Skip to main content

Wheat titan honored posthumously by India

India has conferred posthumously upon Sanjaya Rajaram, 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), its prestigious 2022 Padma Bhushan Award in “Science and Engineering” in recognition of “distinguished service of high order.”

Among the most successful crop breeders in history, Rajaram, who passed away in 2021, personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties that were grown on at least 58 million hectares in over 50 countries, increasing global wheat production by more than 200 million tons and especially benefiting hundreds of millions of the resource-poor whose diets and livelihoods depend on this critical crop. In India and the neighboring South Asian nations of Bangladesh, Nepal, and Pakistan, inhabitants consume more than 120 million tons of wheat and wheat-based foods each year.

“Dr. Rajaram was a true titan of wheat breeding and an inspiration for young researchers, training and mentoring more than 700 scientists from developing countries worldwide,” said Bram Govaerts, CIMMYT director general. “He was also a complete gentleman, comporting himself with modesty and grace despite his many honors and accomplishments; his first priority was helping and crediting others. Rajaram is an example today for all of us to keep working with the final stakeholder — the farmer — in mind.”

The rise from rural beginnings

Born on a small farm in District Varanasi, Uttar Pradesh, India, in 1943, Rajaram studied genetics and plant breeding at the Indian Agricultural Research Institute in New Delhi. After receiving his Ph.D. from the University of Sydney, he joined CIMMYT in 1969, working as a wheat breeder alongside Nobel Prize Laureate and CIMMYT scientist Norman Borlaug in Mexico. Recognizing his talent and initiative, Borlaug appointed Rajaram as head of CIMMYT’s wheat breeding program at just 29 years of age.

The Padma Bhushan Award was announced by President Ram Nath Kovind of India on the country’s Republic Day, January 26. In 2015, Rajaram received the Pravasi Bharatiya Samman award, the highest honor conferred on Indians overseas. In 2001 he accepted the Padma Shri award from the government of India and, in 1998, the Friendship Award from the government of China.

Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)
Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)

Though a plant breeder and scientist by profession, Rajaram used the platform of his 2014 World Food Prize to promote an expansive, integrated vision for agricultural development. “If we want to make a change, research won’t do it alone; we need to work directly with farmers and to train young agronomists, ensuring they have a broad vision to address the problems in farmers’ fields,” Rajaram said at a news conference in Mexico City in 2014.

Rajaram also served as Director of the Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA) before formally retiring in 2008. In his retirement, he continued as a special scientific advisor to CIMMYT and ICARDA.

Longstanding partners pushing forward for farmers

“India’s agricultural research community is proud of the distinguished achievements of Dr. Rajaram,” said Trilochan Mohapatra, Director General of the Indian Council of Agricultural Research (ICAR) and Secretary of the Department of Agricultural Research and Education (DARE), of India’s Ministry of Agriculture and Farmers’ Welfare. “ICAR greatly appreciates its valuable collaborations with CIMMYT to help farmers grow better crops and conserve resources under increasingly challenging conditions.”

The partnership of India with CIMMYT harks back to the 1960s-70s, when Indian farmers tripled national wheat yields in a few years by growing Borlaug’s high-yield wheat varieties and adopting improved farming practices.

In 2011, India and CIMMYT jointly launched the Borlaug Institute for South Asia (BISA) to improve cropping systems and food security, helping farmers to confront climate change and natural resource scarcities, among other challenges.

S. Ayyappan, former ICAR Director General who signed the joint declaration of intent for BISA’s establishment in India, has been honored with the 2022 Padma Shri Award.

CIMMYT is a non-profit international agricultural research and training organization focusing on two of the world’s most important cereal grains, maize and wheat, and related cropping systems and livelihoods. Wheat varieties derived from CIMMYT and ICARDA research cover more than 100 million hectares — nearly two-thirds of the area sown to improved wheat worldwide — and bring benefits in added grain worth as much as $3.8 billion each year.

How interactions among hidden enemies and drought effects grain yield and disease severity in bread wheat

In nature, plants are simultaneously exposed to a complex system of biotic and abiotic stresses that limit crop yield. The cereal cyst nematode Heterodera filipjevi and dryland crown rot, caused by Fusarium, are important diseases facing cereal production around the world that cause significant yield loss. Yield loss accelerates when those diseases coexist with other abiotic stresses, such as drought.

Hexaploid bread wheat (Triticum aestivum L.) is an essential staple food for a large part of the world’s population, covering around 20% of daily caloric intake in the human diet, with global production at about 670.8 million tons per year, produced over 215.4 million hectares of land worldwide. Therefore, the program studying soil-borne pathogens at the International Maize and Wheat Improvement Center (CIMMYT)’s Turkey office initiated a study to investigate the effect of soil borne diseases (H. filipjevi and Fusarium culmorum) individually and in combination with drought on some morphological and physiological traits in wheat germplasm with different genetic tolerances to the three studied factors.

In this study, yield components included thousand kernel weight, spike weight, seed per spike and total grain yield. Morphological parameters, including plant height, final plant number (seedling emergence), relative water content, leaf chlorophyll content, H. filipjevi cyst number and presence of crown rot, were studied under greenhouse conditions in Turkey.

The main findings of the study showed that the interaction among water stress, F. culmorum and H. filipjevi increased the damage on the wheat parameters studied when compared with each stress applied alone. One of the most significant damages was seen in high seedling mortality under the three combined stresses (56% seedling death rate), which indicates the damage on wheat yield might occur at the seedling stage rather than later stages. This reduces plant density per area, which was ultimately responsible for low grain yield produced. The known dryland disease, crown rot, caused by F. culmorum, was significantly pronounced under water-stressed conditions.

In all studied parameters, the lowest damage was found among the resistant cultivars to biotic or abiotic stresses. This underscores the importance of wheat breeding programs to develop resistant germplasm, and reminds farmers to replace their old, susceptible varieties with new, resistant ones.

Based on our intensive experience in the CWANA region, most wheat growers basically do not recognize soil borne pathogens as a problem. In fact, most of them do not know that what nematode or soil fungal species are in their fields affecting yield. The term “hidden enemy” perfectly applies to the problems in the region and beyond. Integrated pest management (IPM) is, however, not practiced in the entire region and soil borne pathogen-induced yield losses are simply accepted.

We can conclude from this study that yield reduction in wheat due to soil borne pathogens could be lessened by improving and understanding the concept of IPM in the region where the practice of winter mono-culturing of wheat is the norm. Management of cereal soil-borne pathogens, especially cereal cyst nematode and crown rot, could involve an integrated approach that includes crop rotation, genetic resistance, crop nutrition and appropriate water supply.

Cover photo: Four different test crops show different stresses: T1V8 = Drought, T2V8 = Drought and Nematodes, T3V8 = Drought and fungus, T4V8 = Drought and nematode and fungus together. (Credit: CIMMYT)

Climate change slows wheat breeding progress for yield and wide adaptation, new study finds

Nearly four decades of repeated crossing and selection for heat and drought tolerance have greatly improved the climate resilience of modern wheat varieties, according to new research emerging from a cross-continental science collaboration.

At the same time, climate change has likely slowed breeding progress for high-yielding, broadly adapted wheat, according to the new study, published recently in Nature Plants.

“Breeders are usually optimistic, overlooking many climate change factors when selecting,” said Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the publication. “Our findings undermine this optimism and show that the amplified interaction of wheat lines with the environment due to climate change has made it harder for breeders to identify outstanding, broadly adapted lines.”

What do 10 million data points tell scientists?

Each year for nearly half a century, wheat breeders taking part in the CIMMYT-led International Wheat Improvement Network (IWIN) have tested approximately 1,000 new, experimental wheat lines and varieties at some 700 field sites in over 90 countries.

Promising lines are taken up by wheat breeding programs worldwide, while data from the trials is used to guide global breeding and other critical wheat research, explained Wei Xiong, CIMMYT crop modeler/physiologist based in China and lead author of the new paper.

“To date, this global testing network has collected over 10 million data points, while delivering wheat germplasm estimated to be worth several billion dollars annually in extra productivity to hundreds of millions of farmers in less developed countries,” Xiong said.

