Skip to main content

Making Farming Profitable: Scaling Climate-Smart Agriculture through Business Model Innovations

WAGENINGEN, Netherlands — Agriculture is not considered a profit making venture by the farming community. Emerging challenges of climate change hinder growth and make it necessary to disseminate and promote the adoption of technological advances among farmers. Today it is vital not only to increase productivity but also ensure resource sustainability. Hence persuading farmers to adopt climate-smart agriculture (CSA) practices is critical for sustainably producing higher returns.

Under the aegis of the CGIAR research program on Climate Change, Agriculture and Food Security (CCAFS), CIMMYT and Wageningen University (WUR), The Netherlands, undertook activities to develop and scale innovative CSA business models at climate-smart village (CSV) sites in South Asia. To consolidate the work done and plan future activities, a workshop titled “Climate Smart Agriculture: Business modeling and innovation platforms for scaling” was held at WUR on 4 July 2016. Twenty-five participants from CIMMYT, India’s NARS (ICAR, SAU), WUR, KIT and private organizations attended the session.

Setting the objectives and context of the workshop, M.L. Jat, CIMMYT, and Annemarie Groot, Alterra, welcomed the participants. During a brainstorming session on climate smart agriculture as a business model and on how to use innovative platforms to promote it, participants expressed their views and improved their understanding of the issues. Building on the input of participants, Jaclyn Rooker (WUR) provided an introduction to business models and value systems, using the case of the Happy Seeder in Punjab, India, as an example.

The issue of commercialization in agriculture was discussed by participants. The scope and opportunities for developing a business model and addressing challenges to business model innovations were discussed in detail. Local innovation platforms and the success of laser land leveling in India were presented by M.L. Jat, CIMMYT, South Asia, to illustrate how technology adoption can impact livelihoods. “Opportunities for new business models and local innovation platforms need to be further explored,” stated Jat.

Annemarie Groot presented an overview of innovation platforms for business development and scaling and the research undertaken on these subjects. The meeting concluded with a discussion on the challenges of future research on business modeling and innovation platforms for scaling CSA. By sharing work experiences and engaging in participatory planning, workshop participants succeeded in finding ways to change the mindset of farmers while providing necessary support and guidance.

Climate smart agriculture workshop participants. Photo: CIMMYT
Climate smart agriculture workshop participants. Photo: CIMMYT

HarvestPlus World Food Prize laureates benefit more than 10 million people

HarvestPlus director Howarth Bouis is one of four winners of the 2016 World Food Prize. Graphic design: Bose Zhou
HarvestPlus director Howarth Bouis is one of four 2016 World Food Prize laureates. Graphic design: Bose Zhou

EL BATAN, Mexico (CIMMYT) — HarvestPlus director Howarth Bouis is one of four winners of the 2016  World Food Prize, honored for international research leading to a substantial increase in the availability of nutritious biofortified crops for millions of poor people.

Bouis was recognized specifically for pioneering work that established a multi-institutional approach to biofortification as a global plant breeding strategy, World Food Prize organizers said in a statement on Tuesday. The interdisciplinary, collaborative HarvestPlus program was launched in 2003 and is now part of the Agriculture for Nutrition and Health program managed by the CGIAR consortium of agricultural researchers.

Bouis, who works with the CGIAR International Food Policy Research Institute (IFPRI), has directed initiatives that have led to the release or testing of such crops as iron- and zinc-fortified beans, rice, wheat and pearl millet, along with vitamin A-enriched cassava, maize and the orange-fleshed sweet potato in more than 40 countries.

The three other laureates, Maria Andrade, Robert Mwanga and Jan Low of the CGIAR International Potato Center (CIP) are being recognized for work leading to the development of the biofortified orange-fleshed sweet potato. Andrade and Mwanga, plant scientists in Mozambique and Uganda, bred the Vitamin A-enriched potato using genetic material from CIP and other sources, while Low structured the nutrition studies and programs that convinced almost two million households in 10 separate African countries to plant, purchase and consume the nutritionally fortified food, the statement said.

Although orange-colored sweet potatoes are common in some parts of the world, in parts of Africa white sweet potatoes have historically been more typical. Breeding potatoes so they can synthesize more vitamin A means they can be grown in poor areas to benefit consumers and smallholder farmers who cannot afford to buy or grow food high in micronutrients.

Due to the combined efforts of the four World Food Prize laureates, more than 10 million people are now gaining nutritional benefits from biofortified crops, and the potential exists to benefit several hundred million more people in the coming decades, the statement said.

“The impact of the work of all four winners will be felt around the globe, but particularly in sub-Saharan Africa,” said Kenneth Quinn, president of the World Food Prize. “It is particularly poignant that among our 2016 recipients are two African scientists who are working on solutions to tackle malnutrition in Africa, for Africa.”

Some 2 billion people around the world suffer from micronutrient deficiency, which occurs when food does not provide enough vitamins and minerals, according to the World Health Organization. South Asia and sub-Saharan Africa are most affected by hidden hunger.

Andrade, Mwanga, Low and Bouis will receive the World Food Prize at a ceremony in Des Moines, Iowa, on October 13, the main event during the annual Borlaug Dialogue symposium. The late Nobel Peace Prize laureate, Norman Borlaug, a wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT), established the World Food Prize 30 years ago.

CIMMYT scientists have won the prestigious award twice.  Evangelina Villegas and Surinder Vasal received it in 2000 for their work developing quality protein maize with an adequate balance of amino acids using biofortification techniques. They provided nutritional options for people with diets dominated by maize and with no adequate alternative source of protein.

Wheat breeder Sanjaya Rajaram, who worked with both CIMMYT and the CGIAR International Center for Agricultural Research in the Dry Areas (ICARDA), won in 2014 for producing a remarkable 480 wheat varieties, which produce yields that are estimated to feed more than 1 billion people a year.

HARVESTPLUS MAIZE AND WHEAT

While the orange sweet potato is a highlight, biofortified wheat and maize are part of the overall HarvestPlus success story, benefiting thousands of resource-poor farmers and consumers.

“This news shows that it is vital to keep up the fight and serves as encouragement for partners, collaborators and donors to pursue biofortification more vigorously to achieve greater global impact on food and nutritional security,” said CIMMYT wheat breeder Velu Govindan.

CIMMYT maize and wheat scientists tackle micronutrient deficiency, or “hidden hunger,” through HarvestPlus to help improve nutrition in poor communities where nutritional options are unavailable, limited or unaffordable. Micronutrient deficiency is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The wheat component of the HarvestPlus program involves developing and distributing wheat varieties with high zinc levels.

“Breeding these varieties involves the use of diverse genetic resources, including wheat landraces, ancestors and wild relatives, with high genetic potential to accumulate zinc in the grain, which are combined with adapted wheat to obtain high-yielding varieties with high zinc grain concentration,” said Carlos Guzman, head of the Wheat Chemistry and Quality Laboratory at CIMMYT, adding that such varieties have been shown to have higher iron values in grain than conventional varieties.

A project to develop superior wheat lines combining higher yield and high zinc concentrations in collaboration with national agriculture program partners in South Asia has led to new biofortified varieties 20 to 40 percent superior in grain zinc concentration, which are already available for farmers in India and Pakistan. Other national partners, such as Bolivia, are also close to releasing biofortified wheat varieties developed through collaboration with CIMMYT.

