Skip to main content

MasAgro impacts: four years harvesting sustainability in Mexico’s farmlands

Luz Paola López, Sustainable Intensification Program for Latin America

The “Impactos #4MasAgro” communications campaign that CIMMYT’s Sustainable Intensification Program for Latin America conducted from 23 September-1 December in Mexico, published the results that the MasAgro initiative has obtained during the four years it has been operating in farmers’ fields in Mexico.

One of the campaign’s objectives was to promote MasAgro as an inclusive farm production model and position Mexico as a disseminator of agricultural technology that seeks to achieve global prosperity and food security. Among the impacts publicized in the campaign were:

  • The National Agricultural and Livestock Survey indicated that between 2012 and 2014, conservation agriculture increased by 12%, while crop rotation increased by 7.2%; both were actively promoted by MasAgro.
  • According to Mexico’s Agricultural and Livestock Information Service, in 2014 the average maize yield in temperate regions was 2.39 t/ha, while in MasAgro’s areas of influence, it was 4 t/ha.
  • The income of maize farmers who participate in MasAgro increased 9-31%, while wheat farmers’ income increased up to 25%.
  • Forty-two national seed companies that work with MasAgro Maize now hold 28% of the improved maize seed market.
  • MasAgro’s improved seed, technologies, and sustainable cropping practices have been adopted on 440,000 ha, and MasAgro has had indirect impact on 1 million ha through training, field events, etc.
  • Nine Mexican students have received scholarships and trained to obtain Ph.Ds. in wheat physiology at universities in Australia, Chile, the US, and the UK.
  • A Maize and Wheat Molecular Atlas has been developed that contains maps showing the characteristics (soil type, climate, and adaptation) of sites where native landraces have been collected, along with demographic information (race, use, and productivity), and space, time, and genetic distances.

The campaign became known in social networks through the hashtag #4MasAgro, which had 3,468,237 hits. We also used our own publications, such as the EnlACe Bulletin, which published 11 special issues, and MasAgro Móvil, which sent out 6,214 messages on impacts to its users. In addition, 34 articles were published in Mexican newspapers and news sites, 9 interviews were broadcast over the radio and 2 on television, with an estimated audience of 2,843,345.

There’s no doubt that the campaign’s success was due to the participation of MasAgro collaborators, given that institutions, farmers, scientists, and extension agents took up the messages and spread them through social networks, at meetings and other events. In conclusion, “Impactos #4MasAgro” is a great example of a team working to communicate agricultural innovations.

 

Maize that packs a punch in face of adversity: unveiling new branded varieties for Africa

Even in the best years, significant swathes of sub-Saharan Africa suffer from recurrent drought. Drought wreaks havoc on the livelihoods of millions of Africans – livelihoods heavily leaning on rain-dependent agriculture without irrigation, and with maize as a key staple. And that is not all: drought makes a bad situation worse. It compounds crop failure because its dry conditions amplify the susceptibility of maize in farmers’ fields to disease-causing pests, whose populations soar during drought.

Providing maize farmers with context-specific solutions to combat low yields and chronic crop failure is a key priority for CIMMYT and its partners, such as those in the Water Efficient Maize for Africa (WEMA) Project.

“Our main focus is to give famers durable solutions,” remarks Dr. Stephen Mugo, CIMMYT Regional Representative for Africa and a maize breeder, who also coordinates CIMMYT’s work in WEMA. “These seeds are bred with important traits that meet the needs of the farmers, with ability to give higher yields within specific environments.”

Farmers in Kenya, Uganda, Tanzania and South Africa will soon access WEMA’s high-yielding drought-tolerant maize hybrids. In total, 13 hybrids were approved for commercial production by relevant authorities in these countries. These approvals were spread between October 2014 and March 2015 in the various countries.

Kenya’s National Variety Release Committee (NVRC) approved four hybrids in February 2015 (WE2109, WE2111, WE2110 and WE2106), while neighboring Uganda’s NVRC also approved four hybrids at the end of 2014 (WE2101, WE2103, WE2104 and WE2106). Across Uganda’s southern border, in March 2015, the Tanzania Official Seed Certification Institute approved for commercial release WE3117, WE3102 and WE3117. Still further south, South Africa’s Department for Agriculture registered two hybrids (WE3127 and WE3128) in October 2014.