Xiong and his colleagues analyzed “crossover interactions” — changes in the relative rankings of pairs of wheat lines — in 38 years of data from four kinds of wheat breeding trials, looking for the extent to which climate change or breeding progress have flipped those rankings. Two of the trials whose data they examined focused on yield in bread wheat and durum wheat, while the other two assessed wheat lines’ performance under high temperatures and in semi-arid environments, respectively.

In addition to raising yields, wheat breeders are endowing the crop with added resilience for rising temperatures.

“We found that warmer and more erratic climates since the 1980s have increased ranking changes in global wheat breeding by as much as 15 percent,” Xiong said. “This has made it harder for breeders to identify superior, broadly adapted lines and even led to scientists discarding potentially useful lines.”

Conversely, wheat cultivars emerging from breeding for tolerance to environmental stresses, particularly heat, are showing substantially more stable yields across a range of environments and fostering wheat’s adaptation to current, warmer climates, while opening opportunities for larger and faster genetic gains in the future, according to the study.

Past research has shown that modern wheat varieties not only increase maximum yields but also guarantee more reliable yields, a benefit that adds millions of dollars each year to farm income in developing countries and greatly reduces farmers’ risk.

“Among other things, our findings argue for more targeted wheat breeding and testing to address rapidly shifting and unpredictable farming conditions,” Reynolds added.

Read the full study:
Increased ranking change in wheat breeding under climate change

Cover photo: Wheat fields at CIMMYT’s experimental station in Ciudad Obregón, Sonora state, Mexico. Photo: M. Ellis/CIMMYT.

High-yielding staple crops improve health and prosperity in developing countries

Several recent studies document the long-term health and economic benefits from the “Green Revolution” — the widespread adoption of high-yielding staple crop varieties during the last half of the 20th century — and argue for continued investment in the development and use of such varieties.

Analyzing data relating to more than 600,000 births between 1961 and 2000 across 37 developing countries, scientists led by the World Bank’s Jan von der Goltz found that the diffusion of modern crop varieties during the Green Revolution reduced infant mortality by 2.4 to 5.3 percentage points.

“Our estimates provide compelling evidence that the health benefits of broad-based increases in agricultural productivity should not be overlooked,” the authors state. “From a policy perspective, government subsidies for inputs leading to a green revolution as well as investments in extension and R&D programs seem to be important.”

Norman Borlaug (fourth from right) shows a plot of Sonora-64 wheat — one of the semi-dwarf, high-yield, disease-resistant varieties that was key to the Green Revolution — to a group of young international trainees at CIMMYT's experimental station in Ciudad Obregon, Sonora state, Mexico. (Photo: CIMMYT)
Norman Borlaug (fourth from right) shows a plot of Sonora-64 wheat — one of the semi-dwarf, high-yield, disease-resistant varieties that was key to the Green Revolution — to a group of young international trainees at CIMMYT’s experimental station in Ciudad Obregon, Sonora state, Mexico. (Photo: CIMMYT)

The COVID-19 pandemic exposed the fragility of the global food system and the need to transform it, increasing its environmental and economic resilience to withstand future threats, and underpinning healthier diets. The studies suggest that improved versions of cereal crops such as rice, wheat, and maize can play a key role.

“Our work speaks to the importance of supporting innovation and technology adoption in agriculture as a means of fostering economic development, improved health, and poverty reduction, said author Jan von der Goltz. “It also suggests that it is reasonable to view with some alarm the steady decline in funding for cereal crop improvement over the last few decades in sub-Saharan Africa, the continent with least diffusion of modern varieties.”

Likewise, a study co-authored by Prashant Bharadwaj of the University of California, San Diego, concluded that farmer adoption of high-yielding crop varieties (HYVs) in India reduced infant mortality dramatically across the country. Between 1960 and 2000, infant deaths dropped from 163.8 to 66.6 per 1,000 live births, and this occurred during the decades of India’s wheat productivity leap from 0.86 to 2.79 tons per hectare, as a result of HYV adoption and improved farming practices.

“What both of these papers do is to carefully establish a causal estimate of how HYVs affect infant mortality, by only comparing children born in the same location at different points in time, when HYV use was different, and by checking that mortality before arrival of HYVs was trending similarly in places that would receive different amount of HYVs,” Bharadwaj said.

“In the absence of a randomized control trial, these econometric techniques produce the best causal estimate of a phenomenon as important as the spread of HYVs during and after the Green Revolution,” he added. These thoughts were echoed by University of California San Diego professor Gordon McCord, a co-author of the global study.

A child buys fruits and vegetables from a street cart in Varanasi, India. (Photo: Gert-Jan Stads/International Food Policy Research Institute)
A child buys fruits and vegetables from a street cart in Varanasi, India. (Photo: Gert-Jan Stads/International Food Policy Research Institute) (CC BY-NC-ND 2.0)

Many knock-on effects

Recent studies indicate that the Green Revolution also had long-term economic impacts, which also affected health outcomes.

In a 2021 update to the 2018 paper “Two Blades of Grass: The Impact of the Green Revolution,” Douglas Gollin, Professor of Development Economics at Oxford University and co-authors found that, in 90 countries where high-yielding varieties were adopted between 1965 and 2010, food crop yields increased by 44% and that, had this adoption not occurred, GDP per capita in the developing world could be half of what it is today.

Even a 10-year delay of the Green Revolution would, in 2010, have cost 17% of GDP per capita in the developing world, with a cumulative GDP loss of $83 trillion, equivalent to one year of current global GDP.

These GDP and health impacts were boosted by a related reduction in population growth. By observing causal inference at country, regional and developing world levels, and using a novel long-term impact assessment method, the study authors detected a trend: as living standards improved for rural families, they generally wanted to invest more in their children and have fewer.

“Our estimates suggest that the world would have contained more than 200 million additional people in 2010, if the onset of the Green Revolution had been delayed for ten years,” Gollin and his co-authors stated.  This lower population growth seems to have increased the relative size of the working age population, which furthered GDP growth.

Ethiopian farmers give feedback to CGIAR researchers about durum wheat varieties. (Photo: C.Fadda/Bioversity International)
Ethiopian farmers give feedback to CGIAR researchers about durum wheat varieties. (Photo: C.Fadda/Bioversity International) (CC BY-NC-ND 2.0)

A long-term investment in system transformation

It takes time from the point of an intervention to when broad health impacts can be observed in the population, the authors note. For example, although the development of modern high-yielding varieties began in the 1950s and 60s, the rate of adoption did not speed up until the 1980s, 1990s, and even into the 2000s, with evidence from sub-Saharan Africa showing that variety adoption has increased by as much in the 2000s as in the four preceding decades.

In addition, any nutrition and food security strategy which aims to reach the second Sustainable Development Goal of feeding 9 billion by 2050 must incorporate wider system transformation solutions, such as zero-emissions agriculture, affordable, diverse diets and increased land conservation.

As Gollin explained, “The Green Revolution taught us that we need to approach productivity increases, especially in staple crop yields, differently. The challenge now is more complex: we need to get the same productivity increases, with fewer inputs and resources, more environmental awareness, and in larger quantities for more people.”

In part, this means increasing productivity on existing agricultural land with positive environmental and social impacts, according to Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Breeding and sharing more productive, hardy crop varieties is as important as ever,” Govaerts said, “but also engaging farmers — in our case, smallholders — in shared research and innovation efforts to bridge yield gaps, build climate-resilient farming systems, and open access to better nutrition and market opportunities.”

Cover photo: Children eat lunch at a mobile crèche outside Delhi, India. (Photo: Atul Loke/ODI) (CC BY-NC 2.0)

A decade of world-leading maize and wheat research

For over a decade, the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT) have been at the forefront of research-for-development benefiting maize and wheat farmers in the Global South, especially those most vulnerable to the shocks of a changing climate.

From 2012 to 2021, MAIZE has focused on doubling maize productivity and increasing incomes and livelihood opportunities from sustainable maize-based farming systems. Through MAIZE, scientists released over 650 elite, high-yielding maize varieties stacked with climate adaptive, nutrition enhancing, and pest and disease resistant traits.