Additionally, a recent HarvestPlus study revealed that modern genomic tools such as genomic selection hold great potential for biofortification breeding to enhance zinc concentrations in wheat.

Scientists working with HarvestPlus have developed vitamin A-enriched “orange” maize. Orange maize is conventionally bred to provide higher levels of pro-vitamin A carotenoids, a natural plant pigment found in such orange foods as mangoes, carrots, pumpkins, sweet potatoes, dark leafy greens and meat, converted into vitamin A by the body.

Vitamin A is essential for good eyesight, growth and boosting immunity. Almost 200 million children under the age of 5 and 19 million pregnant women are vitamin A deficient, and increasing levels through maize kernels is an effective means of boosting it in the diet.

Maize breeders are currently working on developing varieties with 50 percent more pro-vitamin A than the first commercialized varieties released. In Zambia, Zimbawe and Malawi, 12 varieties, which are agronomically competititve and have about 8ppm provitamin A, have been released.

Provitamin A from maize is efficiently absorbed and converted into vitamin A in the body.  Stores of Vitamin A in 5 to 7 year old children improved when they ate orange maize, according to HarvestPlus research. The study also shows preliminary data demonstrating that children who ate orange maize for six months experienced an improved capacity of the eye to adjust to dim light. The findings indicate an improvement in night vision.

Researchers are also developing maize varieties high in zinc. Scientists expect the first high zinc hybrids and varieties will be released in 2017. Further efforts are starting in such countries as Zambia, Zimbabwe and Ethiopia. Results from the first nutrition studies in young rural Zambian children indicate that biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for the vulnerable population.

Smallholders in Rwanda and Zambia to enhance wheat productivity through new project

A contractor operating his Combine harvester in wheat field Boru Lencha village, Hetosa district in Ethiopia. Photo: P.Lowe/CIMMYT
A contractor operating his combine harvester in a wheat field in Hetosa district, Ethiopia. Photo: P.Lowe/CIMMYT

KIGALI, Rwanda (CIMMYT) – The recent designation of wheat as a strategic crop for Africa by the African Union in 2013 reflects the rising importance of wheat production on the continent. Since then, efforts have intensified to incorporate wheat production into existing farm systems and to help smallholders grow it to meet rising demand and reduce the economic impact of the high cost of imports.

The International Maize and Wheat Improvement Center (CIMMYT) is contributing to these efforts through a project launched this month in Kigali, Rwanda. The four-year Enhancing Smallholder Wheat Productivity through Sustainable Intensification of Wheat-based Farming Systems in Rwanda and Zambia (SWPSI) project aims to enhance the potential of wheat produced by smallholder farmers to bolster food security.

“Given the increasing opportunities in wheat research, CIMMYT is happy to work with partners to help farmers adopt improved technologies, establish innovation platforms and strengthen wheat value chains in the two countries,” said Bekele Abeyo, Ethiopia country representative and wheat breeder at CIMMYT.

Zambia and Rwanda rank 46th and 59th respectively in the list of wheat-producing nations, topped by China. Production in Zambia, where wheat grows on more than 40,000 hectares (99,000 acres), is largely undertaken by medium and largescale commercial operations in irrigated conditions with very little smallholder production. On the other hand, in Rwanda wheat is grown on about 35,000 hectares in rainfed conditions mainly by smallholder farmers.

“The contrast between the two countries will help generate wider lessons on variations and give an opportunity to test whether wheat is still a potential crop to produce profitably under smallholder systems,” said Moti Jaleta, CIMMYT SWPSI project leader.

The new project will target 4,000 smallholder farmers in the two countries, with a focus on increasing wheat productivity from the current 2.1 tons per hectare to an average of 4.5 tons per hectare.

Smallholders will also benefit from improved technologies, which include rust-resistant and high-yielding wheat varieties, such good agronomic practices as row planting, precise fertilizer application, plant density and planting dates. Additionally, threshing technologies to enhance grain quality and efforts to link farmers with established traders and millers to help them secure markets for their wheat surplus will be undertaken.

The project mandate includes a scoping study on the potential for smallholder wheat production in Madagascar, Mozambique and Tanzania.

Funded by the International Fund for Agricultural Development and the consortium of agricultural researchers, the CGIAR Research Program on WHEAT, SWPSI will be implemented under the leadership of CIMMYT in close collaboration with the Center for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), the Rwanda Agriculture Board and the Zambia Agricultural Research Institute.

Speaking during the launch, the acting executive director of CCARDESA, Simon Mwale, noted the rising demand for wheat, particularly in southern Africa, which also has a very conducive climate for wheat farming.

“Inclusion of Rwanda in the project is a unique opportunity for CCARDESA, and it will facilitate strong collaboration and new learning opportunities, being a new country to be covered by CCARDESA,” he said.

Experts hope SWPSI will contribute to the broader focus of the strategy to promote African wheat production and markets.

Some 30 key stakeholders met at a side event organized by CIMMYT at the recent 7th Africa Agricultural Science Week (AASW) to discuss how best to implement the region’s wheat strategy. The AASW and FARA General Assembly is the principal forum for all stakeholders in African agriculture science, technology and innovation to share solutions to some of the most pressing challenges the continent faces. CIMMYT’s SWPSI project is key to supporting the wheat for Africa strategy whose goal is to  increase agricultural productivity and food security throughout the region.

Education, supportive policies key to making biotechnology work for Africa

NAIROBI, Kenya – Increasing public understanding of genetically modified crops and creating supportive policies were key recommendations made at a session on boosting Africa’s use of biotechnology at the 7th Africa Agricultural Science Week.

CIMMYT breeder Jumbo Bright evaluates a maize ear at the Kiboko Research Station in Kenya. CIMMYT applies modern breeding technologies to develop improved varieties that are tolerant and/or resistant to various stresses. Photo: B. Wawa/CIMMYT
CIMMYT breeder Jumbo Bright evaluates a maize ear at the Kiboko Research Station in Kenya. CIMMYT applies modern breeding technologies to develop improved varieties that are tolerant and/or resistant to various stresses. Photo: B. Wawa/CIMMYT

With the population of sub-Saharan Africa projected to reach between 1.5 and 2 billion by 2050 and agriculture struggling to adapt to climate change, the pressure to meet the increasing demand for staple foods, including maize and wheat, has raised interest in biotechnology’s ability to boost yields.

Despite a recent U.S. National Academy of Science study concluding that genetically engineered crops are safe to grow and eat, and growing support for the use of genetically modified (GM) crops, there continues to be controversy around biotechnology.

The African Agricultural Technology Foundation (AATF) hosted a session on “Taking GM crops to market in sub-Saharan Africa: Special focus on policy and regulatory environment,” to discuss policy challenges to biotechnology in Africa.

Participants recommended raising public understanding of biotechnology through farmer and consumer education while enhancing functional policy and regulatory systems to facilitate testing and uptake of demand-driven GM products. The recommendations were to be presented to policymakers in the region.

At the session, Stephen Mugo, CIMMYT principal breeder and regional representative for Africa, spoke on biotechnology’s ability to improve conventional breeding.

