Skip to main content

Breaking Ground: Caixia Lan on identifying building blocks for rust resistant wheat

CIMMYT scientist Caixia Lan. Photo: Courtesy of Caixia Lan

Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Support for research into breeding crops resistant to wheat rust is essential to manage the spread of the deadly disease, which has caused billions of dollars of yield losses globally in recent years, said Caixia Lan, a wheat rust expert at the International Maize and Wheat Improvement Center (CIMMYT).

Rust disease has historically been a menace to wheat production worldwide. Although agricultural scientists manage the disease by breeding wheat varieties with rust resistant traits, the emergence of new races hinders progress and demands continued research, said the scientist.

With outbreaks of new strands reported in Europe, Africa and Central Asia, wheat rust presents an intensifying threat to the over 1 billion people in the developing world who rely on the crop as a source of food and for their livelihoods.

One of the most recent rust races, Ug99, was detected in 1998 and has since spread across 13 countries, alone causing crop losses of $3 billion in Africa, the Middle East and South Asia, said Lan.

Working with CIMMYT’s Global Wheat Program Lan is identifying and mapping adult-plant resistance genes to different races of rust (leaf, stripe, and stem) in bread and durum wheat and transferring them into new varieties that help secure farmer’s production.

Growing up in an area dependent on agriculture in rural China, Lan knows all too well the impact crop disease and natural disaster has on family food security and livelihoods. The struggles of smallholder farmers to feed and support their families motivated her to pursue a career in agriculture for development, but it was not until university that she became inspired by the improvements made to crop yield through genetic manipulation and breeding, she said.

After completing her doctoral degree at the Chinese Academy of Agricultural Sciences, and working as a wheat molecular breeding lecturer at Huazhong Agricultural University, Lan was named the Borlaug Global Rust Initiative Women in Technology Early Career Winner in 2011. Lan joined CIMMYT in a post-doctoral position and currently works as a scientist to improve wheat’s resistance to rust.

Rust is a fungal disease that uses wheat plants as a host, sucking vital nutrients and sugars from the plant leaving it to wither and die. Without intervention, wheat rust spreads due to the release of billions of spores, which travel by wind to other plants, crops, regions or countries. Spores have the potential to start new infection, ravage crops and threaten global food security.

The science behind building genetic resistance takes two forms known as major (or race-specific) genes and adult-plant resistance based on minor genes. Major resistance genes protect the wheat plants from infection by specific strains of rust. While adult plant resistance, Lan’s area of specialization, stunts the pathogen by reducing the infection frequency and limiting its nutrient intake from the host wheat plant. Some of the longer-lasting adult-plant resistance genes have been shown to provide protection against multiple diseases for decades and have not succumbed to a mutated strain of rust so far.

Replacing wheat crops for varieties bred with several rust-resistant genes acts as a safeguard for occasions when the pathogen mutates to overcome one resistant gene as the others continue the defense, Lan said.

Lan has identified a number of rust resistant genes in CIMMYT germplasm and developed molecular markers, which are fragments of DNA associated with a specific location in the genome. However, as new races of the disease emerge and old ones continue to spread, research identifying durable and multiple rust resistant genes and breeding them into crops is of high importance, she said.

Study reveals diversity “blueprint” to help maize crops adapt to changing climates

EL BATAN, Mexico (CIMMYT) – Scientists have unlocked evolutionary secrets of landraces through an unprecedented study of allelic diversity, revealing more about the genetic basis of flowering time and how maize adapts to variable environments, according to new research published in Nature Genetics journal. The discovery opens up opportunities to explore and use landrace diversity in new ways to help breeders adapt crops to climate change and other emerging challenges to crop production.

Farmers worldwide have been ingeniously adapting landrace maize varieties to their local environments for thousands of years. In this landmark study, over 4,000 landraces from across the Americas were analyzed and their DNA characterized using recent advances in genomics.

A unique experimental strategy was developed to study and learn more about the genes underlying maize adaptation by researchers with the MasAgro Biodiversidad program and the Seeds of Discovery (SeeD) initiative.

Significantly, the study identified 100 genes, among the 40,000 that make up the maize genome, influencing adaptation to latitude, altitude, growing season and the point at which maize plants flower in the field.

Flowering time helps plants adapt to different environments. It is measured as the period between planting and the emergence of flowers, and is a basic mechanism through which plants integrate environmental information to balance when to make seeds instead of more leaves. The seeds form the next generation making flowering time a critically important feature in a plant’s life cycle.

Over the next century, increasingly erratic weather patterns and environmental changes projected to result from climate change mean that such crops as maize will need to adapt at an unprecedented rate to maintain stable production globally.

“This research offers a blueprint of how we can rapidly assess genetic resources for a highly variable crop species like maize, and identify, in landraces, those elements of the maize genome which may benefit breeders and farmers,” said molecular geneticist Sarah Hearne, who leads maize research within MAB/SeeD, a collaboration led by the International Maize and Wheat Improvement Center (CIMMYT) with strong scientific partnerships with Mexico’s research institute for agriculture, livestock and forests (INIFAP), the Antonio Narro Autonomous Agrarian University (UAAAN) in Mexico and Cornell University in the United States.

“This is the most extensive study, in terms of diversity, that has been conducted on maize flowering,” said Martha Willcox, maize landrace improvement coordinator at CIMMYT . “This was achieved using landraces, the evaluation of which is an extremely difficult and complex task.”

The groundbreaking study was supported by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) through the Sustainable Modernization of Traditional Agriculture (MasAgro) initiative. Additional support from the U.S. Department of Agriculture – Agricultural Research Service, Cornell University and the National Science Foundation facilitated the completion of vast quantities of data analysis.

“The knowledge we have gained from this work gives us something similar to a manual of ‘how to go on a successful treasure hunt;’ within the extensive genetic diversity that exists for maize. This knowledge can accelerate and broaden our work on developing resilient varieties, building upon millennia of natural and farmer selection in landraces,” Hearne said.