The WHEAT program has worked to improve sustainable production and incomes for wheat farmers, especially smallholders, through collaboration, cutting-edge science and field-level research. Jointly with partners, WHEAT scientists released 880 high-yielding, disease- and pest-resistant, climate-resilient and nutritious varieties in 59 countries over the life of the program.

To document and share this legacy, the MAIZE and WHEAT websites have been redesigned to highlight the accomplishments of the programs and to capture their impact across the five main CGIAR Impact Areas: nutrition, poverty, gender, climate and the environment.

We invite you to visit these visually rich, sites to view the global impact of MAIZE and WHEAT, and how this essential work will continue in the future.

The new MAIZE legacy website (left) and WHEAT legacy website launched today.
The new MAIZE legacy website (left) and WHEAT legacy website launched today.

A visual celebration in Mexico City

CIMMYT’s relationship with Mexico is one of a kind: in addition to being the birthplace of the wheat innovations that led to the Green Revolution and the founding of CGIAR, Mexico is also where maize originated thousands of years ago, becoming an emblem of the country’s economy and identity.

Honoring this longstanding connection and celebrating Mexico’s key contribution to global wheat and maize production, Mexico City will host a photo exhibition from December 1, 2021, to January 15, 2022, in the Open Galleries Lateral, located on Paseo de la Reforma, one of city’s most iconic promenades.

Titled “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat,” the exhibition illustrates the impact of MAIZE and WHEAT over the last ten years. The selection of photographs documents the challenges faced by maize and wheat smallholders in different regions, and showcases innovative interventions made by national and regional stakeholders worldwide.

From pathbreaking breeding research on climate-smart varieties to helping farming families raise their incomes, the photos — taken by CGIAR photographers before the COVID-19 pandemic — capture both the breadth of the challenges facing our global agri-food systems and the spirit of innovation and cooperation to meet them head on.

Don’t miss the chance to visit the exhibition if you are in Mexico City!

The photo exhibition “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat” will be on display in Mexico City until January 15, 2022. (Photo: Alfonso Cortés/CIMMYT)
The photo exhibition “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat” will be on display in Mexico City until January 15, 2022. (Photo: Alfonso Cortés/CIMMYT)

Science, technology and farmers, the three pillars of CIMMYT at COP26

From October 31 to November 12, all eyes and cameras turned to Glasgow, where the 26th Conference of the Parties of the United Nations Convention against Climate Change (COP26) took place in a hybrid format. With temperatures rising around the world and extreme weather events becoming increasingly frequent, country leaders and climate experts came together in Scotland to discuss the next steps in the fight against climate change.

Together with other CGIAR Centers, the International Maize and Wheat Improvement Center (CIMMYT) took part in this crucial conversation, drawing attention to the impact of climate change on smallholder agriculture and echoing CGIAR’s call for increased funding for agricultural research and innovation.

Here’s a summary of the events in which CIMMYT researchers and scientists participated.

“Because farmers feed us all: using climate for a resilient food system”

November 6, 2021

Sponsored by the UK Met Office, this event focused on the effects of climate change on the resilience of food systems and how this impact is factored into decision-making. Speakers discussed the real-life application of climate risk information, highlighting the importance of global collaboration and multi-stakeholder partnerships in developing context-specific climate services.

Focusing on CIMMYT’s work in Ethiopia, research associate Yoseph Alemayehu and senior scientist Dave Hodson provided some insights on the wheat rust early warning system. This revolutionary mechanism developed by CIMMYT and partners helps farmers in developing countries predict this disease up to a week in advance.

“COP26 highlighted the vulnerability of different agriculture sectors to climate change, including increased threats from pests and pathogens. From the work in Ethiopia on wheat rust early warning systems, strong partnerships and the application of advanced climate science can play an important role in mitigating some of the effects.” – Dave Hodson

“Developing Climate Resilient Food Systems Pathways: Approaches From Sub-Saharan Africa”

November 8, 2021

Putting an emphasis on participatory governance and community-centered technologies, this event showcased innovative approaches to strengthen the resilience of African food systems, calling for increased investment in the scale-up of climate-smart agriculture practices to meet growing demand.

Joining from Zimbabwe, Christian Thierfelder, Principal Cropping Systems Agronomist gave an overview of CIMMYT’s work in southern Africa, explaining how the introduction of conservation agriculture back in 2004 helped farmers overcome low crop yields and boost their incomes.

“If one thing was made clear at COP26, it is the urgent need for a change in the way we do agriculture. The status quo is not an option and we, as CIMMYT and part of the One CGIAR, will continue to generate the scientific evidence and climate-smart solutions to accelerate this change and address the climate challenges ahead of us, with farmers at the core of our work.” – Christian Thierfelder

“4 per 1000” Initiative Day

November 10, 2021

The “4 per 1000” Initiative, a multi-stakeholder partnership of more than 650 members on food security and climate change, held a day-long hybrid event to explore how healthy soils can help agriculture and forestry adapt to and mitigate climate change.

At the Partner Forum, Bram Govaerts, Director General of CIMMYT, stressed the urgent need to fund soil science to achieve its carbon sequestration potential, reiterating CIMMYT’s commitment to supporting this science with results-oriented actions that scale out sustainable practices and technologies.

“For me, the main take-away of the summit is the growing consensus and understanding that we need to transform agriculture and food systems to achieve global emissions targets on time.” – Bram Govaerts

Cover photo: The action zone and the globe at the Hydro, one of the venues in Glasgow where COP26 took place. (Photo: Karwai Tang/UK Government)

Bringing wild wheat’s untapped diversity into elite lines

A collaboration involving 15 international institutes across eight countries has optimized efforts to introduce beneficial traits from wild wheat accessions in genebanks into existing wheat varieties.

The findings, published in Nature Food, extend many potential benefits to national breeding programs, including improved wheat varieties better equipped to thrive in changing environmental conditions. This research was led by Sukhwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT) as part of the Seeds of Discovery project.

Since the advent of modern crop improvement practices, there has been a bottleneck of genetic diversity, because many national wheat breeding programs use the same varieties in their crossing program as their “elite” source. This practice decreases genetic diversity, putting more areas of wheat at risk to pathogens and environmental stressors, now being exacerbated by a changing climate. As the global population grows, shocks to the world’s wheat supply result in more widespread dire consequences.

The research team hypothesized that many wheat accessions in genebanks — groups of related plant material from a single species collected at one time from a specific location — feature useful traits for national breeding programs to employ in their efforts to diversify their breeding programs.

“Genebanks hold many diverse accessions of wheat landraces and wild species with beneficial traits, but until recently the entire scope of diversity has never been explored and thousands of accessions have been sitting on the shelves. Our research targets beneficial traits in these varieties through genome mapping and then we can deliver them to breeding programs around the world,” Singh said.

Currently adopted approaches to introduce external beneficial genes into breeding programs’ elite cultivars take a substantial amount of time and money. “Breeding wheat from a national perspective is a race against pathogens and other abiotic threats,” said Deepmala Sehgal, co-author and wheat geneticist in the Global Wheat program at CIMMYT. “Any decrease in the time to test and release a variety has a huge positive impact on breeding programs.”

Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)
Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)

Taking into genetic biodiversity

The findings build from research undertaken through the Seeds of Discovery project, which genetically characterized nearly 80,000 samples of wheat from the seed banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).

First, the team undertook a large meta-survey of genetic resources from wild wheat varieties held in genebanks to create a catalog of improved traits.

“Our genetic mapping,” Singh said, “identifies beneficial traits so breeding programs don’t have to go looking through the proverbial needle in the haystack. Because of the collaborative effort of the research team, we could examine a far greater number of genomes than a single breeding program could.”

Next, the team developed a strategic three-way crossing method among 366 genebank accessions and the best historical elite varieties to reduce the time between the original introduction and deployment of an improved variety.

Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)
Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)

Worldwide impact

National breeding programs can use the diverse array of germplasm for making new crosses or can evaluate the germplasm in yield trials in their own environments.