“Genetic modification can be used in specific cases, for example, when a trait is very difficult to improve by conventional breeding methods or when it will take a very long time to introduce and/or improve such trait in the crop using conventional breeding methods,” said Mugo. “The use of biotechnology can maximize yield gains in ways that are compatible with human and environmental safety.” Hence, farmers should be given a chance to benefit from GM crops because they could increase their opportunities, productivity and efficiency.

Although GM crops have been grown across the globe for the last 20 years, only three African countries — Burkina Faso, South Africa and Sudan — currently grow them. This is largely due to the controversy and ambivalence surrounding biotechnology policies, with most countries taking a precautionary approach towards adopting biotechnology.

As Francis Nang’ayo, AATF head of Regulatory Affairs said, “Most African countries have taken a precautionary policy position on GM technology borrowed largely from the Cartagena Protocol on Biosafety, which many countries signed, and which was primarily adopted to ensure environmental conservation.”

This, alongside other factors, such as their commitment to abide by other international conventions and the debate on GM technology, are keeping most African countries from adopting policies that support biotechnology. Nang’ayo added that most countries have adopted stringent regulatory frameworks governing different GM processes and that this apparent overregulation has inhibited advancement of GM technology into the hands of farmers.

However, there has been notable progress in countries such as Kenya, which recently approved the environmental release of genetically transformed maize that carries genes from Bacillus thuringiensis (Bt) following an application submitted to the National Biosafety Authority by AATF and the Kenya Agricultural Livestock and Research Organization under the Water Efficient Maize for Africa project. This is expected to serve as a litmus test for many African countries that are already conducting confined field trials of GM crops.

Still, most African smallholder farmers have no knowledge of or access to biotechnology. According to Gilbert Bor, a farmer from Kapseret in northwest Kenya, “Many farmers know and understand that seeds in our fields are from science and research, so new and innovative technologies including biotechnology need to trickle down to farmers once proven safe. If such a technology promises farmers improved productivity, income and livelihood, and the likelihood of reducing use of pesticide and insecticide, then it’s important that farmers and consumers are educated and informed.”

New Publications: Land availability and smallholder development in Zambia

Farmers Ngunya Phiri and husband Daniel heads for home with a full load of cobs on their ox cart after harvesting maize cultivated under conservation agriculture in their field in Chipata district, Zambia. Photo: P.Lowe/CIMMYT
Farmers Ngunya Phiri and husband Daniel heads for home with a full load of cobs on their ox cart after harvesting maize cultivated under conservation agriculture in their field in Chipata district, Zambia. Photo: P.Lowe/CIMMYT

EL BATAN, Mexico — Large surface area and low population density make Zambia one of the most land abundant countries in the world.

However, despite this abundancy new data shows that land access is of mounting concern for smallholders. 54 percent of Zambia’s land is under customary tenure, far less than the 94 percent often utilized in land policy documents, according to a new study. Customary land tenure refers to the systems that most rural African communities operate to express and order ownership, possession, and access, and to regulate use and transfer. Unlike introduced landholding regimes, the norms of customary tenure derive from and are sustained by the community itself rather than the state or state law.

Of this available land, most populations are clustered in just 5 percent that has reasonably good market access conditions. These areas are often located in regions with high levels of rainfall variability due to historical infrastructure investments. In addition, these regions are witnessing a rapid increase in land commodification, land alienation and declining fallow rates.

The study concludes that land policy alone is not sufficient to cope with the mounting land constraints experienced by the majority of rural people in Zambia. Investments in infrastructure and services to improve market access conditions and climate change adaption capacity in Zambia’s remaining customary land is a necessity. Land and economic development policies must be attentive to changing dynamics in customary land areas in order to ensure the future viability of the smallholder farming sector.

Read more about the study “The geography of Zambia’s customary land: Assessing the prospects for smallholder development” and other new publications from CIMMYT staff below:

  1. Effects of relay cover crop planting date on their biomass and maize productivity in a sub-humid region of Zimbabwe under conservation agriculture. 2016. Mhlanga, B.; Cheesman, S.; Maasdorp, B.; Mupangwa, W.; Munyoro, C.; Sithole, C.; Thierfelder, C. NJAS Wageningen Journal of Life Sciences. Online First.
  2. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora. 2016. Randhawa, M.S.; Bansal, U.; Lillemo, M.; Miah, H.; Bariana, H.S.; Erenstein, O. Journal of Applied Genetics. Online First.
  3. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. 2016. Crespo-Herrera, L.A.; Singh, R.P.; Velu, G. Annals of Applied Biology. 169 (1) : 27-35.
  4. The geography of Zambia’s customary land : assessing the prospects for smallholder development. 2016. Sitko, N.J.; Chamberlin, J. Land Use Policy 55 : 49-60.
  5. Wheat landraces production on farm level in Turkey; Who is growing in where?. 2016. Kan, M.; Ortiz-Ferrara, G.; Kucukcongar, M.; Keser, M.; Ozdemir, F.; Muminjanov, H.; Qualset, C.; Morgounov, A.I. Pakistan Journal of Agricultural Sciences 53(1) : 159-169.

New multi-crop zero-till planter boosts yields and farming efficiency in Pakistan

Planting rice with the first locally produced multicrop planter in Sheikhupura, Punjab Province, Pakistan. Photo: Irfan Mughal/Greenland Engineering
Planting rice with the first locally produced multicrop planter in Sheikhupura, Punjab Province, Pakistan. Photo: Irfan Mughal/Greenland Engineering

ISLAMABAD — A new planter that promotes dry seeding of rice, saves water and increases planting efficiency is being used increasingly in Pakistan’s Punjab Province.

Many farmers in Punjab alternately grow rice and wheat in their fields throughout the year, and the province produces more than 50% of Pakistan’s rice and 75% of its wheat.

Traditionally, rice planting involves transplanting 4-6-week old seedlings into puddled fields, a process that requires large amounts of water and labor, both of which are becoming increasingly scarce and expensive. Repeated puddling negatively affects soil physical properties, decreases soil aggregation and results in hardpan formation, which reduces the productivity of the following wheat crop.

Sustainable intensification aims to increase the productivity of labor, land and capital. Conservation agriculture (CA) relies on practices such as minimal soil disturbance, permanent soil cover and the use of crop rotation to maintain and/or boost yields, increase profits and protect the environment. It also helps improve soil function and quality, which can improve resilience to climate variability.

Father and son Iqbal Mughal and Irfan Mughal are co-owners of Greenland Engineering, which currently manufactures zero-tillage wheat drills for Pakistan’s farming communities. They worked with CIMMYT from 1994-2003 as part of the the rice-wheat consortium. In response to the interest expressed by farmers, they are also producing the new multicrop planter for rice farmers in Daska, Punjab Province. Photo: Mumtaz Ahmed/Engro Fertilizers
Father and son Iqbal Mughal and Irfan Mughal are co-owners of Greenland Engineering, which currently manufactures zero-tillage wheat drills for Pakistan’s farming communities. They worked with CIMMYT from 1994-2003 as part of the the rice-wheat consortium. In response to the interest expressed by farmers, they are also producing the new multicrop planter for rice farmers in Daska, Punjab Province. Photo: Mumtaz Ahmed/Engro Fertilizers

Dry seeding of rice (DSR), a practice that involves growing rice without puddling the soil, can save up to 25 percent of the water needed for growing the crop and reduces greenhouse gas emissions. However, the old fluted roller drills used for DSR do not guarantee uniform plant-to-plant spacing and break the rice seeds, requiring farmers to purchase more seed than otherwise needed.

