The conflict between Russia and Ukraine has impacted exports of wheat, barley and fertilizers, affecting food security in many regions that rely heavily on imports to access these products. The UN Food and Agricultural Organization (FAO) and the World Food Programme predict that acute food insecurity will affect up to 205 million people by early 2023, with conditions deteriorating further in 19 countries.
Redesigning agricultural systems to solve this challenge must also take climate change into account: research published in Nature Food suggests that food systems cause a third of global greenhouse gas (GHG), while use and misuse of fertilizers, pesticides, energy, and water damages biodiversity.
The private sector is missing out on opportunities to invest in the agricultural sector and be part of the solution due to the challenges of putting a price on something like ‘protecting biodiversity’.
Director of CIMMYT’s global wheat program Alison Bentley says that while overseas development assistance and national governments provide significant support to the organization, private finance does play a role. “We have some really nice collaborations with the private sector, which allow us to access technology. The private sector, in the space of plant genetics and plant breeding, has pioneered some methodologies and technologies,” she tells GTR.
“Crossing elite lines with exotic material has its challenges,” said Matthew Reynolds, co-author of the study and leader of Wheat Physiology at CIMMYT. “There’s a well-recognized risk of bringing in more undesirable than desirable traits, so this result represents a significant breakthrough in overcoming that barrier and the continued utilization of genetic resources to boost climate resilience.”
These results can be used to improve crop resilience and food security in the face of the challenges posed by climate change, as well as emphasizing the importance of genetic diversity in key crops where selective breeding has reduced adaptability.
Fall armyworm (FAW) is present in 109 countries in Africa, the Middle East, South and East Asia, and Oceania, and it has spread due to rapid increases in global trade. Maize is highly susceptible to the disease, but it affects more than 300 plant species.
Research by organizations such as the International Maize and Wheat Improvement Center (CIMMYT), CGIAR and CABI has developed effective strategies and tools for managing the disease, such as improved seed, proven agronomic practices, and biologic and chemical crop-protection tools.
An article in The Farming Forum explores FAW prevention developments and partnerships that are helping smallholder farmers protect their crops against this devastating disease.
In an interview, Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), highlights the challenges facing crop cultivation management and agricultural product trade in Mexico and the rest of the world.
“At present, one of the most pressing challenges [in Mexico] is water scarcity exacerbated by la Niña’s occurrence,” explains Govaerts. “The global average of freshwater consumption for food production is 70 percent. However, Mexico ranks 24 in a global Water Stress Index facing high levels of stress by consuming between 40 and 80 percent of water supplies available in any given year.”
The article explores successful local sustainable grain sourcing projects in Mexico, research into sustainable global agricultural development, genetically-modified crops and their connection to biodiversity, and soil health.
Through examples from Egypt, Malaysia and Mexico, the authors explain the benefits of “co-culture”, such as when different crop species are grown together.
This innovation centers on co-design, combining farmer-centric models and new measurement tools that allow scientific advances to benefit a variety of smallholder production systems.
A recent study by Harvard University, the Jet Propulsion Laboratory, Environmental Defense Fund (EDF), the University of Michigan, the Public Health Foundation of India, the International Maize and Wheat Improvement Center (CIMMYT), Columbia University, and the University of California, Los Angeles, has determined the environmental impact of a government policy of delayed rice planting in northwest India.
“We have shown that the groundwater and air quality crises are major regional issues and are interconnected,” said co-author Balwinder-Singh, former Cropping System Scientist at the International Maize and Wheat Improvement Center (CIMMYT) in New Delhi. “But there is still a path to clearer skies and safer water practices. Local solutions include planting rice varieties that either grow more quickly or need less water. Promoting less water-demanding crops like maize would be helpful in zones with severe groundwater depletion.”
To test solutions that could mitigate the impacts of drought, the study used randomized control trials to test the impact of combining drought-resistant seeds and index insurance in Mozambique and Tanzania.
Results show that combining these two technologies expands their benefits: using the improved seeds reduces insurance costs, and having insurance to begin with counteracts the risk of adopting the seeds. Farmers who use both technologies have greater resilience to drought in the short- and long-term.