The diverse new germplasm is being tested in major wheat producing areas, including India, Kenya, Mexico and Pakistan. In Mexico, many of the lines showed increased resistance to abiotic stresses; many lines tested in Pakistan exhibited increased disease resistance; and in India, many tested lines are now part of the national cultivar release system. Overall, national breeding programs have adopted 95 lines for their targeted breeding programs and seven lines are currently undergoing varietal trials.

“This is the first effort of its kind where large-scale pre-breeding efforts have not only enhanced the understanding of exotic genome footprints in bread wheat but also provided practical solutions to breeders,” Sehgal said. “This work has also delivered pre-breeding lines to trait pipelines within national breeding programs.”

Currently, many of these lines are being used in trait pipelines at CIMMYT to introduce these novel genomic regions into advanced elite lines. Researchers are collaborating with physiologists in CIMMYT’s global wheat program to dissect any underlying physiological mechanisms associated with the research team’s findings.

“Our investigation is a major leap forward in bringing genebank variation to the national breeding programs,” Singh explained. “Most significantly, this study sheds light on the importance of international collaborations to bring out successful products and new methods and knowledge to identify useful contributions of exotic in elite lines.”

Read the full article:
Direct introgression of untapped diversity into elite wheat lines

Cover photo: A researcher holds a plant of Aegilops neglecta, a wild wheat relative. Approximately every 20 years, CIMMYT regenerates wheat wild relatives in greenhouses, to have enough healthy and viable seed for distribution when necessary. (Photo: Rocío Quiroz/CIMMYT)

Less water for better crops

In India, nearly one-sixth of groundwater reserves has been overexploited and almost one-fifth of them is either in critical or semi-critical condition. For a country that relies heavily on groundwater for drinking and irrigation, these statistics are close to a death sentence.

India’s water crisis, however, is not unique in the region. Population growth, coupled with increasing urbanization and industrialization, has made South Asia, one of the most heavily irrigated areas on earth, highly vulnerable to water stress. Moreover, as the effects of climate change are increasingly felt in those countries, agricultural production, even at the current level, may not be sustainable.

Against this background, ensuring that water resources are used efficiently and sustainably is key to meet the world’s growing demand. Over the last decades, traditional systems of irrigation have given way to more efficient drip irrigation systems that deliver the right amount of water and nutrients to the plant’s root zone. But as farm labor shortages become more severe, investing in automated irrigation systems — which promise increased production rates and product quality — will be the only way to ensure the sustainability of agricultural production systems worldwide.

A new article co-authored by a team of researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Thapar Institute of Engineering and Technology synthesizes the available information related to the automation of drip irrigation systems and explores recent advances in the science of wireless sensor networks (WSN), the internet of things (IoT) and other communication technologies that increase production capacity while reducing costs.

“Bundling both elements — drip irrigation and automation — in water application can lead to large savings in irrigation and boost water efficiency, especially in high water-consuming, cereal-based systems like the Indo-Gangetic Plains,” explained M.L. Jat, a principal scientist at CIMMYT and one of the authors of the review.

Investing in data and youth

Smart irrigation technologies, including sensors and the IoT, allow farmers to take informed decisions to improve the quality and quantity of their crops, providing them with site-specific data on factors like soil moisture, nutrient status, weed pressure or soil acidity.

However, this information is still limited to certain soil types and crops. “To upgrade drip irrigation systems elsewhere, especially in ‘water-stressed’ regions, we need additional agricultural background data in those areas,” Jat pointed out. “That’s the only way we can effectively customize innovations to each scenario, as one size does not fit all.”

Making this data available to and readable by farmers is also essential. Here, young people can become very good allies, as they tend to be more technologically savvy and used to working with large volumes of information. “Not only are they more skilled to integrate agricultural data into decision-making, but they can also help older farmers adopt and trust intelligent irrigation systems,” Jat concluded.

Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)
Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)

Incentives against subsidies

With increasing water shortages worldwide, making the most out of every drop becomes an urgent priority. But in countries where irrigation systems are highly subsidized, farmers may struggle to see this urgency. India, for instance, subsidizes the cost of energy to pump water for farming, thus encouraging smallholders to extract more than they need.

How do we incentivize farmers in these countries to embrace water-efficient technologies?

According to Jat, using the “scientific card” can work with smallholders who, after having farmed for decades, may not change their minds automatically. “These people may be reluctant to accept incentives for water-efficient mechanisms at first, but they will surely be interested in more scientific approaches,” Jat explained, stressing that “the emphasis must be on the science, not on the technology.”

Designing profitable business models can also incentivize producers to embrace more efficient mechanisms. Farmers who have enjoyed irrigation subsidies for decades may not see any profit in trying out new technologies — but what if they are given the chance to become champions or ambassadors of these agricultural innovations? “That brings in a whole new perspective,” Jat said.

Apart from incentivizing farmers, good business models can also draw the attention of large companies, which would bring investment to boost research and innovation in drip irrigation. “More and more businesses are getting interested in smart agriculture and low emission farming, and their inputs can help conceptualize the future of this field,” he observed.

A new vision of making profits drives mechanization service providers in Zimbabwe

Introducing mechanization services in any smallholder farming community has proven to yield multiple benefits largely aimed at increasing farming efficiency but importantly creating a solid economic base to boost farmer incomes. Anchored on the two-wheel tractor along with implements for land preparation, planting, harvesting, shelling, transporting, appropriate-scale mechanization has in the last seven years gained currency across African farming households.

Interventions such as the mechanization pilot implemented by the International Maize and Wheat Improvement Center (CIMMYT) provide a channel through which smallholder farmers with access to some financial resources can invest to become a viable enterprise.  The aim of this intervention is not to make every farmer own its own machinery, which would be costly and inefficient, but to train farmers to become service providers to other community members. This model has been effectively tried before in other places under the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

A recent visit to two service providers in southern Zimbabwe, demonstrates the high returns on investment achieved through enrolling in mechanization service provision.

Two service providers, one vision: Profit

Julius Shava (53) and Prince Chimema (22), shared their experience in offering diverse transporting and land preparation services using the two-wheel tractor, trailer, direct seeder, and sheller procured through the initiative.  Narrating how he learnt about the mechanization pilot and his subsequent enrolment, Shava explains how potential service providers had to make a financial commitment to the business before accessing the equipment.

“Through this mechanization business model, we would receive a two-wheel tractor, trailer, sheller, and seeder worth USD5,000, at a subsidized price of $USD2,500. The main condition for accessing this package was to pay a commitment fee of USD500 – there was no way I could let that opportunity slip away,” explains Shava.

“My wife and I decided to sell two cows to raise the funds and made the payment. Some community members were initially skeptical of the approach when it seemed that the consignment was delayed yet when the two-wheel tractor arrived, they were among the first to inquire about the services I was offering,” Shava adds.

“I made sure they all understood what I could provide for them using the 2WT and trailer such as land preparation and transportation – of manure, gravel stones and pit sand among other things.”

The multipurpose trailer with a loading capacity of up to one and a half tonnes can be attached to the two-wheel tractor for the provision of transport services. (S.Chikulo/CIMMYT)

Shava and Chimema are among fifteen service providers leading in the mechanization pilot initiative launched in July 2020 in Masvingo district. The initiative is supported by the Swiss Agency for Development and Cooperation (SDC) and managed by the World Food Program (WFP). The private sector machinery company Kurima Machinery facilitates provision of the two-wheel tractor, planter, trailer and sheller while the Zimbabwe Agriculture Trust (ZADT) manages the lease-to-own business model anchoring the mechanization pilot to the financial sector.

Counting the cost and returns

“How much turnover does a service provider realise on average?” is a question frequently asked by other farmers keen to take up the enterprise.

Shava explains the factors he considers, “When someone is hiring my services, I charge according to the distance and load to be transported.” For example, for a 200m delivery radius, I can charge USD5. However, for land preparation and ploughing, I charge USD100 per hectare.” He quickly adds that he also factors in his labor, fuel requirements and time into the final price of his service – a principle he learnt during a specialized technical and business training provided by Gwebi College of Agriculture for the mechanization pilot.