In 2014, the International Maize and Wheat Improvement Center (CIMMYT) imported a multicrop, zero-till planter from India that drills the seed and the fertilizer simultaneously while maintaining appropriate spacing between plants without breaking the seeds.

That same year, CIMMYT evaluated locally modified multicrop zero-till planters for dry seeding of Basmati rice at five sites in Punjab. As a result, the plant populations, tillers and grain yields at these sites were 10 percent higher compared to those at the sites where old fluted roller drills were used. During the current 2016 rice season, Greenland Engineering has so far manufactured and sold over 30 multicrop planters to rice growers across Pakistan.

CIMMYT’s initiative to spread the locally adapted, multicrop, zero-till planter throughout Pakistan was made possible through the Agricultural Innovation Program supported by the United States Agency for International Development, in collaboration with Greenland Engineering and Engro Fertilizers. National partners such as the Rice Research Institute Kala Shah Kaku, Adaptive Research Punjab and Engro Fertilizers are also helping to scale out the multicrop planter and other CA technologies throughout Punjab’s rice-wheat areas.

CIMMYT’s initiative to spread the locally adapted, multicrop, zero-till planter throughout Pakistan was made possible through the Agricultural Innovation Program, supported by the United States Agency for International Development, in collaboration with Greenland Engineering and Engro Fertilizers. National partners like the Rice Research Institute Kala Shah Kaku, Adaptive Research Punjab and Engro Fertilizers are also helping to spread the multicrop planter and other CA technologies throughout rice-wheat areas in Punjab.

receive newsletter

Building a sustainable future: A history of conservation agriculture in southern Africa

This story is one of a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.

HARARE, Zimbabwe (CIMMYT) — When practiced unsustainably, agriculture has led to environmental degradation and famine, which have plagued civilizations through the centuries. Innovations such as irrigation or the plow (since circa 6,000 and 3,000 BC) increased productivity, but often deteriorated long-term soil fertility through erosion and other forms of degradation.

We are now facing historically unprecedented challenges to food security. We must increase food production by 70 percent to feed nine billion people by 2050, without damaging our finite and often already degraded natural resource base. In addition, farmers face more frequent drought and water scarcity, which makes it increasingly difficult to grow crops, and extreme weather events such as the 2015-2016 El Niño, which has already caused large-scale crop failures and soaring maize prices in southern Africa.

Conservation agriculture (CA) practices based on the principles of minimal soil disturbance, permanent soil cover and crop rotation are helping farmers combat growing environmental challenges by maintaining and boosting yields, while protecting the environment and increasing profits for smallholders globally. When CA practices are coupled with water-use efficient and drought tolerant varieties, the benefits are even greater.

Drought is increasingly common in Malawi, leaving an estimated three million people in need of urgent humanitarian food assistance this year alone. However, a fortunate few will escape hunger, including more than 400 farmers and their families in Balaka, southern Malawi, who have been practicing CA over the last 12 years. "Few farmers have livestock in Balaka, so crop residues can be kept on the fields instead of feeding them to cattle," according to Thierfelder, who says Malawi presents a good case for conservation agriculture. CIMMYT and its strategic development partner Total LandCare have helped more than 65,000 farmers adopt CA systems throughout the entire country. Above, SIMLESA lead farmer Agnes Sendeza harvests maize ears on her farm in Tembwe, Salima District, Malawi. Photo: Peter Lowe/CIMMYT
Drought is increasingly common in Malawi, leaving an estimated 3 million people in need of urgent humanitarian food assistance this year alone. However, more than 400 farmers and their families in Balaka, southern Malawi, who have been practicing CA over the last 12 years will escape hunger. CIMMYT and its partner Total LandCare have helped more than 65,000 farmers adopt CA systems throughout the entire country. Above, SIMLESA lead farmer Agnes Sendeza harvests maize ears on her farm in Tembwe, Salima District, Malawi. Photo: Peter Lowe/CIMMYT

“CA approaches can mean the difference between farmers being able to feed their families or having to starve,” says Christian Thierfelder, senior cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), regarding the recent El Niño – the strongest on record – in southern Africa. To date, approximately 10 million people in southern Africa are dependent on food aid and an estimated 50 million people are projected to be affected, pushing them to the brink of starvation.

Sustainable intensification of agricultural systems and practices such as CA have become a necessity for farmers in Africa, where a combination of climate change and unsustainable agricultural practices are undermining land and water resources. This, coupled with an exploding population, makes increasing productivity while conserving the environment absolutely urgent.

Based on its experience in Latin America, which began in the early 1990s, CIMMYT started its first CA project in Africa in 2004, targeting Malawi, Mozambique, Tanzania, Zambia and Zimbabwe. This initial work focused on understanding CA systems in the context of farmers and their environmental conditions and was funded by the German government and the International Fund for Agriculture Development. Its aim was to facilitate the adoption of CA systems by smallholder farmers. This culminated in the establishment in 2009 of a large PAN-African project on Sustainable Intensification of Maize-Legume Systems in Eastern and Southern Africa (SIMLESA).

Farmers in Shamva District, Zimbabwe, are introduced to an animal traction direct seeder which allows seeding and fertilizing directly into crop residues with minimum soil disturbance. Labor-saving sowing systems are a key benefit for labor-constrained farmers and provide an entry point for CA adoption and outscaling. Photo: Thierfelder/CIMMYT
Farmers in Shamva District, Zimbabwe, are introduced to an animal traction direct seeder which allows seeding and fertilizing directly into crop residues with minimum soil disturbance. Photo: Thierfelder/CIMMYT

Since then, CIMMYT has leveraged its large network of partners to scale out CA. Between 2010 and 2015, CIMMYT, supported by a large group of donors including the Australian Centre for International Agricultural Research, the International Fund for Agricultural Development, the United States Agency for International Development and the Food and Agriculture Organization of the United Nations, helped over 173,000 farming households in the region adopt sustainable intensification practices.

Today, CA research at CIMMYT in Africa is increasingly focused on adaptation to the changing climate, which is leading to more erratic rainfall, increased heat stress and seasonal dry spells, in an effort to increase the use of climate-resilient cropping systems. CIMMYT’s work on CA in the region has shown that the practice can significantly increase farmers’ resilience to climate variability and change. Combining sustainable intensification practices with improved varieties has proved to increase productivity by 30-60 percent and income by 40-100 percent under drought conditions.

Despite CA’s successes, many smallholder farmers in developing countries still lack knowledge and understanding of sustainable agricultural practices and often revert to traditional farming practices that are labor-intensive and environmentally damaging. Also, CA systems are difficult to scale out if favorable policies and markets are not in place.