In each country, all the hybrids successfully underwent the mandatory National Performance Trials (NPTs) and the Distinctness, Uniformity and Stability (DUS) tests to ascertain their qualities and suitability for use by farmers.

Varieties that pack a punch
In Kenya, these new WEMA varieties boast significantly better yields when compared to varieties currently on the market as well as to farmer varieties in drought-prone areas of upper and lower eastern, coastal, central and western Kenya.

And that is not all: across them, the new hybrids also have resistance to rampant leaf diseases like maize streak virus, turcicum leaf spot and gray leaf spot.

Dr. Murenga Mwimali of the Kenya Agricultural and Livestock Research Organization, who is also WEMA’s Country Coordinator in Kenya, explains: “These hybrids are expected to give farmers an average yield of three tonnes per hectare in moderate drought and eight tonnes in good seasons. These are better seeds that will help Kenyans fight hunger through increased productivity.” According to the UN Food and Agricultural Organization, Kenya’s national average productivity in 2013 was a meager 1.6 tonnes per hectare. This compares poorly with South Africa’s 6 tonnes, Egypt’s 9 tonnes and USA’s 9–12 tonnes, as generally reported in other statistics.

Where to find them
The seed of these new varieties should be available in the market once selected seed companies in Uganda and Tanzania produce certified seeds by end of August 2015.

Dr. Allois Kullaya, WEMA Country Coordinator in Tanzania, applauded this achievement and the partnership that has made it possible. “Through the WEMA partnership, we have been able to access improved seed and breeding techniques. The hybrids so far released were bred by our partner CIMMYT and evaluated across different locations. Without this collaboration, it would not have been possible to see these achievements.” said Dr. Kullaya.

In South Africa, close to 10,000 half-kilo seed packs of WE3127 were distributed to smallholder farmers to create awareness and product demand through demonstrations to farmers and seed companies.

This seed-pack distribution was through local extension services in the provinces of Eastern Cape, Free State, KwaZulu–Natal, Limpopo, Mpumalanga and North-West.

Three seed companies also received the hybrid seed to plant and increase certified seed for the market.

Where it all begins – the CIMMYT ‘cradle’, crucible and seal for quality assurance
“In the WEMA partnership, CIMMYT’s role as the breeding partner has been to develop, test and identify the best hybrids for yield, drought tolerance, disease resistance and adaptability to local conditions,” says Dr. Yoseph Beyene, a maize breeder at CIMMYT and WEMA Product Development Co-leader.

To do this, more than 10, 000 new hybrids combinations are evaluated each year to identify new hybrids that will perform most consistently in various conditions. Hybrids that look promising are subjected to a rigorous WEMA-wide area testing. Only those that pass the test get the CIMMYT nod and ‘seal of approval’. But the tests do not end there: for independent and objevhe verfication, the final test  is that these select few advance to  – and are submitted for – country NPTs.

Dr. Beyene explains: “Because of these rigorous testing, hybrids that are adapted in two or three countries have been identified and released for commercial production to be done by regional and multinational seed companies which market hybrids in different countries. This eases the logistics for seed production, distribution and marketing.”

How to recognize the new varieties – distinctive shield against drought
All the hybrids released under the WEMA project will be sold to farmers under the trade-name DroughtTEGO™. ‘Tego’ is Latin for cover, protect or defend. The African Agricultural Technology Foundation (AATF), which coordinates the WEMA Project, has sub-licensed 22 seed companies from the four countries to produce DroughtTEGO™ seeds for farmers to buy.

WEMA’s achievements are premised on a powerful partnership of scientists from CIMMYT, national agricultural research institutes from the five WEMA target countries (Kenya, Tanzania, Uganda, Mozambique and South Africa), AATF and Monsanto.

WEMA is funded by the Bill & Melinda Gates Foundation, the United States Agency for International Development and the Howard G. Buffet Foundation.

Links: More on WEMA | WEMA 2015 annual meeting in Mozambique | Insect Resistant Maize in Africa Project (completed in 2014)

WEMA 3 w

Continue reading

CIMMYT advances in fight against MLN

Monica Mezzalama, Head of the CIMMYT’s Seed Health Unit, searches for MLN resistance in the Biosafety Lab at El Batán. Photo: Sam Storr/CIMMYT

Scientists have made progress in identifying maize varieties that could combat maize lethal necrosis (MLN) disease, reported SciDev.Net Sub-Saharan Africa last month in the article “Experts on track to create maize varieties to tame virus” by Robin Hammond.