CORRECT CITATION:

Romero-Navarro, J. A., Willcox, M., Burgueño, J. Romay M. Swarts, K., Trachsel, S., Preciado, E., Terron, A., Vallejo Delgado, H., Vidal, V., Ortega, A., Espinoza Banda, A., Gómez Montiel, N.O., Ortiz-Monasterio, I., San Vicente, F., Guadarrama Espinoza, A., Atlin, G., Wenzl, P., Hearne, S.*, Buckler, E*. A study of allelic diversity underlying flowering time adaptation in maize landraces. Nature Genetics. http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.3784.html
*Corresponding authors

Breaking Ground: Bhoja Basnet sets sights on increasing wheat yield potential through hybrid seeds

bhoja_in-wheat
Bhoja Raj Basnet joined CIMMYT as a postdoctoral fellow working in the bread wheat improvement program in 2012. Photo: A. Cortes/CIMMYT

Breaking Ground is a regular series featuring staff at CIMMYT

MEXICO CITY (CIMMYT) – Scientist Bhoja Raj Basnet knows first hand what it is like to be a smallholder farmer.

Basnet’s earliest memories were formed on a one-acre subsistence farm in Jhapa, in southeastern Nepal, a fertile area in a country where the livelihoods of nearly 65 percent of people depend on agriculture.

The tiny farm provided the foundation for a journey that led ultimately to a doctoral degree in the United States and a career as a wheat breeder in Mexico at the International Maize and Wheat Improvement Center (CIMMYT).

Wheat plays a major role in Nepal’s agricultural landscape. It is the country’s third largest crop, cultivated on about 750,000 hectares of arable land each year with an average yield of 2.5 tons per hectare.  Above wheat, farmers favor only rice and maize.

“I grew up playing with the plants and soil on my family’s farm and before I entered high school I knew I wanted to pursue a career in agricultural science.” Basnet explained. “As I got older I started to realize the importance of agriculture and how agriculture can really shape a child’s health and future. This is what really pushed me to pursue my career.”

Basnet went on to earn his master and doctoral degrees in plant breeding. After graduation in 2012 from Texas A&M University, Basnet joined CIMMYT as a postdoctoral fellow working in the bread wheat improvement program.

In 2014, Basnet began leading a project conducting research into hybrid wheat in collaboration with Syngenta, which involves researching and developing tools and technology for developing commercially viable hybrid CIMMYT wheat varieties.

Hybrid wheat is created when a breeder intentionally crosses two genetically distinct and stable wheat lines to produce an offspring that combines the best traits of the parents. The process of developing a hybrid can take years, as traits are carefully chosen to achieve desired characteristics, such as increased grain yield or stress tolerance.

The principle behind hybrid varieties is exploitation of heterosis, the superiority of the hybrid offspring over its parent varieties. This is a biological phenomenon observed in almost all living organisms. However, the magnitude of “heterosis” varies significantly based on several biological and environmental factors.

“Hybrid wheat has always fascinated me,” Basnet said, adding, “I really want to see the end results and to see this work succeed.”

Hybrid wheat varieties have proven to be tricky. In fact, CIMMYT’s first attempt to develop hybrid wheat occurred in the 1960s and despite stops and starts over the years, has been ongoing since 2010.

Increasing investment and long-term funding commitments are a key prerequisite to achieving success in crop improvement, especially in breeding, Basnet said. Unlike traditional wheat variety development, successful research into hybrid wheat varieties depends largely on the willingness and active engagement of private sectors into research and seed businesses.

Basnet is working to develop a hybrid wheat foundation at CIMMYT by using new technology and existing research on hybrids. This hybrid wheat foundation will create genetic diversity within wheat to increase genetic gains and develop tools that can produce large amounts of hybrid seed.

“Currently less than one percent of wheat crops globally are hybrid wheat,” Basnet explained. “We need to continue with this research, as hybrid crops could lead to 15 to 20 percent greater yield potential and in particular higher stability, a very important trait with climate change.”

New study reveals how controlling wheat hormones can cool hot crops

MEXICO CITY, Mexico (CIMMYT) — Reductions of spike-ethylene, a plant-aging hormone, could increase wheat yields by 10 to 15 percent in warm locations, according to a recent study published in New Phytologist journal.

ravivalluru
Ravi Valluru observes wheat trials in the field at CIMMYT El Batán.

Ethylene is usually produced by plants at different developmental stages and can cause a wide range of negative effects on plant growth and development.

When hot weather hits a wheat field an increase in ethylene levels can lessen the amount of grains produced on ears or spikes by limiting the export of carbohydrates to pollen development.

“It was important to understand how different wheat varieties show yield responses to both ethylene gradients and ethylene inhibitors,” explained Ravi Valluru, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT), adding that the research was primarily done in northwestern Mexico using both landraces and modern lines under heat-stressed field conditions.

Valluru is part of a collaborative team of scientists from CIMMYT and Britain’s Lancaster University investigating ways to reduce ethylene production in wheat plants as a means to improve yields in hot weather conditions.

The team treated a diverse set of wheat varieties with silver nitrate, an inorganic compound traditionally used for medicinal and other purposes and that has been shown to control ethylene levels in plants.

“We have known for a long time that ethylene has negative effects on crop yields, but efforts have been meager so far to bring this knowledge into breeding programs,” Valluru said. “It’s very exciting that CIMMYT has initiated the important steps toward bringing the ethylene story to wheat breeding through this project.”

The study has revealed that different wheat varieties responded differently to ethylene and ethylene inhibitors. That’s good news, because breeders can then select the appropriate lines for growing in warmer climates to incorporate into breeding programs.

According to Valluru, breeders have selected for high yield over many years that has inadvertently lowered ethylene expression in modern, improved varieties.