In addition, using the two-wheel tractor is efficient as a hectare is completed in about one hour where an animal drawn plough takes up to six hours or more, depending on the soil type. The reduced drudgery allows farmers to rest their livestock and adopt more efficient and sustainable land preparation technologies. Shava notes that these advantages are immediately apparent to farmers who seek the service.

Customers often pay in cash which is convenient for him as he saves the money or uses some of it to meet expenses related to the service provision. “So far I have reached up to 7 customers after two months from the Nemamwa area in Ward 12 of Masvingo and they were seeking different services. “For land preparation they were paying USD100 per hectare. In Ward 8, I managed to get about three customers.

“When it comes to pricing, I leave room for negotiation because it is inevitable that customers will always ask for a discount, but I ensure that I do not incur losses.” Since venturing into mechanization service provision, Shava has realized a gross income of USD$600 before deducting expenses such as fuel and regular maintenance. However, the two-wheel tractor is fuel efficient – utilizing at least seven liters of diesel per hectare. Diesel fuel is purchased in Masvingo town or from informal markets at the business center at a cost of USD1 per liter.

Young service providers making their mark

Service providers such as Prince Chimema, who are young, energetic and business minded are also among those quickly realizing the high returns on the small mechanization investment. Coming from a family of seven, Chimema – recently married and with a two-year old child – has found a secure income stream in service provision of different mechanization services.

“I am grateful for the financial support from my parents that enabled me to enroll into the mechanization pilot program,” says Chimeme. Like Shava, Chimema’s parents sold two cows to raise the USD500 commitment fee.  Soon, Chimema was approaching his relatives and neighbors in the community demonstrating the transporting, planting and land preparation services that he could provide. “Some of my customers would have seen me delivering manure or quarry stones to another household before requesting for my services; that is how my customer base has increased steadily.”

When pricing, Chimema considers the distance, fuel and time it will take to deliver the load. “In this area, requests are for transporting manure, quarry stones, pit sand and river sand. The price ranges from USD4 – USD8 per load. While most villagers pay in cash, a few may request to pay in kind using chickens,”

Chimema’s marketing strategy has been to push volumes by advertising his transporting services to other farmers outside of Ward 18. To date, he has focused on clients requiring transportation services. In Wards 18 and 19, Chimema has served a total of 60 customers, generating USD400 within the first two months of commencing the business.

Challenges and early lessons

Venturing into small mechanized service provision has not been without its challenges as attested by Chimema and Shava, “A lesson I learnt from the onset is never to overload the trailer beyond the recommended capacity,” explains Chimema. “During the mechanization training, we were advised that the trailer’s maximum carrying capacity is between 750-1000kg but at times I could overlook this leading to faults developing on my tractor,” says Prince.

Fuel access also presents challenges at times. “We have to get fuel from Masvingo because the quality of fuel here in the ward may be compromised while the price is slightly inflated because of the middlemen selling the fuel.

The delay in delivery of tractor-drawn direct seeders reduced the potential number of customers for both Chimema and Shava for planting services, as most farmers had proceeded to plant given the early onset of the rainy season. However, both service providers are hopeful that in the next season, with all the equipment in place, they can provide the full range of services to fellow smallholders.

Continuous improvement of the technology by including a toolbar is currently underway, which eases the level of effort required to operate the two-wheel tractor, making it more flexible for the service providers.

Twenty-two-year-old Prince Chimema of Ward 18 Masvingo district demonstrating the two-row direct seeder attached to the two-wheel tractor. (S.Chikulo/CIMMYT)

A vision for expansion and rural transformation

Chimema and Shava are optimistic about the future growth and performance of their business. Both aspire to expand their service provision over the coming five years by purchasing a second two-wheel tractor and creating employment for other villagers. “The income for the second two-wheel tractor should be generated from the current business” explains Shava.

In addition to the land preparation and transporting services, the maize sheller is set to increase their income. With a shelling capacity of 3-4 tons per day, the maize sheller significantly reduces the amount of time and effort required to shell a ton of maize manually (12.5 days).

“The priority now is to make sure that the loan repayment happens smoothly because I am generating enough income to pay back up for my package,” explains Shava. Once the payment is done, Shava would like to set up a borehole and drip irrigation system for their family plot and complete construction of his house in Masvingo town.

Chimema, on the other hand, is keen to start a poultry project. He is currently assisting his parents to pay school fees for his younger sibling but believes the poultry project will increase his income stream. “As I broadcast and market my services by word of mouth and through mobile platform messages; there is room for me to expand beyond Ward 18 and 19,” says Chimema. “I hope to employ at least two more people in the coming two or three years, to help me deliver the services to other farmers,” he adds.

“With the business experience gained from the current season, small mechanization service providers such as Chimema and Shava can increase the portfolio of services to customers”, says Christian Thierfelder, Principal Scientist at CIMMYT, leading the effort. “For example, at planting stage, service providers could provide a complete package for farmers including seed and fertilizer as well as a supply of appropriate herbicides for weed control as part of the land preparation and direct seeding service. Such an offering increases the value of the service and affords farmers the opportunity to witness the full benefits of small mechanized agriculture”, Thierfelder says.

“We have to provide farmers with options to abandon the hoe. The drudgery of farming has made this profession so unattractive that a rural exodus is looming. Providing business, employment and entrepreneurship will bring back hope and will lead to a true rural and agriculture transformation in Zimbabwe.” The high return on investment of the mechanized package makes it a viable year-round business option for farmers and entrepreneurs in rural Masvingo. The pilot is providing a proof of concept that this model works, even under low-potential environments.

Cover photo: Julius Shava and his wife standing at their lease-to-own two-wheel tractor which is part of the starter package for small-mechanization service providers in Masvingo District. (S.Chikulo/CIMMYT)

Is a pluralistic seeds system a pathway to seed security in Ethiopia?

The ever-changing environmental conditions and the urgency to improve food production and productivity for growing populations have ushered in the necessity for smallholder farmers to have widespread access to improved seed in the last mile. However, adequate access to the preferred, good-quality seeds that are climate-resilient and nutrition-dense is essential to farmers’ food and livelihood security. While seed security is an important first step to improved food production in developing countries and well examined in disaster situations, it remains understudied concerning long-term seed sector development, says a new study.

The Food and Agriculture Organization of the United Nations (FAO) describes seed security as “ready access by rural households, particularly farmers and farming communities, to adequate quantities of quality seeds adapted to their agro-ecological conditions and socioeconomic needs, at planting time, under normal and abnormal weather conditions.” In 2016, FAO specified two elements: varietal suitability (traits that respond to farmers’ preferences) and resilience (stability of seed system in the context of shocks) in addition to seed quantity, quality, and access identified in the earlier conceptualization of seed security.

Widespread seed insecurity

The study analyzed farmers’ seed use and preferences (demand-side) and the role of actors and institutions (supply-side) to understand farmers’ seed security. The latter was examined within the context of the recently adopted Pluralistic Seed System Development Strategy (PSSDS) of Ethiopia to understand how they affect the availability, quantity, quality, accessibility, and suitability of seeds from different sources. They focused on seed systems in two districts in Central Ethiopia — subsistence teff-growing and commercial wheat-growing districts. Since it started its operation in Ethiopia, CGIAR’s International Maize and Wheat Improvement Center (CIMMYT) has been one of the major actors in the commercial wheat district covered in this study. CIMMYT has contributed to the capacity building of Kulumsa Agricultural Research Center, a center of excellence for wheat research and development in East Africa that has released over 70 improved bread wheat and durum wheat varieties.

Despite great strides made in improving the seed sector in Ethiopia, the study found that the farmers in the two districts predominantly rely on the informal seed systems, concluding widespread seed insecurity in both regions. The study reported discrepancies between seeds farmers say they prefer and those they actually use. This discrepancy is due to the limited availability of improved varieties and specially certified seeds of these varieties, challenges with seed quality from some sources, and inequitable access to preferred seed and information according to sex, age, and wealth.

