Agriculture is central to South Asian economies, lives and livelihoods. However, the challenges of an increasing population and brisk economic growth are straining the agriculture sector as it struggles to meet the present and future demand for food, nutritional security, and economic development. Not only this, the three Cs – COVID, climate change and conflict – are fueling the growing fragility in food systems across the world.
To address these issues and find potential solutions, the Borlaug Institute for South Asia (BISA) organized a high-level meeting with top agriculture ministry officials from its neighboring countries – Sri Lanka, Nepal, Bangladesh, Bhutan, India and Pakistan – to collaborate and learn from each other.
BISA’s outreach to India’s neighbors in South Asia has already produced results. Data from the BISA farm in Ludhiana, India, on resistance to yellow rust that affects wheat crop has been used in Nepal, Afghanistan, and Pakistan. Genomic prediction evaluation for grain yield and other traits worked on at BISA through the help of the Global Wheat Program of the International Maize and Wheat Improvement Center (CIMMYT) has been extended to Pakistan, Bangladesh, and Nepal since 2020. Regular training is organized for students, scientists and farmers in India on breeding and climate resistant technologies, and BISA scientists organize courses in Nepal on climate-smart technologies.
Cover photo: Tara Miah (50) is a farmer from Rajguru in Rahamanbari union, Barisal, Bangladesh. He used seeder fertilizer drills to plant wheat on his fields. Previously, this was done manually. SFD has resulted in a better harvest for Miah. (Credit: Ranak Martin)
Hybrid seeds exhibit a significant potential to boost on-farm productivity and attain food security. Still, the availability, affordability and accessibility of such quality seeds remain a challenge for farmers in South Asia. Primarily driven by the demand from the poultry industry, maize productivity in the region is increasing annually. Yet, the hybrid maize seed coverage is below 50% in most South Asian countries.
In continuation of its capacity-building initiatives, the International Maize and Wheat Improvement Center (CIMMYT) conducted an International Training Workshop on Quality Hybrid Maize Seed Production and Seed Business Management in South Asia on August 15-18, 2022, in Kathmandu, Nepal. The four-day hybrid training was jointly organized by Nepal’s Seed Quality Control Center, Nepal Agricultural Research Council (NARC), Seed Entrepreneurs’ Association of Nepal and CGIAR’s Seed Equal Initiative. Primarily, the event aimed at strengthening the capacity of seed stakeholders on the latest advances in quality hybrid maize seed production and establishing competitive hybrid seed business strategies.
Around 60 participants comprising of private seed company owners, national and international seed system specialists, maize breeders, crop inspectors, seed agronomists, marketers, policymakers and researchers working in hybrid seed production and marketing attended the training. Representatives were invited from Nepal, India, Bangladesh and Pakistan.
Principal trainer, John MacRobert, shared examples and knowledge in the principles of hybrid maize seed production and seed business. Former principal scientist of CIMMYT, MacRobert is currently the managing director of Mukushi Seeds Pvt Ltd in Zimbabwe and director of Quality Seed Pvt Ltd in South Africa. The training also involved group discussions and exercises on preparing a seed road map as well as developing profitable seed business plans. The participants used a seed business model canvas tool to chart their production plans, develop marketing strategies and diagnose profit. In 2018, MacRobert trained 15 private seed companies from Nepal and Pakistan on hybrid seed business mentorship course in Kathmandu. Since then, the participants brought in and shared rich practical experiences from their own businesses and regulatory organizations during this year’s program.
Joining MacRobert were 14 national and international experts from CIMMYT and other institutions, who delivered sessions related to hybrid maize breeding principles and techniques, seed quality control measures and regulations, and variety registration and licensing policies and procedures.
The forum offered an excellent learning opportunity for the national and international participants to exchange knowledge and experiences from seed specialists on developing competitive hybrid maize and seed production technologies that will bring cost-efficiency in production and maximize crop yields and business profits. It also served as a ground for establishing networks and collaborations. The mutual learnings will contribute to building national and regional partnerships in the seed sector.
Participants reflected on the learnings and benefits gained from the comprehensive course, which they would apply to improve maize productivity in their respective countries.
Muhammad Aslam, assistant professor from the University of Agriculture Faisalabad in Pakistan, acknowledged the opportunity provided to him and his university. He mentioned the support of CIMMYT in Pakistan in strengthening the local maize seed industry, where the market share of local seed companies is gradually increasing due to the elite germplasm support and capacity development efforts by CIMMYT. He added that the practical knowledge gained from the training will enhance the university students’ skills.