The scientific news website reported from the International Conference on Diagnostics and Management of Maize Lethal Necrosis in Africa held in Nairobi, Kenya, 12-14 May. The conference discussed issues on diagnostics and management of the disease, which has wreaked havoc in East Africa since first reported in Kenya in 2011. Curbing the disease is imperative for improving food security in the region, making the development and deployment of new MLN-resistant maize varieties of the utmost importance.

“We have now identified promising lines with resistance to MLN,” announced CIMMYT maize breeder Yoseph Beyene.

Drought Tolerant Maize for Africa (DTMA) Project Leader Tsedeke Abate examines the impact of MLN on a seed production farm in Babati, Tanzania. Photo: Florence Sipalla/CIMMYT
Drought Tolerant Maize for Africa (DTMA) Project Leader Tsedeke Abate examines the impact of MLN on a seed production farm in Babati, Tanzania. Photo: Florence Sipalla/CIMMYT

B.M. Prasanna, Director of CIMMYT’s Global Maize Program (GMP), discussed the importance of improving MLN surveillance and diagnostic capacity throughout Africa in order to keep the virus from spreading through contaminated seeds. “Farmers also need to be sensitized on appropriate agronomic practices that reduce disease incidence and severity,” he added.

To learn more about CIMMYT’s comprehensive efforts to combat MLN both in the lab and the field, and the search for resistance, view the recently published article here on MAIZE.org.

Training on developing stress-resilient maize at CIMMYT-Hyderabad, India

A training course on developing stress-resilient maize for early-/mid-career maize breeders from national programs, agricultural universities and seed companies, especially small and medium enterprises (SMEs), was held at CIMMYT-Hyderabad, India, on 15 May 2015. The course was open to partners in the Heat Tolerant Maize for Asia (HTMA) project and members of the International Maize Improvement Consortium (IMIC-Asia). It covered key aspects of precision phenotyping, including enhancing precision of field trials, managing adequate levels of stress to express available genotypic variability, using advanced tools to capture data efficiently and precision in recording various traits in phenotyping trials.

At the outset, B.S. Vivek, Maize Breeder at CIMMYT-Hyderabad, introduced the course agenda and objectives and mentioned that participants would learn various aspects of stress phenotyping. C. Aditya, System Developer, and M.T. Vinayan, Maize Stress Breeder at CIMMYT-Hyderabad, discussed FIELD-LOG, the new android-based data-capturing software developed by CIMMYT. They explained the details of its software applications and the method used for recording data in the field and transferring them to a computer.

FIELD-LOG is an excellent user-friendly system that increases the efficiency of data capturing and processing, and at the same time significantly reduces the chances of human error. Participants received hands-on training on using FIELD-LOG to install, operate and record data in the field, and then transfer them to a computer. This was followed by a series of presentations by P.H. Zaidi, Senior Maize Physiologist, CIMMYT-Hyderabad, on various aspects of field-based precision phenotyping for abiotic stress, including site selection and characterization.

Training course participants.
Training course participants.

Seetharam, Project Scientist at CIMMYT-Hyderabad, discussed various plant traits and the proper way of capturing data in field phenotyping trials. Participants practiced recording data on various traits in heat stress phenotyping trials using the FIELD-LOG system. M.T. Vinayan explained the do’s and don’t’s in field phenotyping at various stages.

At the end, participants provided feedback on the course and thanked CIMMYT for organizing it. They also suggested adding other features to further enhance the usefulness of the FIELD-LOG system.

CIMMYT-CCAFS initiative develops 500 new climate-smart villages in Haryana, India

A climate-smart farmer in Ludhiana, Punjab, India. Photo: P. Casier/CGIAR
A climate-smart farmer in Ludhiana, Punjab, India. Photo: P. Casier/CGIAR

The Department of Agriculture (DoA) of the Indian state of Haryana, in collaboration with CIMMYT-CCAFS, developed an action plan to mainstream climate-smart agriculture (CSA) in the state and develop 500 new climate-smart villages (CSVs), at a workshop held on 8 June 2015. Over the past three years, Haryana has successfully adopted CSA technologies and practices through a CSV initiative of CIMMYT and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Demand-driven policies and engagement by local governments are essential to ensure CSVs continue to expand throughout the country.