Araujo Njambo (right), a smallholder maize farmer in Mozambique, was used to the traditional way of farming that his family has practiced for generations, which required clearing a plot of land and burning all plant residues remaining on the soil to get a clean seedbed. However, as demand for land increases, this fuels deforestation and depletes soil nutrients. CIMMYT has been working with farmers like Njambo since 2006 to adapt sustainable intensification practices like CA to his circumstances. In remote areas of Mozambique, where Njambo’s farm is located, CA systems provide significant benefits during dry spells because farmers have no access to irrigation and depend only on rainfall. In the 2013-2014 cropping season, Njambo harvested his best maize yield in the last six years thanks to CA. Photo: Christian Thierfelder/CIMMYT
Araujo Njambo (right), a smallholder maize farmer in Mozambique, was used to the traditional way of farming that his family has practiced for generations, which required clearing a plot of land and burning all plant residues remaining on the soil to get a clean seedbed. However, as demand for land increases, this fuels deforestation and depletes soil nutrients. CIMMYT has been working with farmers like Njambo since 2006 to adapt sustainable intensification practices like CA to his circumstances. In the 2013-2014 cropping season, Njambo harvested his best maize yield in the last six years thanks to CA. Photo: Christian Thierfelder/CIMMYT

Mineral fertilizer, for example, is a basic agricultural input, but its adoption and use remain limited in sub-Saharan Africa. Farmers apply less than 10 kilograms per hectare on average due mainly to poor distribution networks (especially in rural areas) and high prices that are 3-5 times those in Europe. Lack of knowledge and training on how to use mineral fertilizer and other agricultural inputs renders them ineffective.

New discoveries in agriculture and breeding must be adaptable and transferable to smallholder farmers. This means improving physical distribution of technologies, training, knowledge and information sharing, credit availability and creating enabling environments for growth.

Just before passing away in September 2009, world-renowned agricultural scientist Norman Borlaug famously implored the world to “take it to the farmer” – a call to action we must follow if we are to sustainably feed the world by 2050. Without a basic understanding of good agricultural practices, most smallholder farmers will not be able to grow enough crops to move past subsistence farming.

Grain yield from a conservation agriculture demonstration plot in Zomba District, Malawi, is measured precisely as part of CIMMYT’s research on the combined benefits of drought tolerant maize and CA. Photo: Peter Lowe/CIMMYT
Grain yield from a conservation agriculture demonstration plot in Zomba District, Malawi, is measured precisely as part of CIMMYT’s research on the combined benefits of drought tolerant maize and CA. Photo: Peter Lowe/CIMMYT

receive newsletter

CIMMYT’s knowledge sharing efforts contribute to improved seed production in Africa

Photo: Lewis Machida
Photo: Lewis Machida

NAIROBI, Kenya (CIMMYT) – A staggering 80% of the 67 million inhabitants of central Africa’s Democratic Republic of Congo (DRC) rely on maize for food, despite the country’s underdeveloped national maize breeding and seed production program. The ravages of war may have limited development efforts, but renewed interest in the DRC by regional and global development partners will provide much needed infrastructure and knowledge sharing support.

Even with abundant resources such as water, labor and fertile land, availability of and access to quality seed remains a major hindrance to a thriving agricultural sector in the DRC. According to the state-run agricultural organization, Institut National pour l’Etude et la Recherche Agronomiques (INERA), North and South Kivu provinces in particular still import food from neighboring Rwanda, Uganda and Tanzania, with maize taking up the lion’s share of purchases.

Strategic public-private sector partnerships in agricultural research and development, such as the one between INERA, the International Maize and Wheat Improvement Center (CIMMYT) office in Kenya, and the Alliance for Green Revolution in Africa (AGRA), are an invaluable investment towards growth and sustainability of maize production in the region. AGRA funds multiple agricultural research projects in the DRC, while CIMMYT is renowned for its excellence in maize research globally. It is against this backdrop that breeders, agronomists, technicians and students gathered at the drought-tolerant (DT) maize site in Kiboko, Kenya, for a ten-day training course dubbed ‘Pollinations, Nursery and Trials Management’. The training, held from June 13 – 23, 2016, and jointly supported by CIMMYT and AGRA, and hosted by CIMMYT, emphasized hand pollination in maize variety development and seed multiplication.

Remarks by Stephen Mugo, CIMMYT Regional Representative for Africa, and Maize Breeder, highlighted training as one of the ways CIMMYT supports capacity building and development in the region.

He said, “It is my hope that knowledge and skills imparted during this course will be shared with other professionals at INERA, to improve maize breeding and production capabilities in the DRC.”

The course, organized by CIMMYT Maize Breeder, Lewis Machida, featured a mix of detailed lectures and practical exercises, expertly delivered by various CIMMYT scientists. Presentations covered topics such as basic seed production (hybrids and open pollinated varieties) and maintenance, breeding methods, and maize pollinations including hand pollination.

Photo: Lewis Machida
Photo: Lewis Machida

Hand pollination

Pollination, the process responsible for reproduction and continuity of plant life, is also a breeder’s playground, enabling shuffling of genes, plant adaptation and evolution. In maize breeding, this means development of seeds with tolerance to stresses such as drought, heat, pests and diseases.

Hand pollination, the general term for human intervention in this delicate process, can be further classified into self pollination, and cross pollination. As the name suggests, hand pollination is done by hand, calling for extreme care to minimize contamination and damage of plants.

“Successful production and maintenance of varieties depends largely on hand pollination. Without this process, it would be difficult to produce genetically pure seeds,” says Mugo, adding, “For this reason, hand pollination is considered the core of variety development in maize breeding.”

For the practical sessions of the course, participants deftly carried out the steps in hand pollination, including shoot bagging, pollen collection & placement, and detasseling.

Elois Cinyabuguma, Manager of INERA’s Cereal Unit, shared that the training offered much needed technical skills to scale up seed production in his country, saying, “With CIMMYT germplasm, and sound technical knowledge on multiplication, storage and pest & disease management, DRC is well on its way to setting up a well-rounded maize development program.”

Beyond building the DRC’s capacity for maize breeding and production in general, lessons from the training will be implemented first in North and South Kivu provinces, in hopes of reducing or eliminating maize imports. The event was also a unique opportunity to enhance collaboration among INERA, CIMMYT and AGRA, in anticipation of future shared projects pertaining to maize research, production and distribution.

All participants were issued with a certificate on successful completion of the course.

Presentations from the course are available here.

Bhutan and Bangladesh join forces to combat threat of rust diseases

A farmer in her wheat field in Bhutan. Photo: Sangay Tshewang/RNRRD

BHUTAN — Yellow and brown rusts are among the most common and damaging challenges to wheat production in Bhutan. Yellow or stripe rust (Puccinia striformis f. sp. tritici), a disease favored by cool weather conditions, is a major threat owing to the prevalence of cool winter conditions during the cropping season in most wheat growing regions. In Bhutan, yellow rust is the first disease to appear in the cropping season and, if left uncontrolled, has the potential to destroy the whole wheat crop. It has occurred every year in most wheat growing areas over the last two decades.

Brown or leaf rust (Puccinia triticina Eriks.), the second most important wheat disease in Bhutan, is also favored by climatic conditions, with severe infection on different advanced wheat lines being recorded over the last ten years. This is an indication that leaf rust could be just as threatening as yellow rust if susceptible cultivars are grown under favorable environmental conditions. Finally, if these rusts are not controlled, it is possible that Bhutan could become a primary source of inoculum, which would then be carried to its neighbors by the wind.