Demonstrating the benefits to farmers and informing the scaling-up of the solution-bundling approach was also found to be important.
In this article, Temina Lalani-Shariff, Regional Director of South Asia at CGIAR, explores the evolution of CGIAR to meet changing global needs, such as the critical challenge of ending hunger, poverty and inequality across South Asia by 2030 while reaching the climate goals of each country. “A reinvented CGIAR can offer greater flexibility and leadership in three key areas to accelerate the region’s agricultural development and its multiplier benefits for livelihoods, health and climate action,” said Lalani-Shariff.
Highlighting work by the International Maize and Wheat Improvement Center (CIMMYT) to target the spread of crop pests and diseases in Kenya, Lalani-Shariff explains how this success can transfer to fighting fall armyworm (FAW) in South Asia. She cites CGIAR’s experience in scaling innovations and solutions in a variety of agroecologies and environments in partnership with national research institutes, as well as examples from the Seeds Without Borders Initiative and climate-smart villages.
Lalani-Shariff explains the purpose of CGIAR’s Regional Integrated Initiative Transforming Agrifood Systems in South Asia (TAFSSA), which is combining efforts in South Asia to achieve agrifood systems that are more productive and environmentally sound, and support equitable access to sustainable, nutritious diets. Collaboration between CGIAR research centers on Initiatives like this offers opportunities to build effective networks and partnerships for addressing future challenges.
The Global South, where work is more locally contextualized and applied, can end up excluded due to the existing reward structure, which rewards pure science first, then applied research and outreach.
As part of her decolonization toolkit, Snapp recommends ways to champion inclusivity, such as following a participatory research approach to create new knowledge, advocacy through authorship, and using alternative indices for performance evaluations.
Wheat pathologist and geneticist Zhognhu He explained the spread of plant diseases such as wheat scab, which is spreading due to factors such as climate change and could threaten grain security and food safety. His work in wheat disease resistance using the vast germplasm resources in China is helping farmers worldwide.
China has also provided thousands of wheat germplasm resources to CIMMYT’s genebank in Mexico, contributing towards the development of new varieties.
“Agriculture systems are sensitive to climate change because they are dependent on stable, long-term conditions to determine productivity, quality and yields,” said Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT) and the conference’s keynote speaker. “Farmers are struggling to cope with climate risks and their ability to meet rising global food demands.”
Breeding maize and wheat with traits resistant to the consequences of climate change, such as flooding, drought, and heat, moving growing areas to amenable climates, and promoting soil health and biodiversity were all proposed as solutions to address the challenges highlighted by Govaerts.
Since the outbreak of FAW was reported in 2016, maize yields have dropped by between 30-50 percent, increasing the country’s challenges for food security.
Prasanna Boddupalli, Director of the Global Maize Program at CIMMYT, said, ″We want farmers to dissociate from application of synthetic toxic pesticides and chemicals but revert to use of combined approaches like use of resistant varieties, bio-pesticides and related biological control methods that are environmentally friendly.”
Preliminary assessment of the viability of naturally tolerant maize varieties from Mexico suggests that at least two or three resistant varieties may be approved after certification from the regulator.
The largest real-world test of grains that grow year after year without replanting is showing promise for saving money, helping the environment, and reducing labor in China.
Initial trials with perennial rice as part of the Sustainable Agrifood Systems (SAS) program by the International Maize and Wheat Improvement Center (CIMMYT) suggest the crop could be a game changer for agriculture and food security.
The next phase of the research will determine whether farmers wish to adopt Perennial Rice 23 (PR23), which has been developed by breeding an Asian variety of rice with a wild, perennial relative from Nigeria.
AGG is a collaborative project led by the International Maize and Wheat Improvement Center (CIMMYT) bringing together global partners to advance the development of higher-yielding varieties.
This field day was organized by the Crops Research Institute at Ghana’s Council for Scientific and Industrial Research (CSIR-SARI), the International Institute of Tropical Agriculture (IITA) and the department of agriculture.
During the event, researchers aimed to encourage farmer adoption by familiarizing them with the stress-tolerant hybrids and emphasizing the high and stable grain yields.