CSVs identify, adapt and evaluate demand-driven CSA interventions aimed at improving the capacity of local farmers to adapt to climate change. Northwest India, which is crucial to the country’s food security, faces diverse challenges to meet current and future food demands. Problems such as groundwater scarcity, soil health deterioration, heat stress, erratic rainfall due to climate change and high input costs are taking a toll on farmers.

In response, India has promoted a portfolio of successful CSA interventions, particularly in Haryana, and has developed over two dozen CSVs in the last three years. Rice-wheat systems in these CSVs have proven more resilient than other areas to tough climatic challenges, such as extremely high rainfall during the 2014-2015 winter season. While many farmers experienced yield losses of 30-50%, those in CSVs only lost 5-10%.

The success of 28 CSVs in Haryana’s Karnal district over the last three years has raised the confidence level of stakeholders, particularly the state’s DoA, which are now involved in developing more CSVs in the state in close collaboration with CIMMYT-CCAFS and partners.

According to an official letter issued by the DoA piloting the new 500 CSVs, “The farmers of our state are facing challenges of natural resource degradation, high input costs and frequent weather abrasions due to climate change. The adoption of climate-smart agriculture technologies [and] new innovative practices in agriculture is essential.”

CIMMYT-CCAFS climate-smart village site in Haryana, India. Photo: CIMMYT/CCAF
CIMMYT-CCAFS climate-smart village site in Haryana, India. Photo: CIMMYT/CCAF

Farmer-friendly policies that prioritize CSA have been implemented by the government of Haryana, but more has to be done to ensure further adoption of CSA throughout the state and the country. During the workshop, a roadmap was designed for implementing the 500 CSVs, that includes devising strategies to attract rural youth and women to agribusinesses across the state. Suresh Gehlawat, Additional Director Agriculture, government of Haryana, called this approach a “win-win for all stakeholders.” Knowledge sharing and capacity building to promote CSAs contribute to the continuous expansion of CSVs across state and country.

The gola: storing maize to improve livelihoods in Chuadanga, Bangladesh

Farmers in Chuadanga District of Bangladesh have been using a unique local method to store their maize: the gola.

Maize grains can be stored in a modified gola for several months. Photo: Abdul Momin-CIMMYT

Golas are large rectangular or cylindrical containers used to store seed and animal feed. In Bangladesh, golas are traditionally used to store paddy rice. They are made locally using bamboo for the sides and tin for the roof, can last up to 80 years and hold from 2 to 20 tons of grain.

Many Bangladeshi farmers believe that, unlike rice, maize grain cannot be stored in golas due to its high susceptibility to insects and pests. To keep its quality from deteriorating, farmers normally sell maize grain at a minimum price as quickly as possible after harvest.

Unlike most of the country’s farmers, Chuadanga farmers use golas to store maize grain until its market price goes up, which results in higher profits. According to a recent CIMMYT-Bangladesh survey, the longer they store the seed, the higher the profit. “The profit earned by the Chuadanga farmers through maize grain storage helps to increase the national per capita income, allowing Bangladesh to become a middle income country,” said Prodip Hajong, Senior Officer in Agricultural Economics at the Bangladesh Agricultural Research Institute (BARI).

Eighty percent of all maize grain produced in Chuadanga is stored anywhere from 4 to 43 weeks and sold for a higher price. According to the survey, golas were the preferred storage for maize and used by over 60% of respondent households. Each household earned a profit of approximately USD $389.68 in 2012, USD $315.64 in 2013 and USD $130.19 in 2014. During 2014, the overall market price of maize grain was low compared to previous years; that is why farmers’ profit margin was comparatively small.

Farmers in Chuadanga, Bangladesh, modified their traditional golas to be able to store maize longer and earn higher profits. Photo: Abdul Momin-CIMMYT
Farmers in Chuadanga, Bangladesh, modified their traditional golas to be able to store maize longer and earn higher profits. Photo: Abdul Momin-CIMMYT

“High temperatures inside the gola help maintain grain quality by killing insects, their larvae and eggs,” said Abdul Momin, CIMMYT Cropping Systems Agronomist. With assistance from the Cereal Systems Initiative in South Asia in Bangladesh (CSISA-BD) project, Chuadanga farmers have been modifying their golas – for example, by reinforcing the floors with tin to prevent post-harvest losses from rodents and insects – so that they can store maize for longer periods.