“Being a gas, ethylene is a kind of ‘ethereal’ plant growth regulator, but when produced at higher levels, has a major impact on grain setting and root growth,” said Matthew Reynolds, head of the wheat physiology team at CIMMYT and co-author of the study. “Understanding it and determining its genetic bases are significant steps forward, and we can expect that this knowledge will be applied in breeding.”

Crop sensors sharpen nitrogen management for wheat in Pakistan

Wheat researcher with Green Seeker at Wheat Research Institute Sakrand, Sind Province, Pakistan. Photo: Sarfraz Ahmed
Wheat researcher with Green Seeker at Wheat Research Institute Sakrand, Sind Province, Pakistan. Photo: Sarfraz Ahmed

ISLAMABAD (CIMMYT) – Pakistani and the International Maize and Wheat Improvement Center (CIMMYT) scientists are working with wheat farmers to test and promote precision agriculture technology that allows the farmers to save money, maintain high yields and reduce the environmentally harmful overuse of nitrogen fertilizer.

Wheat is planted on more than 9 million hectares in Pakistan each year. Of this, 85 percent is grown under irrigation in farming systems that include several crops.

Farmers may apply nearly 190 kilograms of nitrogen fertilizer per hectare of wheat, placing a third of this when they sow and the remainder in one-to-several partial applications during the crop cycle. Often, the plants fail to take up and use all of the fertilizer applied. More precise management of crop nutrients could increase farmers’ profits by saving fertilizer with no loss of yield, as well as reducing the presence of excess nitrogen that turns into greenhouse gases.

Precision nutrient management means applying the right source of plant nutrients at the right rate, at the right time and in the right place. CIMMYT is working across the globe to create new technologies that are locally adapted to help farmers apply the most precise dosage of fertilizer possible at the right time, so it is taken up and used most effectively by the crop.

CIMMYT and the Borlaug Institute for South Asia (BISA) have developed the application “urea calculator” for cell phones. In this process, a Green Seeker handheld crop sensor quickly assesses crop vigor and provides readings that are used by the urea calculator to furnish an optimal recommendation on the amount of nitrogen fertilizer the wheat crop needs.

National partners observe the Green Seeker at work at Rice Research Institute, Kala Shah Kaku, and Punjab, Pakistan. Photo: Abdul Khalique
National partners observe the Green Seeker at work at Rice Research Institute, Kala Shah Kaku, and Punjab, Pakistan. Photo: Abdul Khalique

Tests with the crop sensor/calculator combination on more than 35 farmer fields during 2016 in Pakistan results showed that 35 kilograms of nitrogen per hectare could be saved without any loss in grain yield. This technology is being evaluated and demonstrated in Pakistan as part of the CIMMYT-led Agricultural Innovation Program (AIP), supported by the United States Agency for International Development in collaboration with Pakistan partners.

CIMMYT recently began work in four provinces of Pakistan, providing Green Seekers and training to AIP research, extension and private partners. Fifty-five specialists in all took part in training events held at the Wheat Research Institute Sakrand, Sind Province; the Rice Research Institute KSK, Punjab Province; and the Model Farm Service Center, Nowshera, Khyber Pakhtunkhwa Province.

Training and new partnerships will help national partners to demonstrate and disseminate sustainable farming practices to wheat farmers throughout Pakistan.

New Publications: How to maintain food security under climate change

Farmer Bida Sen prepares rice seedlings for transplanting in Pipari, Dang. Photo: P. Lowe/CIMMYT
Farmer Bida Sen prepares rice seedlings for transplanting in Pipari, Dang. Photo: P. Lowe/CIMMYT

El BATAN, Mexico (CIMMYT) — Wheat, rice, maize, pearl millet, and sorghum provide over half of the world’s food calories. To maintain global food security under climate change, there is an increasing need to exploit existing genetic variability and develop crops with superior genetic yield potential and stress adaptation.

Climate change impacts food production by increasing heat and water stress among other environmental challenges, including the spread of pests, according to a recent study published by researchers at the International Maize and Wheat Improvement Center (CIMMYT). If nothing is done to currently improve the crops we grow, wheat, maize and rice are predicted to decrease in both tropical and temperate regions. Wheat yields are already slowing in most areas, with models predicting a six percent decline in yield for every 1 degree Celsius increase in global temperature.

While breeding efforts in the past have traditionally focused on increasing yield rather than survival under stresses, researchers are now working to use existing genetic diversity to create varieties that can withstand extreme weather events with yield stability in both “good” and “bad” years to better prepare our global food system for future climate variability.

The study “An integrated approach to maintaining cereal productivity under climate change” concludes the opportunity to share knowledge between crops and identify priority traits for future research can be exploited to increase breeding impacts and assist in identifying the genetic loci that control adaptation. The researchers also emphasize a more internationally coordinated approach to crop phenotyping and modeling, combined with effective sharing of knowledge, facilities, and data, will boost the cost effectiveness and facilitate genetic gains of all staple crops.

Learn more about this study and other recent publications from CIMMYT scientists, below.