Attendees at the International Training Workshop on Quality Hybrid Maize Seed Production and Seed Business Management in South Asia. (Credit: Bandana Pradhan/CIMMYT)
An ode to seeds
During the closing session of the training, Govinda Prasad Sharma, Secretary of the Ministry of Agriculture and Livestock, handed over diverse maize seeds to the NARC and seven private seed company partners of the Nepal Seed and Fertilizer (NSAF) project. CIMMYT acquired the elite maize parental lines and breeder seeds from its international maize breeding hubs in Mexico, Zimbabwe, Colombia and India. The seeds have the potential of yielding 6-7 metric tons per hectare for synthetics and more than 10 metric tons for hybrids–a significant increase from 3-5 metric tons of local seeds. More importantly, given the current climate challenges Nepali farmers are facing, these climate-resilient seeds reach maturity earlier than local varieties which reduces their exposure to drought. These seeds will also withstand Fall Armyworm infestations, a devastating pest threatening maize production in Nepal.
“Genetic materials that will not only enhance yield but diversify the gene pool of crops in Nepal is extremely important,” said Lynn Schneider, deputy director of the Economic Growth Office at United States Agency for International Development (USAID) Nepal. “Agriculture must combat climate change and malnutrition, which are critical for the South Asia region. So, I am really proud that we are working on these areas,” shared Schneider.
“Food security is a priority for the Government of Nepal,” explained Sharma. He mentioned maize as an essential commodity from the food and feed perspective for South Asia and plans to collaborate with the private sector and donor organizations to increase maize productivity in the country. “The event will definitely help in augmenting the activities and accelerate the pathway towards achieving food and feed security,” he added.
Moreover, a certificate of appreciation was presented to Nepal’s National Maize Research Program to recognize their effective collaboration in hybrid maize varietal promotion and source seed distribution. Similarly, three partner seed companies of the project were also recognized for the breakthrough in becoming the first recipients of the Government of Nepal’s research and development license to register and produce hybrid seeds on a commercial basis.
CIMMYT also launched an assessment report on Cereal Seeds Value Chain in Nepal that provides evidence-based recommendations for developing Nepal’s formal cereal seed sector, specifically maize and rice. The publication highlights the need for a well-performing seed system where high-quality seeds of a wide range of varieties and crops are produced and available in time and affordable to farmers.
Deepak Bhandari, executive director of NARC, also congratulated the authors and expressed the significance of formulating and implementing inclusive strategies to build a vibrant seed industry in Nepal. He also acknowledged the event organizers for conducting an exceptional international workshop on hybrid maize seeds for the public and private seed stakeholders.
Cover photo: Training attendees gather to discuss competitive hybrid maize seed production technologies and build relationships with seed systems professionals. (Credit: Bandana Pradhan/CIMMYT)
“I am happy with this wheat variety and all the support from the project,” said Agere Worku, a female farmer in Ethiopia working with the International Maize and Wheat Improvement Center (CIMMYT). “It is a lot of money that I will earn as a female farmer in my life.”
Participants were given Kingbird seeds, a new wheat variety, to plant in their smallholdings. The project then supported them through capacity building and advice on smart soil, water management, plant protection and agronomic packages.
“We prepared six hectares of land and sowed 1.1 tons of Kingbird seed,” said Yeshiwas Worku, chair of the Melke Yegna Tefsa Association. “There were other wheat varieties, such as Danda’a, adjacent to our experimental plot and the difference in yields was very visible. The other members of the association were eager to get Kingbird seeds, which are very different in terms of quality, yields, maturity, and disease tolerance.”
“CIMMYT is a life changer for me,” said Buzayehu Getahun, a farmer in Jeju, in the Oromia region. “I produced 3.7 tons on 0.75 hectares. Interestingly, I earned around 132,000 Ethiopian Birr (US$2,500) from this yield. I plan to build a new house for my mother in my village and will be blessed by her at her old age,” said Getahun.
Female smallholder farmer with a bag of Kingbird seed, which she will use as part of a CIMMYT project pilot. (Credit: Enawgaw Shibeshi/CIMMYT)
The impact on female farmers
After involvement in the pilot, the female farmers produced higher yields than they had experienced before.
“I used to harvest wheat three times in the previous years and earned only 0.66 tons of wheat per 0.75 hectare using seeds of other wheat varieties,” explained Worku. “But now thanks to support from CIMMYT, the yield has increased four times than the previous years; I produced 2.4 tons per 0.75 hectares. I am very happy with the high yield and feel encouraged to reinvest in other agricultural activities.”
A second female farmer, Melishew Tedela, said, “I am happy with this seed and all the support from the project. I can be witness that the other farmers who didn’t get this variety were not happy with their low yields of wheat.”
Female farmers in Ethiopia share their experiences of cultivating Kingbird wheat crops. (Credit: Enawgaw Shibeshi/CIMMYT)
The future of lowland wheat farming
Bekele Geleta Abeyo, wheat breeder and Ethiopia Country Representative at CIMMYT, said, “The Government of Ethiopia is emphasizing increasing irrigated wheat production and productivity in the lowlands to complement the intensification of rainfed wheat production in the highlands in order to achieve self-sufficiency by 2023 and feed the ever-growing population.”