The CIMMYT-Bangladesh survey was conducted by CIMMYT researchers Frederick Rossi, Agricultural Economist; Elahi Baksh, Applied Agricultural Economist; Abdul Momin, Cropping System Agronomist; Thakur P. Tiwari, Country Representative in Bangladesh and Prodip Hajong, Senior Officer in Agricultural Economics at BARI. They recommended making an action plan in collaboration with the Department of Agricultural Extension, BARI and local NGOs, to demonstrate and disseminate this low cost technology throughout the country.

In Nepal, collective action helps improve farmers’ incomes

Littri Gaun is a characteristic remote, hilly village in Dadeldhura district of Nepal. Relatively low agricultural yields, soil erosion and labor out-migration are major challenges for monsoon-dependent agriculture in this region. During the kharif season, farmers mostly grow the dominant staple crops – unbunded upland rice and maize. Some farmers also practice maize-soybean mixed cropping because soybean fetches a good price in the market. Finger millet is also grown for home consumption in some areas during kharif.

Farmers in Littri Gaun believe that chemical fertilizer can destroy soil, and use only farmyard manure and plant litter to enrich their soil. Low nutrient levels — particularly for Nitrogen – have led to consistently low crop productivity. Moreover, farmers grow traditional local varieties for which seeds may have been saved for several years, as seed replacement rates are low. With men migrating outside for work, women are left responsible for the agricultural production, as well as household duties, resulting in high levels of drudgery for women and high labor constraints during peak agricultural times.

CIMMYT led Cereal Systems Initiative for South Asia in Nepal (CSISA-NP) began working with farmers in Littri Gaun in 2012 and facilitated farmers in the village to form a group called “Ugratara Agriculture Group.” CSISA works with Ugratara to introduce new, suitable crop varieties, better-bet agronomic practices and small-scale machinery that women can use.

CSISA and Ugratara have conducted several maize trials to screen and grow different registered hybrids, to evaluate different crop establishment methods and to experiment with different methods of fertilizer management. Trials showed that hybrid maize yields were more than double to those of the local varieties under the same management conditions. With hybrids, Ugratara has even harvested up to three times the yield of the local maize varieties. Among the genotypes tested, group members preferred Kanchan-101 (hybrid) because of the high and early yields. Trials also showed that the local maize variety produced higher yields when fertilizer was applied, demonstrating the importance of good nutrient management.

Farmers observe wheat varietyDuring a farmers’ field day, Ugratara group members expressed that improved varieties like the maize variety Kanchan 101 (hybrid), introduced by CSISA, are more productive than their local maize. Ugratara group member, Naresh Khadka said, “We are producing more than double using the hybrid Kanchan-101 and it’s ready early than the local variety.” For upland rice, trials also showed that the appropriate use of chemical fertilizers nearly doubled yields of local rice varieties and that chemical fertilizer increased yields over those achieved through the application of farmyard manure.

CSISA also introduced improved varieties of lentil, which has increased the number of farmers producing lentil, lentil yields, and household lentil consumption. Farmers have also been able to sell their surplus lentil production in the market for NRs. 150/kg. “After seeing the benefits of improved lentil variety, more farmers are now expanding their area under lentil cultivation,” said Khadka.

Finally, CSISA introduced small machines like the mini tiller and the jab planter, which helped women to prepare and cultivate land, making them more self-sufficient, saving their time and helping them to adapt better to labor shortages. Women in Littri Gaun are not allowed to plough land with bullocks, as it is considered to be men’s work. Saru Khadka, a lady member of Ugratara group, said, “By using minitiller for preparing our fields, we don’t have to depend on men for labor and bullocks.” Participation in Ugratara has helped the group’s women members to feel empowered. Khadka acknowledged that women in Ugratara have learned to confidently express their views and problems to relevant authorities and they feel more capable and assertive now.