  1. Africa’s changing farm size distribution patterns: the rise of medium-scale farms. Jayne, T.S.; Chamberlin, J.; Traub, L.; Sitko, N.J.; Muyanga, M.; Yeboah, K.; Anseeuw, W.; Chapoto, A.; Ayala Wineman; Nkonde, C.; Kachule, R. Agricultural Economics 47 (Supple.): 197-214.
  2. An integrated approach to maintaining cereal productivity under climate change. Reynolds, M.P.; Quilligan, E.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S.; Jagadish, K.S.V.; Joshi, A.K.; Koehler, A.K.; Kosina, P.; Krishnan, S.; Lafitte, R.; Mahala, R.S.; Muthurajan, R.; Paterson, A.H.; Prasanna, B.M.; Rakshit, S.; Rosegrant, M.W.; Sharma, I.; Singh, R.P.; Sivasankar, S.; Vadez, V.; Valluru, R.; Prasad, V.P.V.; Yadav, O.P.; Aggarwal, P.K. Global Food Security 9 : 9-18.
  3. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Haghighattalab, A.; Gonzalez-Perez, L. Mondal, S.; Singh, D.; Schinstock, D.; Rutkoski, J.; Ortiz-Monasterio, I.; Singh, R.P.; Goodin, D.; Poland, J. Plant Methods 12: 35.
  4. Effect of traditional and extrusion nixtamalization on carotenoid retention in tortillas made from provitamin A biofortified maize (Zea mays L.). 2016. Rosales-Nolasco, A.; Agama-Acevedo, E.; Bello-Pérez, L.A.; Gutiérrez-Dorado, R.; Palacios-Rojas, N. Journal of Agricultural and Food Chemistry 64 (44): 8229-8295.
  5. Grain yield, adaptation and progress in breeding for early-maturingand heat-tolerant wheat lines in South Asia. Mondal, S.; Singh, R.P. Mason, E.R.; Huerta-Espino, J.; Autrique, E.; Joshi, A.K. Field Crops Research 192: 78-85.
  6. The marketing of specialty corns in Mexico: current conditions and prospects. López-Torres, J.; Rendon-Medel, R.; Camacho Villa, T.C. Revista Mexicana de Ciencias Agricolas 15: 3075-3088.
  7. Mining centuries old In situ conserved turkish wheat landraces for grain yield and stripe rust resistance genes. Sehgal, D.; Dreisigacker, S.; Belen, S.; Kucukozdemir, U.; Mert, Z.; Ozer, E.; Morgounov, A.I. Frontiers in Geenetics 7 : 201.
  8. Molecular characterisation of novel LMW-m and LMW-s genes from four Aegilops species (Sitopsis section) and comparison with those from the Glu-B3 locus of common wheat. Cuesta, S.; Guzman, C.; Alvarez, J.B. Crop and Pasture Science 67: 938-947.
  9. Relay intercropping and mineral fertilizer effects on biomass production, maize productivity and weed dynamics in contrasting soils under conservation agriculture. Mhlanga, B.; Cheesman, S.; Maasdorp, B.; Mupangwa, W.; Thierfelder, C. Journal of Agricultural Science. Online First.
  10. The evolution of the MasAgro hubs: responsiveness and serendipity as drivers of agricultural innovation in a dynamic and heterogeneous context. Camacho Villa, T.C.; Almekinders, C.; Hellin, J.; Martinez-Cruz, T.E.; Rendon-Medel, R.; Guevara-Hernández, F.; Beuchelt, T.D.; Govaerts, B. The Journal of Agricultural Education and Extension 22 (5) : 455-470.

Agricultural researchers forge new ties to develop nutritious crops and environmental farming

rothamsted
Photo: A. Cortes/CIMMYT

EL BATAN, Mexico (CIMMYT)—Scientists from two of the world’s leading agricultural research institutes will embark on joint research to boost global food security, mitigate environmental damage from farming, and help to reduce food grain imports by developing countries.

At a recent meeting, 30 scientists from the International Maize and Wheat Improvement Center (CIMMYT) and Rothamsted Research, a UK-based independent science institute, agreed to pool expertise in research to develop higher-yielding, more disease resistant and nutritious wheat varieties for use in more productive, climate-resilient farming systems.

“There is no doubt that our partnership can help make agriculture in the UK greener and more competitive, while improving food security and reducing import dependency for basic grains in emerging and developing nations,” said Achim Dobermann, director of Rothamsted Research, which was founded in 1843 and is the world’s longest running agricultural research station.

Individual Rothamsted and CIMMYT scientists have often worked together over the years, but are now forging a stronger, broader collaboration, according to Martin Kropff, CIMMYT director general. “We’ll combine the expertise of Rothamsted in such areas as advanced genetics and complex cropping systems with the applied reach of CIMMYT and its partners in developing countries,” said Kropff.

Nearly half of the world’s wheat lands are sown to varieties that carry contributions from CIMMYT’s breeding research and yearly economic benefits from the additional grain produced are as high as $3.1 billion.

Experts predict that by 2050 staple grain farmers will need to grow at least 60 percent more than they do now, to feed a world population exceeding 9 billion while addressing environmental degradation and climate shocks.

Rothamsted and CIMMYT will now develop focused proposals for work that can be funded by the UK and other donors, according to Hans Braun, director of CIMMYT’s global wheat program. “We’ll seek large initiatives that bring significant impact,” said Braun.

Partners invited to apply for allocation of second set of new CIMMYT pre-commercial hybrids

30287088794_3b3b2c1e5c_zThe International Maize and Wheat Improvement Center (CIMMYT) is offering a second set of  new improved maize hybrids to partners in eastern Africa and similar agroecological zones, to scale up production for farmers in these areas.

National agricultural research systems and seed companies are invited to apply for the allocation of these pre-commercial hybrids, after which they will be able to register, produce and offer the improved seed to farming communities.

The deadline for applications is 07 February 2017.

The application form can be downloaded here.

The full announcement, with information about regional trials, can be found here.

Breaking Ground: Carolina Sansaloni explores and unlocks genetic potential from wheat genebanks

twitterbg3

Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Carolina Sansaloni’s passion for genetics began when she was at Universidad de Misiones in Posadas, Misiones, Argentina, an interest that grew as she moved on to receive her master’s and doctoral degrees in molecular biology at Universidad de Brasilia in Brazil.

While completing her doctorate degree, Sansaloni travelled to Canberra, Australia to research the genomic structure of the eucalyptus tree at Diversity Arrays Technology (DArT), learning the ins and outs of sequencing technology.