With world wheat prices skyrocketing due to the Ukraine conflict, wheat technology generation and dissemination are key for sustainable agricultural practices.
CIMMYT is working to replace obsolete wheat varieties in Ethiopia that are susceptible to wheat rust, particularly yellow and stem rust, with disease-resistant products. Newer varieties like Kingbird are rust-resistant and therefore produce higher yields.
Farmer in his field of Kingbird wheat in Ethiopia. (Credit: Enawgaw Shibeshi/CIMMYT)
Over the years, wheat-based foods have increasingly been incorporated as part of Kenyan meals. One example is packaged bread, which has become a common feature on Kenyan breakfast tables with millions of loaves from industrial bakeries delivered to retail shops daily, countrywide. Another example is chapati — a round unleavened flat bread. Once reserved for special occasions, chapati can now be purchased from roadside venders throughout the capital Nairobi.
Millers and processors in Kenya are highly dependent on imported wheat to meet the strong demand for wheat-based food products. The conflict between Russia and Ukraine, two of the most important sources of imported wheat for Kenya, presents a major threat to millers and industrial bakeries. Prices for bread and chapati are increasing and may continue to increase. Governments and wheat-related industries are looking at short- and long-term options to reduce utilization of imported wheat. One short-term option is the blending of wheat flour with flour derived from locally available crops, such as cassava, millet or sorghum.
Record-high price of wheat
A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)
A visit to local industrial bakeries and wheat flour millers on the outskirts of Nairobi by International Maize and Wheat Improvement Center (CIMMYT) researchers confirmed the effects of record-high global prices of wheat. Global Wheat Program director Alison Bentley and senior economist Jason Donovan had conversations with leaders of industrial bakeries and millers, who gave insights into their grain demands, production processes and sales volumes.
One of the leaders of an established industrial bakery divulged that they use approximately 15,000 tons of wheat flour monthly to make baked products, with only 10% of the wheat obtained locally.
“In the last ten years, local wheat production has comprised about ten to fifteen percent of our cereal mixture for bread, and we were already paying higher prices to farmers compared to import prices. The farmers were already being paid about 30 to 40 dollars more per ton,” a manager of a large baking industry in Kenya explained to the CIMMYT team.
According to government regulations, millers and bakeries must purchase locally produced wheat at agreed prices before they can buy imported wheat. He agreed that though the quality of local wheat is good, the local production cannot compete with the higher volume of imported wheat or its lower price.
Growing wheat in East Africa
It has been more than four months since the Russia-Ukraine conflict unfolded, and since then prices of wheat-based products have been increasing significantly. The current crisis has sparked the debate on low levels of self-sufficiency in food production for many countries. And this is especially the case for wheat in Kenya, and more widely in Africa.
Bentley points out that the biophysical conditions to produce wheat in East Africa are present and favorable. However, more work is needed to strengthen local wheat production, starting with efficient seed systems. Farmers who are interested in growing wheat need access to high performing and stress-tolerant wheat varieties.
CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)
Practical response to the crisis
With no certainty as to how long the conflict will continue and climate change resulting in significant crop loss in key production zones, wheat shortages on international markets could become a reality. Blending of wheat flour with locally available crops could be an option as an immediate response to the current scarcity of wheat in East Africa. “Blending [flour] is when for instance five percent of wheat flour is replaced with flour from a different crop such as sorghum or cassava,” Bentley explained.
Donovan added that, though it might seem like a small number, it becomes significant in consideration to the volume of wheat that industries use to make different products, translating into thousands of metric tons. He noted that blending flour therefore has the potential to create a win-win situtation, because it can boost the demand for local crops and address uncertainty and price volatility on international wheat markets.
Consumer acceptance of new products
Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)
During a full week of engagements with universities, partners, and industry experts in Kenya, the CIMMYT team explored the current interest of the sector in blending wheat flour. Several partners agreed that this could be a potential way forward for the grain industry but all highlighted one key element: the importance of consumer acceptance. If the functionality of the flour or taste would be negatively influenced by blending wheat flour, it would represent a no-go from the industry, even if blends would have higher nutritional benefits or lower prices. “This reinforces the need to understand consumer preferences and evaluate both the functionality of the flour to produce essential food products such as chapati or bread as well as the taste of those products,” Pieter Rutsaert explained.
CIMMYT researchers Sarah Kariuki and Pieter Rutsaert, both Markets and Value Chain Specialists, and Maria Itria Ibba, Head of the Wheat Quality Lab, are therefore engaging with local millers and universities in Kenya to design bread and chapati products derived from different wheat blends, to include blends comprised of 5%, 15% and 20% of cassava or sorghum. Lab testing and preliminary consumer testing will be used to identify the most promising products. These products will be taken to the streets in urban and peri-urban Nairobi to assess consumer tastes and preferences, through sensory analysis and at-home testing.