Yellow rust of wheat. Photo: Arun Joshi/CIMMYT
Yellow rust of wheat. Photo: Arun Joshi/CIMMYT

Bangladesh, Bhutan’s southern neighbor, does not have much of a history of rust diseases, but climate change could alter that. And while yellow rust doesn’t occur at all in Bangladesh and leaf rust appears only occasionally (albeit with high intensity), both have the potential to spread in the country.

The absence of high rust pressure in Bangladesh is a serious challenge when it comes to evaluating the rust resistance of wheat lines needed to prepare for uncertain future climates. In contrast, Bhutan is in a strategic position to conduct yellow and leaf rust epidemiological studies and is active in regional and global efforts aimed at studying and managing rust. Therefore, for the first time, Bhutan and Bangladesh are collaborating on evaluating Bangladeshi wheat lines for resistance to yellow and leaf rusts with support from CIMMYT.

Advanced wheat lines from Bangladesh are evaluated for rust resistance in Bhutan. Photo: Sangay Tshewang/RNRRD
Advanced wheat lines from Bangladesh are evaluated for rust resistance in Bhutan.
Photo: Sangay Tshewang/RNRRD

During the 2015–2016 cropping season, Bangladesh sent 50 advanced wheat lines identified as having potential rust resistance to Bhutan for screening. The evaluation was done under natural conditions at the Renewable Natural Resources Research and Development Center (RNRRD) in Bajo, about 70 kilometers east of Thimphu, Bhutan’s capital. The results are promising, with 30 lines showing resistance to the rusts. The data were shared with Bangladeshi partners, who will use them to inform their breeding decisions.

Bhutan has been collaborating with CIMMYT’s Global Wheat Program since 2011 and has released three rust resistant varieties from CIMMYT in the past two years. Although there has been regional collaboration on wheat research in South Asia mainly through CIMMYT, testing wheat lines from Bangladesh for rust resistance in Bhutan is a first.

 

receive newsletter

Action needed to adapt maize breeding to climate change, report shows

Listen to a podcast of CIMMYT maize breeder Biswanath Das discussing the importance of adapting maize breeding and seed systems to climate change here.

Investment in speeding up the adaptation maize breeding and seed systems to climate change is needed, report finds. Photo: Peter Lowe/ CIMMYT
Investment in accelerating the adaptation of maize breeding and seed systems to climate change is needed a new report finds. Photo: Peter Lowe/ CIMMYT

EL BATAN, Mexico (CIMMYT) – Breeding and seed systems must be adapted to survive projected climate change if major loss of maize yields is to be avoided, a new report shows.

Tools that forecast the response of crops to different weather and climate conditions, coupled with crop yield modeling have enabled agricultural scientists to predict and formulate plans for potential future climate change.

“Responding better to changes in climate by improving efficiency of the breeding cycle and reducing the amount of time it takes to get improved maize into the hands of farmers is key to ensuring a food secure future,” said International Maize and Wheat Improvement Center (CIMMYT) maize breeder and co-author of the study Biswanath Das.

Projections for Africa demonstrate climate-change related increases in temperature will negatively impact on-farm yields as heat and drought stress shorten crop production time, the length of time between maize planting and harvesting, Das said.

Shorter and hotter growing seasons are expected to become a reality over the next 15 years, which could mean that maize varieties currently being developed may struggle to adapt, particularly since current breeding and commercialization cycles to improve maize in Africa can take several decades.

The report published in Nature Climate Change, led by Andy Challinor from the University of Leeds in collaboration with the International Center for Tropical Agriculture (CIAT) and CIMMYT, calls for an acceleration of breeding, delivery and adoption processes. The authors suggest that all stages could be sped up using a variety of techniques, requiring elaborate planning and coordination involving numerous actors and interest groups.

“Current warming will reduce yields unless maize breeding and seed systems adapt immediately,” Das said. “Increased collaboration among different breeding institutes and public-private collaborations are needed so that we share information, technologies and germplasm to make the best germplasm and technology available to the widest number of scientists as possible.”

“Seed systems could be working with regulators to reduce the amount of time it takes for varieties to become available to farmers and developing new ways of producing seed more cheaply and efficiently while maintaining quality.”

Public seed systems should continue working closely with the private sector to encourage the latest genetic advances to become available to farmers in the shortest time possible, Das added.

CIMMYT has undertaken other work in this area. An intensive breeding effort through the Drought Tolerant Maize for Africa (DTMA) project developed a large phenotyping network and breeding pipeline to produce new maize varieties with heat and drought tolerance. In collaboration with over 100 national seed companies, the project supported the production of 54,000 tons of drought-tolerant maize in 2014 alone, benefiting an estimated 5.4 million households – or 43 million people – across 13 countries in Africa.

In 2015, a new project was started to expand the success of DTMA so that more smallholder farmers in Africa would have access to affordable improved maize varieties through a network of national seed companies.

Despite the considerable efforts being made to adapt maize farming to changing climates, Das warned that they must be sustained and encouraged on a larger scale in order for breeding programs to produce climate-ready maize varieties for the future.

This study was supported by the CGIAR Research Program on Climate Change (CCAFS) and the CGIAR Research Program on Maize (MAIZE CRP).

This research is carried out with support from CGIAR Fund Donors, CCAFS Donors, MAIZE CRP Donors and through bilateral funding agreements. Funding for this project came from: Australian Centre for International Agricultural Research;  Ireland Department of Foreign Affairs and Trade; Netherlands Ministry of Foreign Affairs; New Zealand Ministry of Foreign Affairs & Trade;  Swiss Agency for Development and Cooperation; Thailand; UK Department of International Development; The United States Agency for International Development and the European Union. The Program is carried out with technical support from The International Fund for Agricultural Development.

DTMA was funded by the United States Agency for International Development and the Bill & Melinda Gates Foundation.

Read the paper (subscription required)

Current warming will reduce yields unless maize breeding and seed systems adapt immediately

A. J. Challinor, A.-K. Koehler, J. Ramirez-Villegas, S. Whitfield & B. Das

http://dx.doi.org/10.1038/nclimate3061

 

Launch of new geo-informatics tool

Participants in the LCAT training in New Delhi, India. Photo: Ashwamegh Banerjee/CIMMYT
Participants in the LCAT training in New Delhi, India. Photo: Ashwamegh Banerjee/CIMMYT

NEW DELHI — The International Maize and Wheat Improvement Center (CIMMYT) has launched the beta version of the Landscape-scale Crop Assessment Tool (LCAT), a geo-informatics technology that will help scientists to forecast crop yields and identify regions where conditions will support the adoption of specific technologies. Using geo-informatics, the Cereal Systems Initiative for South Asia (CSISA), for example, was able to identify districts in the state of Odisha most prone to flooding and categorize them as areas ill-suited for direct seeded rice. LCAT will provide a platform for extension professionals, policymakers and research scientists to leverage geo-informatics for better decision-making. The tool was developed for South Asia but can be used globally.