In 2012, the International Maize and Wheat Improvement Center (CIMMYT) wanted to introduce the DArT genotyping technologies to Mexico to serve the needs of the Mexican maize and wheat research communities, and once Sansaloni finished her doctoral degree, she was an obvious choice to lead this initiative.

Working under the MasAgro Biodiversidad project in partnership with DArT, INIFAP and CIMMYT, Sansaloni helped to build the Genetic Analysis Service for Agriculture (SAGA in Spanish) from the ground up.

The service, managed by the CIMMYT-based Seeds of Discovery (SeeD) initiative, brings cutting edge genotyping capacity and genetic analysis capability to Mexico. The facility provides unique insights into the genetic variation of wheat and maize at a “sequence level.” Use of the vast quantities of data generated help understand genetic control of characteristics evaluated at a plant or crop level for example, height variations among wheat varieties.

SAGA’s services are available for all CIMMYT scientists, universities, national agriculture research programs and private companies. Worldwide, few other platforms produce this kind of data and most are inaccessible to scientists working at publicly funded institutions because their economic or logistics difficulties.

“When it comes to genotyping technology, it doesn’t matter what type of organism you are working with. It could be wheat, eucalyptus or chicken –  the machine will work the same way,” explained Sansaloni.

Sansaloni has also been focusing her time on the wheat Global Diversity Analysis, which characterizes and analyzes seeds in genebanks at both CIMMYT and the International Center for Agricultural Research in Dry Areas (ICARDA). Her team has characterized approximately 100,000 wheat accessions including 40 percent of the CIMMYT genebank and almost 100 percent of the ICARDA genebank wheat collection. This is an incredible and unique resource for wheat scientists providing a genetic framework to facilitate selection of the most relevant accessions for breeding.

“Currently only five to eight percent of materials in the genebank are being used in the breeding programs,” Sansaloni said. “The Global Diversity Analysis could have huge impacts on the future of wheat yields. It is like discovering the pieces of a puzzle, and then beginning to understand how these pieces can fit together to build excellent varieties of wheat.”

Sansaloni’s goal is to combine information from CIMMYT and ICARDA, making the information accessible to the entire wheat community and eventually enhancing breeding programs across the globe.

“Working at CIMMYT has been an invaluable experience,” Sansaloni said. “I’ve had the opportunity to work and collaborate with so many different people, and it’s brought me from the laboratory into the wheat fields, which really brings me closer to my work.”

SeeD is a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro project. SeeD receives additional funding from the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP), and from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

Water-saving maize holds potential to boost farmer resilience to climate change in Pakistan

Evaluating CIMMYT's white maize germplasm at CCRI. Photo: CIMMYT
Evaluating CIMMYT’s white maize germplasm at CCRI. Photo: CIMMYT

ISLAMABAD (CIMMYT) – New varieties of white maize in Pakistan have the potential to both quadruple savings of irrigation water and nearly double crop yields for farmers, thereby building food security and conserving badly needed water resources for the country.

Maize is the third most important cereal crop in Pakistan, which at a production rate of four tons per hectare, has one of the highest national yields in South Asia. Maize productivity in Pakistan has increased almost 75 percent from levels in the early 1990s due to the adoption and expansion of hybrid maize varieties. The crop is cultivated both in spring and autumn seasons and grows in all provinces throughout the country.

However, Pakistan is expected to be severely affected by climate change through increased flooding and drought, and is already one of the most water stressed countries in the world. If the country is to be able to meet future food demand, new maize varieties that can grow with less water under harsher conditions must be developed and adopted by farmers.

The Cereal Crops Research Institute (CCRI) in Pakistan’s Khyber Pakhtunkhwa province – an area particularly reliant on white maize for food, unlike other parts of the country where yellow maize is predominantly used for animal feed – recently tested nine white maize varieties (hybrids and open-pollinated varieties) provided by the International Maize and Wheat Improvement Center (CIMMYT) that demonstrated tolerance to water stress conditions.

Two of the early-maturing, open-pollinated varieties gave above average seed yields even though farmers irrigated the fields just twice, compared to the usual eight to ten times necessary with currently grown varieties. These varieties can also be harvested in less than 100 days and yield seven to 10 tons per hectare (ha) under good management practices – over twice the national average of four tons per ha – giving farmers time to grow another crop within the same season and produce nearly double the current national average yield.

Team of researchers evaluating CIMMYT's white maize germplasm at CCRI. Photo: CIMMYT
Team of researchers evaluating CIMMYT’s white maize germplasm at CCRI. Photo: CIMMYT

CCRI will distribute about 1000 kilograms of these seeds to about 100 farmers across the province in the coming autumn season, which farmers will be allowed to keep for subsequent seasons. These varieties will not only contribute to climate mitigation strategies but also help farmers adopt new, sustainable cropping systems. In addition to meeting food demand, these new varieties also can alleviate the scarcity of livestock feed in Pakistan, contributing to the country’s food and nutritional security.

The CIMMYT-led Agricultural Innovation Program (AIP), which receives support from the United States Agency for International Development, is helping to bring affordable, climate resilient and water efficient maize options to market. Since the launch of the program in 2013, Pakistani researchers have identified more than 80 CIMMYT hybrids and open-pollinated varieties that are well adapted to the country’s diverse environments.

Learn more about how AIP is sustainably increasing agricultural productivity across Pakistan here.

Breaking Ground: Scientist Deepmala Sehgal on the trail of novel wheat diversity

Breaking Ground is a regular series featuring staff at CIMMYT

Deepmala Sehgal, wheat geneticist and molecular breeder at CIMMYT. Photo: M. Listman/CIMMYT
Deepmala Sehgal, wheat geneticist and molecular breeder at CIMMYT. Photo: M. Listman/CIMMYT

EL BATAN, Mexico (CIMMYT) — Molecular analysis research by Deepmala Sehgal, a wheat geneticist and molecular breeder who joined the International Maize and Wheat Improvement Center (CIMMYT) as an associate scientist in 2013, has led to the discovery of novel genes for yield, disease resistance and climate resilience in previously little-used wheat genetic resources.