Explaining the finding concerning the widespread seed insecurity observed in the study districts, Teshome Hunduma, the lead author of the study, noted: “We were able to reveal some of the social, political, and institutional constraints and opportunities that underlie chronic seed insecurity among smallholder farmers in the two districts in Ethiopia. The country has a good seed sector development policy, for instance, the PSSDS, but these constraints limited its implementation.”

Women empowerment and access to certified seeds

In the study districts where CIMMYT operates, wealthy farmers aligned with the Ethiopian government received a privileged position as model farmers enjoyed increased seed access. Likewise, female-headed households targeted by the extension services had improved access to certified seeds. The presence of development actors, including CIMMYT alongside its partners such as Kulumsa Agricultural Research Center, actively contributed to the “unusual empowerment of women in the predominantly wheat-growing districts,” according to Hunduma. Hunduma referred to the following excerpt from the study to confirm his upbeat impression during his field research.

The study reports: “the women focus group participants highlighted unexpectedly positive empowerment of female heads of household and their related access to improved agricultural technologies [improved wheat]:

Unfortunately, all of us are on our own, i.e., we are widows and divorcees. ( . . . ) We do everything that most men do in farming. In the past, women, including widows and divorcees, were not considered equal to men. Now, we have more freedom and voice. We equally participate in meetings, trainings, and access inputs as men. We express our ideas in public gatherings… We learnt new techniques and gained skills in agriculture. We have better savings; some of us have saved between 70,000 to 100,000 ETB. We have full control over our incomes and resources. We hire labor and rent land to expand our production.

According to Hunduma, “development actors, including CGIAR and its partners, targeted female heads of households for varietal adaptation trial, seed multiplication, extension and credit services, which led to a significant push for a gender-sensitive approach to agricultural development.”

Over the past two decades, Ethiopia has also achieved high wheat production levels and productivity due to the germplasm that CGIAR introduced in the country in collaboration with its partners. This strategy has firmly put the country on the right path towards wheat self-sufficiency.

As national seed policies and programs in developing countries have primarily focused on the formal seed supply system, farmers’ use of seeds from the formal seed system remains limited. The pluralistic seed system approach could appear to provide a path to seed security in developing countries. Nevertheless, political, organizational, and economic interests within key institutions represent significant obstacles, which need to be addressed. The study concludes that efforts to support farmers’ access to seeds should recognize the complementarity of formal and informal seed systems. Thus the study advocates a pluralistic approach to seed sector development by promoting complementarity of activities between value-chain components of each seed system. 

Read the full study: Pluralistic Seed System Development: A Path to Seed Security?

Cover photo: Part of Ethiopia’s Southeastern wheat belt in the Heexosa district, where the pioneering Green Revolution project started in Ethiopia. (Credit: Joshua Masinde/CIMMYT)

Decomposing maize yield gaps to better inform policy and public investments

In sub-Saharan Africa, smallholder production is characterized by low agricultural productivity which is often cited as a major factor of  food insecurity in the region. Recent research from multiple countries in the region suggests that average maize yields of around 1.7 t/ha in 2010 must increase to 6.8 t/ha to meet estimated demand in 2050. To achieve this, per-hectare maize output must grow by about 3.5% per year. Although addressing this challenge seems daunting, estimates suggest that such high yields are technically feasible. However, a shared understanding of the investments and policies required remain elusive.

Under the Taking Maize Agronomy to Scale in Africa (TAMASA) project, scientists from Wageningen University and the International Maize and Wheat Improvement Center (CIMMYT) conducted research on this question, using uniquely detailed farm surveys which provide integrated information about smallholders’ agronomic practices and farm management, soil health and other biophysical characteristics, as well as socioeconomic and other characteristics of farm households.

Decomposing yield gaps

Yield gaps for rainfed crops are defined as the difference between the water-limited yield potential and the actual yield observed in farmers’ fields. One framework to explain yield gaps decomposes the yield gap into efficiency, resource and technology components (Figure 1).

The study disaggregated maize yield gaps in Ethiopia based on field level and farming systems information (Figure 2), which helps to consider the variation in biophysical and socio-economic conditions observed in the country.

Major drivers of yield (and yield gap) outcomes in Ethiopia

The study showed that income from non-farm sources, value of productive assets, education and shorter plot distance from home reduced the efficiency yield gap. The resource yield gap was attributed to sub-optimal input use, specifically of pesticide and nitrogen. The technology yield gap comprised the largest share of the total yield gap, mostly due to limited use of fertilizer and improved varieties and not using the right type and placement of fertilizers and of improved seeds

The investigation further showed that crop residue and weeding frequency affected maize yield only when nitrogen was applied. In a related study, the authors also showed that maize yield reponse to fertilizer application was dependent on other inputs, specifically type of maize variety, manure application and high rainfall implying the need to integrate agricultural technologies in order to improve and sustain the maize productivity. The authors conclude that targeted but integrated policy design and implementation is required to narrow the overall maize yield gap and improve food security.

“Disaggregating and explaining maize yield gaps is essential to identify potential pathways that can narrow the yield gaps,” said Banchayehu Assefa from CIMMYT.  “This can help guide policy and investments to be more effective at raising smallholder productivity.”

How to improve fertilizer profitability

Modern maize varieties and mineral fertilizers use have been increasing over time and are believed to be among the factors behind the maize yield improvements observed in Ethiopia. However, maize yield response to fertilizer depends on other inputs and management factors and higher fertilizer application rates may not always lead to higher profitability. Using the details of management decisions and biophysical and marketing context, the authors estimated a maize yield response function and evaluated fertilizer yield responses and economic profitability of fertilizer investments by smallholder maize producers. They found that maize yield response to fertilizer was variable with an average value of 7.3 kg maize/ kg N, and it varied from -9 to 18 kg maize /kg. The degree of response was positively affected by phosphorus input and type of maize variety, and negatively by manure input and high rainfall. The key pathways identified to increase the profitability of nitrogen fertilizer use by smallholder maize producers are: improving yield responses with better management (e.g. use of improved maize varieties, complementary use of phosphorus where appropriate); addressing risk aversion (e.g. via crop insurance) in order to strengthen economic incentives for fertilizer investments; enabling the delay of crop sales to take advantage of higher output prices (possibly through expanded access to storage facilities and/or post-harvest loans to alleviate liquidity needs); and improving farm gate price ratios through improved access to markets.

Implications and further research

Even though maize yields have improved recently, under existing management practices smallholders’ maize yield still falls far below the water-limited potential yield. This urges revising the maize sector in terms of input provision, extension services and output markets.  Fertilizer use was highly variable and maize response to fertilizer use depended on other management choices. The study suggests that integrated management practices that work for specific conditions need to be identified, instead of sticking to blanket policy and management recommendations.

This work further points at the importance of additional detailed empirical research on the role of agronomic management practices, to decrease yield gaps. Studying the constraining factors that hinder timely input provision to the farmers might also help to improve input use and hence productivity. In addition, maize prices are too low to advance maize commercialization. Investigating potentials and constraints along the maize value chain might help to improve market participation.

Cover photo: Harvesting maize in East Shoa, Oromia, Ethiopia. (Photo: Banchayehu Assefa/CIMMYT)

World Food Day 2021: The future of food is in our hands

As the calendar turns to October 16, the International Maize and Wheat Improvement Center (CIMMYT) celebrates World Food Day. This year’s theme is “Our actions are our future.”

Our lives depend on agri-food systems.

They cover the journey of food (for example, cereals, vegetables, fish, fruits and livestock) from farm to table — including when it is grown, harvested, processed, packaged, transported, distributed, traded, bought, prepared, eaten and disposed of. It also encompasses non-food products (for example forestry, animal rearing, use of feedstock, biomass to produce biofuels, and fibers) that constitute livelihoods, and all the people, as well as the activities, investments and choices that play a part in getting us these food and agricultural products.

The food we choose and the way we produce, prepare, cook and store it make us an integral and active part of the way in which an agri-food system works.