“In the eastern Indo-Gangetic Plains, we promote early sowing of wheat, which is one of the most important adaptations to climate change. But we haven’t been able to accurately monitor and measure where it is being implemented and when,” explained Andrew McDonald, CIMMYT principal scientist and CSISA project leader. “In our line of work, it is crucial to understand where you’re making progress. While the data exists, it is often not integrated at the spatial level.”

Considerable environmental and man-made landscape diversity exists across South Asia. LCAT will help to analyze these landscapes and characterize large areas of land based on remote sensing data. It will serve two main purposes – to facilitate technology targeting and provide information such as crop status, phenology and yield goals to support crop management decisions.

LCAT Screenshot
Screenshot of the new Landscape-scale Crop Assessment Tool (LCAT), a geo-informatics technology that will help scientists to forecast crop yields and identify regions where conditions will support the adoption of specific technologies.

“The first version of the tool uses datasets from CSISA sites in Bangladesh and India to characterize the existing cropland. However, the algorithms on which it is based are generic and can hence be applied to describe any dominant agricultural landscape across the globe,” said Balwinder Singh, CIMMYT crop simulation modeler. “Within CSISA, the tool will be used for specific applications extending to crop yield forecasting and monitoring, learning and evaluation.”

However, critical knowledge gaps between landscape-scale processes and technology targeting remain a challenge. To ensure policymakers and scientists are able to effectively collaborate in using this tool, a team of scientists from Oak Ridge National Laboratories (ORNL) visited New Delhi in May to conduct a training session on LCAT for CSISA staff and government partners from India and Bangladesh. The training not only demonstrated the tool’s beta version but also created greater understanding of its practical applications.

“If you’re a user of data, you spend 60 percent of your time just assembling data before analyzing it. We want to reduce that to 5 percent,” said Suresh Vannan, director of the ORNL Distributed Active Archive Center for Biogeochemical Dynamics and CCSI data theme leader.

LCAT is being developed in collaboration with ORNL and the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) Initiative. It is funded by CIMMYT as part of a five-year agreement with ORNL signed in 2014.

receive newsletter

Scientists trained on breeding program management, statistical data analysis

Rabia Akram receiving her certificate for successfully attending the training course. Photo: Awais Yaqub/CIMMYT
Rabia Akram receiving her certificate for successfully attending the training course. Photo: Awais Yaqub/CIMMYT

ISLAMABAD — CIMMYT in collaboration with Pakistan’s National Agricultural Research Center conducted a training course on maize breeding program management and statistical data analysis from 23-27 May 2016 in Islamabad, Pakistan. The training was attended by nearly 40 participants nominated from agricultural universities, public and private institutions across the country. It was the first in its kind to address breeding program management and introduce current software to analyze various phenotypic and genotypic data. This hands-on training will help scientists select varieties suitable for use by Pakistani farmers based on multi-environment datasets.

“Today, crop improvement techniques are getting advanced in each passing day and countries that are investing in cutting-edge science and state-of-the-art technologies not only are self-sufficient, but are leading exporters of their surplus products,” said Chairman of Pakistan’s Agricultural Research Council, Nadeem Amjad.

Participants of maize breeding program management and statistical data analysis training held in Islamabad from 23-27 May 2016. Photo: Amina Nasim Khan/CIMMYT
Participants of maize breeding program management and statistical data analysis training held in Islamabad from 23-27 May 2016. Photo: Amina Nasim Khan/CIMMYT

Amjad emphasized the need to build the capacity of scientists dedicated to fields such as crop modeling, bioinformatics and advanced agricultural statistical software to modernize and enhance agricultural productivity in Pakistan. He thanked CIMMYT for addressing the need that can help maize and wheat researchers to grow in these fields and improve their work.

“Thanks to this training I have analyzed all my data in just two hours. Before this it would have taken me months as I was using less efficient, less user friendly and very old software. This is a real support from CIMMYT and my tasks are greatly simplified,” said Rashad Rashid, a representative from Rafhan Maize Products private company.

Together with CIMMYT Pakistan scientists, the training was conducted by Mateo Vargas Hernandez and Alvarado Beltran Gregorio, consultant and senior data analyst from CIMMYT’s Biometry and Statistical Unit respectively, who are part of the team that developed the software used during the training.

“Sharing statistical software and training of  researchers by the very people who were involved in developing the software makes this training unique,” according to  Muhammad Azeem Khan, Director General of National Agricultural Research Center, who closed the ceremony.

Seeding the future: Emergency support for drought-affected farmers in Ethiopia

Stocks of maize seed have been certified for quality and are now ready to be distributed to farmers in Ethiopia's drought-affected districts. Photo: Tadele Asfaw/CIMMYT
Stocks of maize seed have been certified for quality and are now ready to be distributed to farmers in drought-affected districts. Photo: Tadele Asfaw/CIMMYT

As the Rio 2016 Olympics draw near, team managers are rushing to recruit their best sportspeople from all over the country, put them through fitness tests, and get them to various stadiums before the starter’s gun goes off.

The team working on the Emergency Seed Support for Drought Affected Maize and Wheat Growing Areas of Ethiopia initiative is facing a similar challenge. But instead of recruiting long jumpers and marathon runners, they are tasked with procuring quality seeds of elite maize, wheat, and sorghum varieties and distributing them to farmers before the start of the main planting season to increase food security in regions devastated by recent droughts.

Dry conditions are not uncommon in Ethiopia, but the 2015-2016 El Niño – the strongest on record – has led to the worst drought in a decade. Harvests across Ethiopia were affected, leaving 10.2 million people – more than 1 in 10 Ethiopians – in need of emergency food assistance.

Food security status across Ethiopia. Source: Fews.Net
Food security status across Ethiopia. Source: Fews.Net

Planning for a food-secure future

The government of Ethiopia and international organizations are working to provide food aid for people facing immediate shortages, but Bekele Abeyo, senior wheat breeder and pathologist at the International Maize and Wheat Improvement Center (CIMMYT) for sub-Saharan Africa and leader of the emergency seed project, is focusing on a more sustainable future.

“Relief efforts will provide sustenance today, but we need to ensure there is also food on plates tomorrow,” says Abeyo. “With the large crop losses experienced in 2015, farmers were not able to save seed for planting in 2016 and did not have sufficient income to purchase more. Unless these farmers are able to access seed, we may face further shortages in 2017.”

CIMMYT, with support from the U.S. Agency for International Development, is working with partners to supply over 2,700 tons of seed to more than 226,000 households across 71 woredas (districts) in four regions of Ethiopia. CIMMYT will work with both the formal seed sector and farmers’ cooperatives to source quality seed from within Ethiopia and make sure it reaches the farmers who need it the most. These high-yielding, drought resistant varieties are being supplied along with agronomic advice to further increase farmers’ resilience.

Together with Ethiopia’s Agricultural Transformation Agency (ATA), a primary partner in the project, CIMMYT organized workshops in each of the target regions –Amara, Oromia, Southern Nations, Nationalities, and People’s Region (SNNPR), and Tigray – to engage stakeholders and collectively finalize the workplan. Based on participant feedback, some sorghum will now also be supplied to selected regions, in addition to maize and wheat.