But getting to the point of applying cutting-edge DNA marker technology to support CIMMYT wheat breeding has involved a few dramatic moves for the New Delhi native, who studied botany throughout middle school and university. “I loved science and chose plant science, because I enjoyed the field trips and didn’t like dissecting animals,” Sehgal said, explaining her choice of profession.

It wasn’t until she was studying for her Ph.D. at Delhi University in 2008 that she first used molecular markers, which are DNA segments near genes for traits of interest, like drought tolerance, and which can help breeders to develop improved crop varieties that feature those traits.

“For my thesis, I used molecular markers in a very basic way to analyze the diversity of safflower species that the U.S. Department of Agriculture had in its gene bank but didn’t know how to classify. I found a place for some and, for several, had to establish completely new subspecies,” Sehgal said.

Later, as a post-doctoral fellow at the University of Aberystwyth in Britain, Sehgal used an approach known as fine mapping of quantitative trait loci (QTL), for drought tolerance in pearl millet. “The aim of fine mapping is to get shorter QTL markers that are nearer to the actual gene involved,” she explained, adding that this makes it easier to use the markers for breeding.

As it turned out, Sehgal’s growing proficiency in molecular marker research for crops made her suited to work as a wheat geneticist at CIMMYT.

“By 2013, CIMMYT had generated a huge volume of new data through genotyping-by-sequencing research, but those data needed to be analyzed using an approach called “association mapping,” to identify markers that breeders could use to select for specific traits. My experience handling such data and working with drought stress gave me an in with CIMMYT.”

Based at CIMMYT’s Mexico headquarters, Sehgal currently devotes 70 percent of her time to work for the CIMMYT global wheat program and the remainder for Seeds of Discovery, a CIMMYT-led project supported by Mexico’s Ministry of Agriculture, Livestock, Fisheries and Food (SAGARPA), which aims to unlock new wheat genetic diversity able to address climate change challenges.

Over the last two years, she has served as lead author for two published studies and co-author for four others. One used genotyping-by-sequencing loci and gene-based markers to examine the diversity of more than 1,400 spring bread wheat seed collections from key wheat environments. Another applied genome-wide association analysis on a selection of landrace collections from Turkey.

“In the first, we discovered not only thousands of new DNA marker variations in landraces adapted to drought and heat, but a new allele for the vernalization gene, which influences the timing of wheat flowering, and new alleles for genes controlling grain quality, all in landraces from near wheat’s center of origin in Asia and the Middle East.”

Sehgal acknowledges the as-yet limited impact of molecular markers in wheat breeding. “Individual markers generally have small effects on genetically complex traits like yield or drought tolerance; moreover, many studies fail to account for “epistasis,” the mutual influence genes have on one another, within a genome.”

To address this, she and colleagues have carried out the first study to identify genomic regions with stable expression for grain yield and yield stability, as well as accounting for their individual epistatic interactions, in a large sample of elite wheat lines under multiple environments via genome wide association mapping. A paper on this work has been accepted for publication in Nature Scientific Reports.

Sehgal has found her experience at CIMMYT enriching. “I feel free here to pursue the work I truly enjoy and that can make a difference, helping our center’s wheat breeders to create improved varieties with which farmers can feed a larger, more prosperous global population in the face of climate change and new, deadly crop diseases.”

Surface water irrigation has the potential to boost cereal productivity in Bangladesh

CIMMYT’s interventions on cropping intensification in Southern Bangladesh look beyond surface water irrigation to ensure long-term environmental sustainability. Photo: T. Krupnik/CIMMYT
CIMMYT’s interventions on cropping intensification in Southern Bangladesh look beyond surface water irrigation to ensure long-term environmental sustainability. Photo: T. Krupnik/CIMMYT

DHAKA, Bangladesh (CIMMYT) – For the first time, researchers have mapped rivers and freshwater canals in southern Bangladesh using geospatial tools as part of a new initiative to help farmers in monsoon and rainfed systems transition to sustainable farming methods. Essential to this transition is the use of surface water for irrigation, which is less costly and more environmentally friendly than extracting groundwater.

A new study by the International Maize and Wheat Improvement Center (CIMMYT) indicates that by switching to surface water irrigation, farmers can greatly increase crop production, even in the face of soil and water salinity constraints. It identified over 121,000 hectares (ha) of currently fallow and rainfed cropland that could be placed under irrigation. Dry season wheat and maize production would also increase significantly, thereby greatly benefiting national cereal productivity.

Access to irrigation is needed to ensure crops will grow during southern Bangladesh’s dry season, a challenge for farmers who have traditionally relied on rainfed cultivation. Extracting groundwater for irrigation is energy-intensive, but southern Bangladesh has a dense network of rivers and natural canals that can be used for surface water irrigation.

In order to maximize productivity without expanding to new land, farmers in southern Bangladesh will need to rotate at least two crops per year. By using crop rotation, an SI practice that can boost yields, increase profits, protect the environment, and improve soil function and quality, farmers can grow different crops on the same plot, minimizing crop expansion into forests.

Surface water irrigation can increase cereal productivity and intensify cropping systems, even in the face of soil and water salinity constraints. Photo: T. Krupnik/CIMMYT
Surface water irrigation can increase cereal productivity and intensify cropping systems, even in the face of soil and water salinity constraints. Photo: T. Krupnik/CIMMYT

As South Asia’s population continues to rise and more people move out of poverty, changing dietary preferences are increasing the demand for wheat and maize, while maintaining the demand for rice. However, the average increase in the yield potential of staple crops since the 1960s has been negligible, while farm area per capita has shrunk more than 60 percent to just a tenth of a hectare per person, according to 2014 World Bank Indicators.