 

 

CIMMYT-Bangladesh showcase technology at national fair

Bangladesh’s Minister of Agriculture Motia Chowdhury (3rd from left) visited the CGIAR Pavilion while inaugurating the National Agricultural Technology Fair held in Dhaka on 5-7 April 2015. In the photo, Zia Uddin Ahmed, CIMMYT GIS and Remote Sensing Scientist, briefs her on the use of the Octocopter in agricultural research and development and other CIMMYT activities in Bangladesh. In her inaugural speech, the Minister mentioned CIMMYT’s role in maize production expansion and mechanization. “Since our land is fragmented, we need to focus on small but power-operated machines,” she said. She also asked organizations working in Bangladesh, such as CIMMYT, to think about how to use solar energy to operate agri-machines.

The Fair was organized by the Agricultural Information Service (AIS) of the Ministry of Agriculture. Five CG centers (CIMMYT, CIP, IFPRI, IRRI and WorldFish) and HarvestPlus participated in the CGIAR pavilion and received the award for the best pavilion at the Fair.

Fostering collaboration between Nepalese and Indian seed companies

Participants compare cob size of different hybrid maize varieties at Bioseed Company in Hyderabad. Photo: Narayan Khanal

A delegation of 15 Nepalese seed entrepreneurs learned about various business models and innovations for seed industry development on their first visit to India. The visit, sponsored by the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP), lasted from 1 to 10 June.

According to Arun Joshi, Country Liaison Officer, CIMMYT-Nepal, Nepalese seed companies are in their initial growth phase and constrained by the lack of research and development, low business volume, limited seed processing and storage facilities, and low seed capital. To help them overcome these challenges, CSISA-NP recently initiated a business mentoring initiative to build the capacity of small and medium enterprises engaged in wheat and maize seed production.

To read more about CSISA-NP sponsored visit and more about its work with seed companies in Nepal, view the full story here.

 

Rural21 features CIMMYT mechanization experts

Female welder at in a vocational training center in Hawassa, Ethiopia. Photo: Frédéric Baudron

CIMMYT Global Conservation Agriculture Program (GCAP) mechanization specialists, Frédéric Baudron, Timothy Krupnik and Jelle Van Loon shared their experiences on mechanization across the world in a recently published Rural21 feature. To view a summary of the successes and challenges to mechanization adoption discussed in Rural 21, view the article on Inside CIMMYT here. Further reading on mechanization in East and Southern Africa may be viewed here in Baudron’s recently released paper in Food Security.

AIP-CIMMYT holds national meeting on conservation agriculture in Pakistan

Inaugural session of the AIP-Agronomy national meeting on conservation agriculture. Photo: Amina Nasim Khan

“Cereal system productivity cannot be improved without improving agronomic practices,” declared Shahid Masood, Member of the Pakistan Agricultural Research Council (PARC) at a two-day AIP-Agronomy national meeting on conservation agriculture held in Islamabad, Pakistan, on 26-27 May 2015. He lauded CIMMYT’s efforts to strengthen conservation agriculture (CA) research and disseminate CA to Pakistan’s farming community and mentioned the importance of public and private partnerships for promoting CA technologies. The meeting was jointly organized by CIMMYT and PARC under USAID’s Agricultural Innovation Program (AIP) for Pakistan.

To read more about the AIP’s work and the national conservation agriculture meeting, view the full article here.

 

Strengthening seed production capacity in Malawi

Tour of maize seed production fields at Chitedze Research Station. Photo: Kennedy Lweya/CIMMYT
Tour of maize seed production fields at Chitedze Research Station. Photo: Kennedy Lweya/CIMMYT

CIMMYT designed and gave an integrated maize seed systems training course for 32 seed technicians from the public and private sectors on 18-22 May at Chitedze Agricultural Research Station. The course is part of CIMMYT’s capacity building initiative to enhance maize seed production in Malawi, established after the successful launch of USAID Feed the Future’s Malawi Improved Seed Systems and Technologies project on 6 May 2015 in Liwonde, Machinga District.

Trainees gained a basic understanding of maize anatomy and physiology, hybrids, improved open-pollinated varieties, seed certification standards and testing, regulatory procedures and seed business management. They also learned to practice conservation agriculture, which was appreciated as an innovative practice that conserves soil and produces higher maize yields. It also cuts back on the time and labor that farmers, particularly small-scale farmers, dedicate to tedious practices such as tilling.