“It is important to consider the needs of the individual communities and regions,” says Yitbarek Semeane, director of ATA’s Seed Systems. “ATA has very strong links with the regions and government institutions so is able to provide feedback on farmers’ needs and preferences. As weather patterns in Ethiopia are becoming increasingly unpredictable, many farmers are changing their farming practices, or even switching crops.”

Seed is being distributed to 240 drought-affected farmers in the kebele of Ubobracha. Photo: E. Quilligan/CIMMYT
Seed is being distributed to 240 drought-affected farmers in the kebele of Ubobracha. Photo: E. Quilligan/CIMMYT

A race against time

With the main planting season rapidly approaching, the team is racing to source, procure, certify, transport and distribute seeds.

“The success of this project will depend on us procuring enough quality seed and distributing it to farmers before the main planting season,” says Tadele Asfaw, CIMMYT-Ethiopia program management officer and member of the project’s Seed Procurement Committee.

By mid-April, the team had successfully procured almost all the required maize and sorghum seeds and were navigating the complex logistics to get the requested varieties to each woreda. Agreements are also being signed with farmers’ cooperatives to ensure that wheat seed can be purchased without disrupting the normal seed system.

According to Ayele Badebo, CIMMYT scientist and wheat seed coordinator for the project, CIMMYT does not have the capacity to collect seed from individual farmers within each woreda, but this is something the cooperatives are ideally placed to do. They have the trust of both CIMMYT and farmers, and through the previous seed scaling project, they know which farmers were given seed to multiply and will now have it available for sale.

At the end of March, the seed procurement team traveled to eastern Oromia – one of the areas most affected by the 2015 drought – to meet with Chercher oda bultum, a farmers’ cooperative and seed supplier. The team was very satisfied to see that the supplier had sufficient stock of Melkassa2 and Melkassa4, locally-adapted drought resistant maize varieties that had already been certified for germination and moisture by another collaborator, Haramaya University. This same process is now underway for wheat seed.

Ethiopia’s Bureaus of Agriculture and Natural Resources are also working with woreda representatives to ensure that the seed will be distributed to those farmers who need it most, and who have sufficient land and agronomic tools to benefit from this initiative.

“Working with local enterprises and partners enables us to procure and deliver seed to drought-affected farmers as quickly as possible,” says Abeyo. “In combination with CIMMYT’s longer-term efforts in the region, we hope that we can foster a more robust seed system and increase food security for 2016 and beyond.”

The meeting room at ATA was a hive of activity as farmers’ unions met to negotiate transport of emergency seed. Photo: Emma Quilligan/CIMMYT
The meeting room at ATA was a hive of activity as farmers’ unions met to negotiate transport of emergency seed. Photo: Emma Quilligan/CIMMYT
Partnering for success
While CIMMYT has the knowledge, networks and experience in Ethiopia to spring into action, the cooperation of partners such as the Agricultural Transformation Agency (ATA), farmers’ unions and Ethiopia’s Bureaus of Agriculture and Natural Resources is vital.
Established in 2010, the ATA is acting as a catalyst to spur the growth and transformation of Ethiopia’s agriculture sector. With funding from the Bill & Melinda Gates Foundation, ATA is working with the Ministry and Regional Bureaus of Agriculture and Natural Resources to coordinate the collection, cleaning, packing, labeling and distribution of quality seed to drought-affected farmers, as well as help train development agents and raise farmer awareness.

New Publications: Advances in breeding for future climates

Farmer-surrounded-by-wheat
Photo: Ranak Martin/CIMMYT

CIMMYT scientists have made progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia according to a recently published study. Maintaining wheat productivity under increasing temperatures and decreasing water availability in South Asia is a challenge. Warmer temperatures have already been determined to be one of the major factors in slowing the wheat productivity growth in South Asia, with estimated grain yield losses at 6 to 10% per ◩C rise in temperature.

In response, CIMMYT researchers focused on developing early maturing wheat lines as an adaptive mechanism in regions suffering from terminal heat stress and those areas that require wheat adapted to shorter cycles under continual high temperature stress. Each year from 2009 to 2014, 28 newly developed early-maturing high-yielding CIMMYT wheat lines were evaluated across locations in South Asia. A positive trend was observed while estimating the breeding progress across five years for high-yielding early-maturing heat tolerant wheat compared to the local checks in South Asia, suggesting early maturity has the potential to improve adaptation and maintenance of genetic gains in South Asia. Read the full study “Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia” here.

Another recently released study on physiological breeding reveal opportunities for more precise breeding strategies and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Among other findings, the study concludes that new crop designs capitalize on over half a century of physiological research, remote sensing allows evaluation of genetic resources for complex trait expression, and genetic and physiological dissection of complex traits enables better crosses. Read the full study “Physiological breeding” here.

Pakistan maize stakeholders discuss progress

NARC’s maize team receiving a certificate of appreciation. Photo: M. Waheed Anwar/CIMMYT
NARC’s maize team receiving a certificate of appreciation from AIP. Photo: M. Waheed Anwar/CIMMYT

ISLAMABAD — CIMMYT’s Agricultural Innovation Program (AIP) held its annual maize working group meeting on 10-11 May with over 20 representatives from public and private seed companies and higher learning institutions in attendance. The working group evaluated AIP partners’ progress in deploying CIMMYT-derived maize hybrids and varieties to farmers.

Maize productivity in Pakistan has increased almost 75 percent since the early 1990s thanks to the adoption and expansion of hybrid maize varieties. However, the seed that spurred this growth is largely imported at an annual cost of $50 million. Since AIP’s launch in 2013, however, more than 80 CIMMYT-derived maize hybrids and open-pollinated varieties have been adapted to Pakistan’s diverse ecologies. Currently, 21 public- and private-sector companies are testing and deploying these locally-adapted cultivars to smallholder farmers across the country.

In his opening statement, Pakistan Agricultural Research Council (PARC) Chairman Nadeem Amjad cited AIP as the best example of sustainable development projects and said that one of its invaluable contributions is “sharing of valuable parental lines and breeder seeds.” He added that CIMMYT hybrids can help “resource-poor maize farmers have affordable maize seeds at their doorstep.”

Participants in AIP’s annual maize working group meeting, 10-11 May 2016, Islamabad, Pakistan. Photo: Amina Nasim Khan/CIMMYT
Participants in AIP’s annual maize working group meeting, 10-11 May 2016, Islamabad, Pakistan. Photo: Amina Nasim Khan/CIMMYT

At the meeting, partners reported on their progress producing parental seed and described how they planned to deliver quality seeds to farmers. They also identified key challenges in Pakistan’s maize seed value chain and recommended potential solutions during the group discussion.

In his concluding remarks, Pakistan’s National Agricultural Research Center (NARC) Director General Muhammad Azeem Khan said that it was only thanks to AIP innovations and interventions that NARC was able to start producing seed of biofortified hybrid maize, a first in the history of Pakistan.

Certificates of appreciation were presented by AIP to NARC for jump-starting hybrid seed production in Pakistan and hosting various national maize events in 2015, as well as to Tara Crop Sciences (Pvt.) Ltd. for conducting the best maize trials evaluated by AIP maize partners during the 2015 traveling maize seminar.

Read about AIP in the media below:

 

receive newsletter