The Government of Bangladesh recently adopted land- and water-use policies to support agricultural development in southern Bangladesh by calling for donors to invest over $7 billion. Of these funds, $500 million will be allocated for surface water irrigation to help farmers transition from monsoon rice-fallow or rainfed systems to intensified double-cropping systems.

Future interventions on cropping intensification in southern Bangladesh must look beyond surface water irrigation to assess where conjunctive use of groundwater might be needed and to ensure long-term environmental sustainability. While research results support the targeted use of surface water irrigation alongside improved water governance measures, more viable crop diversification options must be explored and the environmental impact of large-scale irrigation development needs to be assessed.

Building on this study, the CIMMYT-led Cereal Systems Initiative for South Asia will work with national agricultural research systems, government and private sector partners to develop policy and market interventions that continue to build sustainable intensification strategies for both irrigated and rainfed systems across southern Bangladesh.

To read the full study, click here.

Breaking Ground: Jiafa Chen on improving maize and building partnerships

Breaking Ground is a regular series featuring staff at CIMMYT

chen
Jiafa Chen, a statistical and molecular geneticist at CIMMYT. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – Maize has always been an integral part of Jiafa Chen’s life.

Chen, a statistical and molecular geneticist at the International Maize and Wheat Improvement Center (CIMMYT), has helped identify new genetic resources that have the potential to be used to breed new maize varieties that withstand a variety of environmental and biological stresses. He has also played a significant role in the development of a recent partnership between CIMMYT and Henan Agricultural University (HAU) in China.

Born in Henan – a province in the fertile Yellow River Valley known for its maize and wheat production – Chen’s family grew maize, which was a major source of income and led to his interest in breeding the crop as a means to help small farmers in China. He went on to study agriculture at HAU, where he focused on maize at a molecular level throughout undergraduate and graduate school, then came to CIMMYT as a postdoctoral researcher in 2013.

“Coming to CIMMYT was natural for me,” Chen said. “CIMMYT’s genebank – which holds over 28,000 maize accessions – offered a wide array of genetic resources that could help to breed varieties resistant to disease and abiotic stress which are large challenges in my country.”

Over Chen’s four years at CIMMYT headquarters near Mexico City, he has helped characterize CIMMYT’s entire maize genebank using DArTseq, a genetic fingerprinting method that can be used to help identify new genes related to traits like tolerance to heat under climate change, or resistance to disease.  This research is being used to develop maize germplasm with new genetic variation for drought tolerance and resistance to tar spot complex disease.

“Conserving and utilizing biodiversity is crucial to ensure food security for future generations,” Chen said. “For example, all modern maize varieties currently grown have narrow genetic diversity compared to CIMMYT’s genebank, which holds some genetic diversity valuable to breed new varieties that suit future environments under climate change. CIMMYT and other genebanks, which contain numerous crop varieties, are our only resource that can offer the native diversity we need to achieve food security in the future.”

Chen moved back to China this month to begin research at HAU as an assistant professor, where he will continue to focus on discovering new genes associated with resistance to different stresses. Chen was the first student from HAU to come to CIMMYT, and has served as a bridge between the institutions that officially launched a new joint Maize and Wheat Research Center during a signing ceremony last week.

The new center will focus on research and training, and will host four international senior scientists with expertise in genomics, informatics, physiology and crop management. It will be fully integrated into CIMMYT’s global activities and CIMMYT’s current collaboration in China with the Chinese Agricultural Academy of Sciences.

“I think through the new center, CIMMYT will offer HAU the opportunity to enhance agricultural systems in China, and will have a stronger impact at the farm level than ever before,” Chen said. “I also think HAU will have more of an opportunity to be involved with more global agricultural research initiatives, and become a world-class university.”

receive newsletter

New Publications: Africa’s future cereal production

Cereal yields in sub-Saharan Africa must increase to 80 percent of their potential by 2050 to meet the enormous increase in demand for food. Photo: J. Siamachira/CIMMYT
Cereal yields in sub-Saharan Africa must increase to 80 percent of their potential by 2050 to meet the enormous increase in demand for food. Above, Phillis Muromo, small-scale farmer in Zaka in Zimbabwe. Photo: J. Siamachira/CIMMYT

EL BATAN, Mexico (CIMMYT) — Cereal yields in sub-Saharan Africa must increase to 80 percent of their potential by 2050 to meet the enormous increase in demand for food, according to a new report.

Currently, sub-Saharan Africa is among the regions with the largest gap between cereal consumption and production, with demand projected to triple between 2010 and 2050. The study “Can Sub-Saharan Africa Feed Itself?” shows that nearly complete closure of the gap between current farm yields and yield potential is needed to maintain the current level of cereal self-sufficiency by 2050. For all countries, such yield gap closure requires a large, abrupt acceleration in rate of yield increase. If this acceleration is not achieved, massive cropland expansion with attendant biodiversity loss and greenhouse gas emissions or vast import dependency are to be expected.

Learn more about how Africa can meet future food demand in the feature “Can sub-Saharan Africa meet its future cereal food requirement?” and check out other new publications from CIMMYT scientists below.

  • Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). 2016. Zaidi, P.H.; Seetharam, K.; Krishna, G.; Krishnamurthy, S.L.; Gajanan Saykhedkar; Babu, R.; Zerka, M.; Vinayan, M.T.; Vivek, B. Plos one, 11(10): e0164340.
  • Can sub-Saharan Africa feed itself? 2016. Ittersum, M.K. van; Bussel, L.G.J. van; Wolf, J.; Grassini, P.; Wart, J. van; Guilpart, N.; Claessens, L.; De Groote, H.; Wiebe, K.; Mason-D’Croz, D.; Haishun Yang; Boogaard, H.; Oort, P.J.A. van; Van Loon, M.P.; Saito, K.; Adimo, O.; Adjei-Nsiah, S.; Agali, A.; Bala, A.; Chikowo, R.; Kaizzi, K.; Kouressy, M.; Makoi, J.H.; Ouattara, K.; Kindie Tesfaye Fantaye; Cassman, K.G. Proceedings of the National Academy of Sciences of the United States of America PNAS, 113 (52): 14964-14969.
  • QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. 2016. Velu, G.; Yusuf Tutus; Gomez-Becerra, H.F.; Yuanfeng Hao; Demir, L.; Kara, R.; Crespo-Herrera, L.A.; Orhan, S.; Yazici, A.; Singh, R.P.; Cakmak, I. Plant and Soil, online first.
  • Control of Helminthosporium leaf blight of spring wheat using seed treatments and single foliar spray in Indo-Gangetic Plains of Nepal. 2016. Sharma-Poudyal, D.; Sharma, R.C.; Duveiller, E. Crop Protection, 88: 161-166.
  • Breeding value of primary synthetic wheat genotypes for grain yield. 2016. Jafarzadeh, J.; Bonnett, D.G.; Jannink, J.L.; Akdemir, D.; Dreisigacker, S.; Sorrells, M.E. Plos one, 11 (9): e0162860.

 

 

Participatory scaling of climate-smart agriculture

Introducing climate change in Bihar’s Krishi road map. Photo: CIMMYT-BISA
Introducing climate change in Bihar’s Krishi road map. Photo: CIMMYT-BISA

BIHAR, India (CIMMYT) — Rich endowment of fertile soil, adequate rainfall and sufficient ground water makes agriculture key to the overall development of the economy of the state of Bihar in India. Farm mechanization to enhance cropping intensity, reduce labor requirements and improve farm production efficiency is a vital policy initiative taken by Bihar’s Department of Agriculture to address the shrinking area under cultivation. Although the state government has accorded top priority to agriculture, the action plan (the so-called Krishi road map) it has prepared for the agriculture sector does not include a strategy for climate change mitigation.

Extreme climatic vulnerability keeps Bihar’s agricultural productivity low. It is the only state in the country where drought and flood recurrently occur at the same time. To overcome these adverse conditions, the government of Bihar is trying to re-orient agriculture by enacting diversification policies and other measures such as irrigation, flood control and drainage schemes. It has also been involved in climate-smart agriculture (CSA) work and pilot climate-smart villages (CSVs) undertaken by CIMMYT and the Borlaug Initiative for South Asia (BISA) and other collaborators. Concerns about climate change challenges were shared by Nitish Kumar, Bihar’s chief minister, with CIMMYT Director General Martin Kropff during his recent visit to Bihar. They also discussed local community collaboration with researchers, policymakers and scientists on establishing a strategic approach to scale sustainable intensification based on conservation agriculture.

Throughout 2016, traveling seminars and workshops were organized in CSVs to disseminate knowledge about climate-smart agriculture practices (CSAPs). Highlighted at these events were the benefits of direct-seeded rice, laser land leveling, bed planting, residue management, site-specific nutrient management, the GreenSeeker sensor, zero tillage, crop diversification, intensification with legume incorporation, information & communications technologies and weather forecasting. During a stakeholder consultation in September 2016 led by Vijoy Prakash, Bihar’s Agriculture Production Commissioner, CIMMYT-BISA shared its CSA experiences. Addressing the need to incorporate climate change into the Krishi road map, the Chief Minister and other senior government officials visited the CSA research sites at BISA-Pusa and the CSV pilots in Samastipur District implemented by CCAFS, CIMMYT and BISA. Bihar’s Agriculture Minister Vijay Kumar Choudhary also visited 30 CIMMYT-BISA pilot CSVs in Samastipur and Vaishali Districts.

Farmers sharing their experiences with climate-smart practices during a field visit by the Chief Minister of Bihar. Photo: CIMMYT-BISA
Farmers sharing their experiences with climate-smart practices during a field visit by the Chief Minister of Bihar. Photo: CIMMYT-BISA

The Bihar Agricultural Management and Training Institute (BAMETI) issued a letter to CIMMYT stating that the government of Bihar plans to implement CSA and CSVs in all 38 districts of Bihar. BAMETI is responsible for organizing need-based training programs for the farming community. The Bihar’s Department of Agriculture is also preparing a proposal to introduce CSAPs to improve the resilience of farmers by mainstreaming CSVs in Bihar with technical and strategic support from CIMMYT, BISA and CCAFS in collaboration with Rajendra Agricultural University, Bihar Agricultural University and the ICAR research complex for the eastern region. Based on the success of CSVs, the linkages with CIMMYT will help fulfill Bihar’s innovative Krishi road map. Commending the work done in farmers’ fields and its relevance for addressing climate challenges from a farming systems perspective, Chief Minister Kumar sent a letter to CIMMYT’s DG on the occasion of CIMMYT’s 50th anniversary.

Since then, several field days, workshops and meetings have been conducted by CIMMYT-BISA in collaboration with other partners to fulfill the Krishi road map. On October 7, 2016, a field day on “Direct-Seeded Rice in Climate-Smart Villages’’ was held at CSV Digmbra with more than 300 farmers, service providers, NGOs, private companies and state agriculture department representatives participating, as well as scientists from Krishi Vikas Kendra University and CIMMYT.

Among the subjects discussed were CSA interventions implemented through innovative partnerships with farmers and farmer cooperatives to build farmers’ resilience to climate change and increase their productivity and incomes, while mitigating greenhouse gas emissions from agriculture. Samastipur’s district magistrate reported that the government of Bihar is supporting farmers’ adoption of improved technologies by providing them with subsidies for mechanization, irrigation and improved seed. Finally, several progressive farmers shared their experiences with climate-smart practices and encouraged other farmers to adopt them in order to improve their livelihoods.