Participants tour Seed-Co Malawi’s seed processing facility. Photo: Kennedy Lweya/CIMMYT

“The involvement of women in all aspects of our seed business is not only a must-do activity but a goal that makes perfect business sense,” said Innocent Jumbe, Production Manager at Peacock Seeds. Given that over 52% of Malawi’s population are women, most of them small-scale maize producers, the need for gender inclusion at all stages of the maize value chain was an important take-home message for participants.

The highlight of the course was a tour of Seed-Co Malawi’s premier seed facility in Kanengo. Participants were impressed by the company’s state-of-the-art facility, including its sales offices and seed handling, processing and packaging plant. This is evidence not only that Malawi’s seed industry is ripe with investment opportunities but also that the country has an investor-friendly policy and regulatory environment.

“This ultra-modern seed facility is a testament to Seed-Co Malawi’s long- term commitment to offer value to our shareholders and quality seed to Malawi’s farming community and beyond,” said Derrings Phiri, Seed-Co Malawi’s Managing Director.

Participants in the integrated maize seed systems training course. Photo: Kennedy Lweya/CIMMYT
Participants in the integrated maize seed systems training course. Photo: Kennedy Lweya/CIMMYT

Course participants included representatives from the Maize Program of the Government’s Department of Agricultural Research and Services, agro-dealers and seed companies. Patrick Okori, the project’s Acting Chief of Party, and Carol Jenkins, Feed the Future USAID Project Manager, congratulated participants on successfully completing the training course and on their commitment to implementing what they learned in order to deliver high quality and affordable improved seed that will not only bring value to market players but also enhance the security and incomes of Malawi’s small-scale farmers.

Learning climate smart agricultural practices empowers women farmers in Haryana

Haryana is traditionally an agrarian state where many farm operations are undertaken by women; however, in this male-dominated farm society, decision-making does not involve women folk. Under CIMMYT-CCAFS, we developed a farm budgeting booklet that was distributed to women and men farmers in climate-smart villages (CSVs) and got very good response from young educated women farmers. To further empower them, we have been training women farmers in these CSVs to make them confident farmers so that in this world of changing climate, they are knowledge-empowered and able to increase their family income and develop stable rural livelihoods by actively contributing to decision-making.

During training, women farmers are taught technical aspects of agriculture such as how to sow direct-seeded rice and the importance of fertilizer management and crop yield.

They also become acquainted with a farm lekha jokha book, which is an accounting and farm management tool that allows farmers to understand and compare farm expenses that, though important, are commonly neglected. This book was designed keeping in mind the situation of women farmers in Haryana. Keeping a record of farm practices makes women more knowledgeable, thereby escalating their decision-making authority at home. Their decision-making is supported by their understanding of technological interventions that help them manage their farms more efficiently and reduce the errors of current farm practices by analyzing data which they record in this book.

Training makes women farmers realize that their knowledge is not only technical but valuable. We hope this realization will lead them to consciously explore, strengthen and share the expertise they have acquired.

Direct sowing of rice (DSR) in Unchasaman village, Haryana. Photo: CIMMYT
Direct sowing of rice (DSR) in Unchasaman village, Haryana. Photo: CIMMYT

Creative solutions for Latin American agriculture

Course participants learning about the experiences of Mexican farmers who practice CA. Photo: Gabriela Ramírez
Course participants learning about the experiences of Mexican farmers who practice CA. Photo: Gabriela Ramírez

Nele Verhulst, Strategic Research Coordinator of the Global Conservation Agriculture Program (GCAP), led CIMMYT’s 21st International Training Course on Conservation Agriculture from 25 May-26 June 2015. A total of 132 people have taken the course since its inception. This year, participating researchers from Guatemala, Peru, Ecuador and Mexico were trained in sustainable technologies and conservation agriculture (CA).

Field tour in the central valleys of Mexico. Photo: Gabriela Ramírez

“During the course, we encountered different situations that…will allow us to better recognize the challenges and opportunities we will face when we return to our home countries,” said José Vásquez from Guatemala, who gave the closing speech during the course’s graduation ceremony. He added that the five weeks of the course are extremely relevant for successfully carrying out extension work in their countries.

