo, introduced an Interactive Voice Response (IVR) service named “Suchanako Sansaar,” translating to ‘World of Information,’ in Sukhet, Nepal.
The John Innes Centre will undertake research activities in collaboration with ICARDA and CIMMYT alongside national partners in Kenya, Egypt and Pakistan.
The LIPS-ZIM program led by CIMMYT and partners, addresses livestock disease challenges in Zimbabwe. This collaborative effort aims to enhance livestock productivity and control diseases affecting smallholder farmers.
CIMMYT’s partnership with the Government of India, which spans more than five decades, is one of the longest and most productive in the world.
In October, a group of about 18 scientists from Bihar Agricultural University (BAU), Indian Council for Agricultural Research (ICAR), and Dr. Rajendra Prasad Central Agricultural University (RPCAU) visited CIMMYT headquarters in Mexico to participate in the course on “Innovation in Agri-food Systems through the Hub Model”.
Numerous organizations have been at the forefront of developing tools to support scaling in agricultural research and innovation for development. One notable example is CIMMYT’s Scaling Scan, a pioneering initiative that is helping to advance scalable solutions in the dynamic field of agriculture.
New drought-resistant sorghum varieties bring hope for farmers in Africa
Scientists have identified drought-resistant, high-yielding sorghum genotypes that have the potential to revolutionize agriculture in dry regions of Africa. Sorghum, a staple food for millions in sub-Saharan Africa, has long been threatened by devastation from drought.
But now, researchers from the African Centre for Crop Improvement, the Institute of Agricultural Research (IAR), the International Maize and Wheat Improvement Center (CIMMYT), and the University of Life Sciences have discovered genetic resources that thrive under adverse conditions, yielding promising results and providing hope for a future that is more sustainable.
The study looked at 225 sorghum genotypes in various conditions, including non-stressed conditions and pre- and post-anthesis drought stress. The researchers used advanced statistical analysis, such as the additive main effects and multiplicative interaction (AMMI) method, to identify the most resilient and high-yielding genotypes.
The results revealed a vast diversity in the genetic resources of sorghum and provided a pathway for selecting promising genotypes for regions prone to drought. In addition, the study highlighted the significant impact of environmental conditions on grain yield, with genotypes showing variable responses to different growing environments.
A farmer inspecting sorghum on his farm in Tanzania. (Photo: CBCC)
For example, genotypes G144 (Kaura Short Panicle-1) and G157 (Kaura Mai Baki Kona) displayed higher grain yield in drought-stressed environments and were among the top performers. Not only do these genotypes outperform registered cultivars, but they also possess traits valued by farmers, making them ideal candidates for future breeding programs. In addition to drought tolerance, genotypes G119 and G127 displayed remarkable stability and high yield under non-stressed conditions, showing their potential as all-around performers in a variety of environments.
Farmers in dry areas of sub-Saharan Africa that are characterized by pre- and post-anthesis drought stress stand to gain a great deal from these newly identified sorghum strains. Adoption of these high-yielding and drought-resistant genotypes could increase food production and strengthen farmers’ resilience against the effects of climate change.
The findings of these super sorghum genotypes offer farmers facing the challenges of climate change a glimmer of hope. By adopting these new drought-resistant strains, African farmers can improve their food security and strengthen their communities, paving the way for a more resilient and sustainable future.