A sustainable agri-food system is one in which a variety of sufficient, nutritious and safe foods is available at an affordable price to everyone, and nobody is hungry or suffers from any form of malnutrition. The shelves are stocked at the local market or food store, but less food is wasted and the food supply chain is more resilient to shocks such as extreme weather, price spikes or pandemics, all while limiting, rather than worsening, environmental degradation or climate change. In fact, sustainable agri-food systems deliver food security and nutrition for all, without compromising the economic, social and environmental bases, for generations to come. They lead to better production, better nutrition, a better environment and a better life for all.

Let’s fix the system

The contradictions could not be starker — millions of people are hungry or undernourished, while large numbers are chronically overweight due to a poor diet. Smallholder farmers produce more than one-third of the world’s food, yet are some of the worst affected by poverty, as agriculture continues to be an unpredictable sector. Agri-food systems are major contributors to climate change, which in turn threatens food production in some of the world’s poorest areas. Rampant food loss and waste, side by side with people relying on food banks or emergency food aid.

The evidence is there for all to see — there has never been a more urgent need to transform the way the world produces and consumes food.

This year, for World Food Day, we bring you four stories about CIMMYT’s work to support sustainable agri-food systems.

Better production

CGIAR centers present methodology for transforming resource-constrained, polluting and vulnerable farming into inclusive, sustainable and resilient food systems that deliver healthy and affordable diets for all within planetary boundaries.

New integrated methodology supports inclusive and resilient global food systems transformation

Better nutrition

CIMMYT scientists expect to sharply ramp up new wheat varieties enriched with zinc that can boost the essential mineral for millions of poor people with deficient diets. Newly-developed high-zinc wheat is expected to make up at least 80% of varieties distributed worldwide over the next ten years, up from about 9% currently.

New zinc-fortified wheat set for global expansion to combat malnutrition

A woman makes roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at her home in the Dinajpur district of Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

Better environment

Understanding the relationship between climate change and plant health is key to conserving biodiversity and boosting food production today and for future generations.

Protecting plants will protect people and the planet

Durum wheat field landscape at CIMMYT's experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat field landscape at CIMMYT’s experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Better life

Assessing value chain development’s potential and limitations for strengthening the livelihoods of the rural poor, a new book draws conclusions applicable across the development field.

Taking stock of value chain development

A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)
A researcher from the International Maize and Wheat Improvement Center (CIMMYT) demonstrates the use of a farming app in the field. (Photo: C. De Bode/CGIAR)

Subscribe to our email updates to stay in the loop about the latest research and news related to maize and wheat agriculture.

Women in agriculture mechanization in Bangladesh

Agriculture mechanization in Bangladesh connects local manufacturers of machinery parts (which is mainly done by the country’s light engineering industry) and the operation of those machines, generally run by machinery solution providers. These two workforces are equally male-dominated. The reasons behind this are social norms, and family and community preconceptions, coupled with the perception that women cannot handle heavy machinery. But a deeper look into this sector shows us a different reality, where many women are working enthusiastically as part of agriculture mechanization.

The International Maize and Wheat Improvement Center (CIMMYT) is supporting women to work in light engineering workshops, and to become entrepreneurs by providing machinery solutions to farmers.

Painting her own dream

Rokeya Begum, 39, has been working in Uttara Metal Industries for three and half years, clearing up and assisting her male colleagues in paint preparation. All this time, she wanted to be the one doing the painting.

Begum was one of the 30 young women from Bogura, Northern Bangladesh, recently trained by CIMMYT through the Cereal Systems Initiative for South Asia-Mechanization Extension Activity (CSISA-MEA). They learnt various aspects of the painting trade and related operational techniques, such as mixing colors, the difference between primer and topcoats, and health and safety in the workplace.

Now the focus is on job creation for women in the sector. CIMMYT has initiated discussions with established enterprises to recruit women as painters in their workshops, with all the benefits of their male counterparts.

Having completed painting training, Begum practices spray painting for an hour every day. Her employer is happy with her finished work and plans to promote her to the position of painter. Begum says, “I’m so happy to have learned a new technique — plus I really enjoy the work.” Her current pay of $12 per week will increase by 50% when she starts her new job.

Alongside training, this mechanization activity is working to create a decent and safe working environment for women, including adequate, private and safe spaces, such as bathrooms and places to take breaks.

Seedling of an entrepreneur

For the first time ever, in the last monsoon aman rice cultivation season, Kulsum Akter, 30, earned $130, by selling rice seedlings she had grown to be planted out by mechanical rice transplanters. Two years ago, Akter’s husband Md. Abdul Motaleb bought a rice transplanter with the assistance of a government subsidy from the Government of Bangladesh’s Department of Agricultural Extension. While he invested $5,000 in the machine, his skills in operating it were sub-par.

Supported by the USAID-funded Feed the Future Bangladesh Mechanization and Extension Activity, Motaleb was trained in mechanized rice transplanter operation by a private company, The Metal Pvt. Ltd.

Akter was in turn trained in special techniques for growing seedlings so they can be planted out using a rice transplanting machine. CIMMYT then provided technical and business guidance to this husband-and-wife duo, enabling them to embark confidently on a strong business venture. Key training topics included growing mat-type seedlings for machines, business management, cost-benefit analysis, product promotion and business expansion concepts. Motaleb went on to provide mechanical transplanting services to other farmers in the locality.

Meanwhile, Akter was inspired to take the lead in preparing seedlings as a business venture to sell to farmers who use mechanical rice transplanters. Akter invested $100 in the last aman season, by the end of which she had earned $230 by selling the seedlings in just one month. This success has encouraged her to prepare seedlings for many more farmers during the winter rice production season. “The training in rice transplanter operation and seedling preparation was a gift for us. I’m trying to get more women into this business — and I’m pretty optimistic about it,” Akter says. Through the Mechanization and Extension Activity, CIMMYT aims to create more than 100 women entrepreneurs like Akter who will contribute to the mechanization of agriculture through their work as service providers.

CSISA-MEA’s work increases women’s capacity to work in the agricultural mechanization sector and manage machinery-based businesses through technical and business training. Through opportunities like these, more women like Begum and Akter will be enabled to achieve self-sufficiency and contribute to the development of this sector.

Cereal Systems Initiative for South Asia Mechanization Extension Activity (CSISA-MEA) is funded by the United States Agency for International Development (USAID) Feed the Future initiative.

Cover photo: The CSISA-MEA project increases women’s capacity to work in the agricultural mechanization sector, therefore achieving self-sufficiency. (Abdul Momin/CIMMYT)

It’s Rural Women’s Day, from dawn to dusk

Over 70% of rural women in India are engaged in agriculture. Women carry out a large portion of farm work, as cultivators and agricultural laborers, but in most cases they are not even counted and recognized as farmers. Millions of Indian rural women also carry the burden of domestic work, a job that is undervalued and unrecognized economically.

On the International Day of Rural Women, October 15, the focus is on their contributions to growing food and feeding families. The often invisible hands of rural women play a pivotal role in food security and sustaining rural communities.

Today, we have a glimpse at the daily life of farmer Anita Naik.

She hails from the village of Badbil, in the Mayurbhanj district of India’s Odisha state, surrounded by small hills and the lush greenery of Simlipal National Park.

Naik belongs to a tribal community that has long lived off the land, through farming and livestock rearing. Smallholder farmers like her grow rice, maize and vegetables in traditional ways — intensive labor and limited yield — to ensure food for their families.

Married at a young age, Naik has a son and a daughter. Her husband and her son are daily-wage laborers, but the uncertainty around their jobs and her husband’s chronic ill health means that she is mostly responsible for her family’s wellbeing. At 41, Naik’s age and her stoic expression belie her lifelong experience of hard work.

The small hours

Naik’s day begins just before dawn, a little past 4 a.m., with household chores. After letting out the livestock animals — goats, cows, chicken and sheep — for the day, she sweeps the house’s, the courtyard and the animal shed. She then lights the wood stove to prepare tea for herself and her family, who are slowly waking up to the sound of the crowing rooster. Helped by her young daughter, Naik feeds the animals and then washes the dirty dishes from the previous evening. Around 6:30 or 7 a.m., she starts preparing other meals.