GCAP International Training Course on Conservation Agriculture (CA) graduates hold certificates, which authorize them to teach and train others on CA practices, during the Course’s closing ceremony. Photo: CIMMYT
GCAP International Training Course on Conservation Agriculture (CA) graduates hold certificates, which authorize them to teach and train others on CA practices, during the Course’s closing ceremony. Photo: CIMMYT

A particular challenge of CA, according to Vazquez, is that “one size” does not fill all, and precepts must be adapted to local settings, with involvement of all actors, including farmers. “This implies that we will have to be extremely creative when listening to farmers and interpreting what they say, and even more so when asking them to adopt the technologies we have to offer,” said Vásquez.

CIMMYT Director General Martin Kropff explained CIMMYT’s role as a research organization and highlighted the crucial part it plays as a capacity building NGO.

CIMMYT Director General Martin Kropff addresses course graduates during closing ceremony. Photo: CIMMYT
CIMMYT Director General Martin Kropff addresses course graduates during closing ceremony. Photo: CIMMYT

“This role is indispensable for creating links with the different national systems, and for CIMMYT it is essential to share the knowledge it acquires. That is why we would like to propose a new project, CIMMYT Academy, which will bring together all the short-, medium- and long-term training activities available,” Kropff said.

Kropff concluded by reminding each participant of the role they have as CIMMYT ambassadors to their own countries and expressed his hope for continued collaboration in the future. Further reading on the course may be found here on Inside CIMMYT.

Looking towards the future: Govaerts examines food security and nutrition in a changing world

Bram Govaerts shares a quote from Dr. Norman Borlaug with the audience: “I personally cannot live comfortably in the midst of abject hunger and poverty and human misery, if I have the possibilities of—even in a modest way, with the help of my many scientific colleagues—of doing something about improving the lives of these many young children.” Photo: Jennifer Johnson

Bram Govaerts, associate director of the Global Conservation Agriculture Program (GCAP) and leader of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, made a presentation on the future prognosis of food security and the actions that must be taken to achieve it at the Prospectiva del Mundo (World Prospective) Mexico 2015 conference on 25 June. The conference, organized by the National Autonomous University of Mexico (UNAM) and the Mexican chapter of the World Future Society, brought together national and international experts in fields such as development, education, finance and agriculture.

These experts were gathered in order to draft a “charter of human duties,” an initiative proposed by the late Nobel Laureate Jos Saramago, who believed that there was a global need for a charter that would define the responsibilities, not just the rights, that each human being has to the development of their surroundings. The charter will later be presented to the United Nations.

Govaerts co-presided over a panel on nutrition and food production alongside Fernando Soto Baquero, FAO representative in Mexico. The panelists were tasked to propose duties for the charter and to answer the question: “How can we improve food distribution in a way that does not harm consumers while maintaining a profitable industry?”

In his presentation, Govaerts highlighted the challenges facing food security in the coming years. “It is not just a question of producing more food, but of producing food that is more nutritious and affordable, with less impact on the environment,” said the recipient of the 2014 Borlaug Award for Field Research and Application. “We must end hidden hunger.”

He emphasized the necessity of using the genetic materials stored in CIMMYT’s gene banks to develop improved varieties, and to ensure that these varieties can be productively used by farmers. “CIMMYT is the home of one of the greatest jewels in the world: 130 thousand wheat accessions and 35 thousand maize accessions that represent the global biodiversity of these grains. However, if we don’t take advantage of our stored genetic material to create better varieties, our collection is nothing more than a refrigerator full of boxes.”

Govaerts proposed five duties for the charter of human obligations: investing  in research for sustainable rural development; giving priority to family farming and small and medium producers; more equal opportunity for farmers, especially women; sustainable intensification; and further developing market opportunities for producers. He ended his presentation with a call to action, urging the audience to take the world’s duty to agriculture to heart.

“We have a great challenge before us, and a great decision to make: we will need to feed 9 billion people in 2050, and we can either do it unsustainably or sustainably. There is a lot of potential in this room, but we cannot feed 9 billion people on potential alone. We need everyone’s help and actions, and I invite you to join us.”

Farmers bring a direct seeder/fertilizer to a field in Oaxaca, Mexico. Photo: Jelle Van Loon
Farmers bring a direct seeder/fertilizer to a field in Oaxaca, Mexico. Photo: Jelle Van Loon