During the lean months — the period between planting and harvesting — when farm work is not pressing, Naik works as a daily-wage worker at a fly ash brick factory nearby. She says the extra income helps her cover costs during emergencies. “[I find it] difficult to stay idle if I am not working on the farm,” she says. However, COVID-19 restrictions have affected this source of income for the family.

Once her morning chores are over, Naik works on her small plot of land next to her house. She cultivates maize and grows vegetables, primarily for household consumption.

Naik started growing maize only after joining a self-help group in 2014, which helped her and other women cultivate hybrid maize for commercial production on leased land. They were supported by the International Maize and Wheat Improvement Center (CIMMYT) through the Cereal Systems Initiative for South Asia (CSISA) maize intensification program.

Every year from June to October, Naik also work on this five-acre leased farmland, along with the other group members. She is involved from planting to harvest — and even in marketing.

“There are eleven women members in our self-help group, Biswa Jay Maa Tarini. Thanks to training, awareness and handholding by CSISA and partners, an illiterate like me is currently the president of our group,” said an emotional Anita Naik.

Anita Naik (first from left) meets with her self-help group Biswa Jay Maa Tarini in village of Badbil, in the Mayurbhanj district of India’s Odisha state. Together, they work on a five-acre lease land, where they grow maize commercially. (Photo: CIMMYT)
Anita Naik (first from left) meets with her self-help group Biswa Jay Maa Tarini in village of Badbil, in the Mayurbhanj district of India’s Odisha state. Together, they work on a five-acre lease land, where they grow maize commercially. (Photo: Nima Chodon/CIMMYT)

Not quite done yet

A little further away from her house, Naik has a small field where she grows rice with the help of her husband and son. After checking in on her maize crop on the leased land, Naik works in her paddy the rest of the day. She tends to her land diligently, intent on removing the weeds that keep springing up again and again in the monsoon season.

“It is back-breaking work, but I have to do it myself as I cannot afford to employ a laborer,” Naik laments.

Naik finally takes a break around 1 p.m. for lunch. Some days, particularly in the summer when exhaustion takes over, she takes a short nap before getting back to removing weeds in the rice fields.

She finally heads home around 4 p.m. At home, she first takes the animals back into their shed.

Around 6 p.m., she starts preparing for dinner. After dinner, she clears the kitchen and the woodstove before calling it a night and going to bed around 8 or 9 p.m.

“The day is short and so much still needs to be done at home and in the field,” Naik says after toiling from early morning until evening.

Tomorrow is a new day, but chores at home and the work in the fields continue for Naik and farmers like her.

Anita Naik lights up her wood fire stove to prepare food, at her family home in the village of Badbil, in the Mayurbhanj district of India’s Odisha state. (Photo: CIMMYT)
Anita Naik lights up her wood fire stove to prepare food, at her family home in the village of Badbil, in the Mayurbhanj district of India’s Odisha state. (Photo: Nima Chodon/CIMMYT)

Paradigm change

Traditionally farmers in and around Naik’s village cultivated paddy in their uplands for personal consumption only, leaving the land fallow for the rest of the year. Growing rice is quite taxing as paddy is a labor-intensive crop at sowing, irrigating, weeding and harvesting. With limited resources, limited knowledge and lack of appropriate machinery, yields can vary.

To make maximum use of the land all year through and move beyond personal consumption and towards commercial production, CIMMYT facilitated the adoption of maize cultivation. This turned out to be a gamechanger, transforming the livelihoods of women in the region and often making them the main breadwinner in their families.

In early 2012, through the CSISA project, CIMMYT began its sustainable intensification program in some parts of Odisha’s plateau region. During the initial phase, maize stood out as an alternative crop with a high level of acceptance, particularly among women farmers.

Soon, CIMMYT and its partners started working in four districts — Bolangir, Keonjhar, Mayurbhanj and Nuapada — to help catalyze the adoption of maize production in the region. Farmers shifted from paddy to maize in uplands. At present, maize cultivation has been adopted by 7,600 farmers in these four districts, 28% of which are women.

CIMMYT, in partnership with state, private and civil society actors, facilitated the creation of maize producers’ groups and women self-help groups. Getting together, farmers can standardize grain quality control, aggregate production and sell their produce commercially to poultry feed mills.

This intervention in a predominantly tribal region significantly impacted the socioeconomic conditions of women involved in this project. Today, women like Anita Naik have established themselves as successful maize farmers and entrepreneurs.

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

Cover photo: Farmer Anita Naik stands for a photograph next to her maize field. (Photo: Nima Chodon/CIMMYT)

Scientists bridge theory and practice to boost climate resilience in wheat

With the past decade identified as the warmest on record and global temperatures predicted to rise by as much as 2 degrees Celsius over preindustrial levels by 2050, the world’s staple food crops are increasingly under threat.

A new review published this month in the Journal of Experimental Botany describes how researchers from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators are boosting climate resilience in wheat using powerful remote sensing tools, genomics and big data analysis. Scientists are combining multiple approaches to explore untapped diversity among wheat genetic resources and help select better parents and progeny in breeding.

The review — authored by a team of 25 scientists from CIMMYT, Henan Agricultural University, the University of Adelaide and the Wheat Initiative — also outlines how this research can be harnessed on a global level to further accelerate climate resilience in staple crops.

“An advantage of understanding abiotic stress at the level of plant physiology is that many of the same tools and methods can be applied across a range of crops that face similar problems,” said first author and CIMMYT wheat physiologist Matthew Reynolds.

Abiotic stresses such as temperature extremes and drought can have devastating impacts on plant growth and yields, posing a massive risk to food security.

Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.
Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.

Addressing research gaps

The authors identified nine key research gaps in efforts to boost climate resilience in wheat, including limited genetic diversity for climate resilience, a need for smarter strategies for stacking traits and addressing the bottleneck between basic plant research and its application in breeding.

Based on a combination of the latest research advances and tried-and-tested breeding methods, the scientists are developing strategies to address these gaps. These include:

  • Using big data analysis to better understand stress profiles in target environments and design wheat lines with appropriate heat and drought adaptive traits.
  • Exploring wheat genetic resources for discovery of novel traits and genes and their use in breeding.
  • Accelerating genetic gains through selection techniques that combine phenomics with genomics.
  • Crowd-sourcing new ideas and technologies from academia and testing them in real-life breeding situations.

These strategies will be thoroughly tested at the Heat and Drought Wheat Improvement Network (HeDWIC) Hub under realistic breeding conditions and then disseminated to other wheat breeding programs around the world facing similar challenges.

One factor that strongly influences the success and acceleration of climate resilience technologies, according to Reynolds, is the gap between theoretical discovery research and crop improvement in the field.

“Many great ideas on how to improve climate-resilience of crops pile up in the literature, but often remain ‘on the shelf’ because the research space between theory and practice falls between the radar of academia on the one hand, and that of plant breeders on the other,” Reynolds explained.

Translational research — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields and aims to bridge this gap.

Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.
Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.

The impacts of this research, conducted under HeDWIC — a project led by CIMMYT in partnership with experts around the world — will be validated on a global scale through the International Wheat Improvement Network (IWIN), with the potential to reach at least half of the world’s wheat-growing area.

The results will benefit breeders and researchers but, most importantly, farmers and consumers around the world who rely on wheat for their livelihoods and their diets. Wheat accounts for about 20% of all human calories and protein, making it a pillar of food security. For about 1.5 billion resource-poor people, wheat is their main daily staple food.

With the world population projected to rise to almost ten billion by 2050, demand for food is predicted to increase with it. This is especially so for wheat, being a versatile crop both in terms of where it can grow and its many culinary and industrial uses. However, current wheat yield gains will not meet 2050 demand unless serious action is taken. Translational research and strategic breeding are crucial elements in ensuring that research is translated into higher and stable yields to meet these challenges.

Read the full study:
Harnessing translational research in wheat for climate resilience

Cover photo: Wheat fields at CIMMYT’s experimental stations near Ciudad Obregón, Sonora state, Mexico. (Photo: M. Ellis/CIMMYT)