The market intelligence gained will offer foundational support for CGIAR’s Seed Equal Initiative to accelerate the growth of a demand-driven seed system. By gathering and analyzing consumer preferences on selected crops for blending, such as from farmers and milling industries, Donovan pointed out that CGIAR breeding will continue to make informed choices and prioritize breeding for specific crops, that seek to address specific challenges, therefore having greater impact.
Donovan noted that data and information from the studies will provide much needed evidence and fill information gaps that will support governments, millers, processors and farmers to make decisions in response to the evolving wheat crisis.
Our planet is facing a massive biodiversity crisis. Deeply entwined with our concurrent climate crisis, this crisis may well constitute the sixth mass extinction in Earth’s history. Increasing agricultural production, whether by intensification of extensification, is a major driver of biodiversity loss. Beyond humanity’s moral obligation to not drive other species to extinction, biodiversity loss is also associated with the erosion of critical processes that maintain the Earth system in the only state that can support life as we know it. It is also associated with the emergence of novel, zoonotic pathogens like the SARS-CoV-2 virus that is responsible for the current COVID-19 global pandemic.
Conservation ecologists have proposed two solutions to this challenge: sparing or sharing land. The former implies practicing a highly intensive form of agriculture on a smaller land area, thereby “sparing” a greater proportion of land for biodiversity. The latter implies a multifunctional approach that boosts the density of wild flora and fauna on agricultural land. Both have their weaknesses though: sparing often leads to agrochemical pollution of adjacent ecosystems, while sharing implies using more land for any production target.
In an article in Biological Conservation, agricultural scientists at the International Maize and Wheat Improvement Center (CIMMYT), argue that, while both land sharing and sparing are part of the solution, the current debate is too focused on trade-offs and tends to use crop yield as the sole metric of agricultural performance. By overlooking potential synergies between agriculture and biodiversity and ignoring metrics that may matter more to farmers than yield —for example, income, labor productivity, or resilience — the authors argue that the two approaches have had limited impact on the adoption by farmers of practices with proven benefits on both biodiversity and agricultural production.
Beyond the zero-sum game
At the heart of the debate around land sparing versus land sharing is a common assumption: there is a zero-sum relationship between wild species density and agricultural productivity per unit of land. Hence, the answer to the challenge of balancing biodiversity conservation with feeding a growing human population appears to entail some unpalatable trade-offs, no matter which side of the debate you side with. As the debate has largely been driven by conservation ecologists, proposed solutions often approach conserving biodiversity in ways that offer limited benefits, and often losses, to farmers.
On the land sparing side, the vision is to carve up rural landscapes almost as a planner would zone urban space: some areas would be zoned for highly intensive forms of agricultural production, largely devoid of wild species, while others would be zoned as biodiversity-rich areas. As the authors point out, however, such a strictly segregated view of land use is challenged by the natural migratory patterns of species, their need for diverse types of ecosystems over the course of the seasons or their lifecycles, and the high risk of pollution associated with intensive agriculture, such as run-off and leaching of agrochemicals, and pesticide drift.
Proponents of the land sharing view argue for a multifunctional approach to agricultural production that introduces a greater density of wild species onto agricultural land, thus integrating production and conservation into the same land units. This, however, inevitably diminishes agricultural productivity, as measured by yield.
This view, the article argues, overlooks the synergies between agriculture and biodiversity. Not only can biodiversity support agriculture through ecosystem services, but farmlands also support many species. For example, the patchiness created in the landscape by swidden agriculture or by grazing livestock supports more biodiversity than closed-canopy ecosystems, benefiting open-habitat species in particular. And except for rare forms of “controlled environment agriculture” such as hydroponics, all agricultural systems depend on the ecosystem services rendered by a multitude of organisms, from soil fertility maintenance to pollination and pest control.
Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)
“Agriculture is about flexibility and pragmatism,” said Frédéric Baudron, a system agronomist at CIMMYT and the lead author of the study. “Farmers need to be presented with a wider basket of solutions than the dichotomy of high-yielding and polluting agriculture versus low-input and low-yielding agriculture offered by land sharing/sparing. Virtually all production systems require both external inputs and ecosystem services. In addition, agricultural scientists have developed a variety of solutions, such as precision agriculture, to minimize the risk of pollution when using external inputs, and push-pull technology to harness ecosystem services for tangible productivity gains.
Similarly, an exclusive focus on yield as a measure of agricultural performance obscures ways in which greater biodiversity on agricultural land can support farmers’ livelihoods and economic wellbeing. The authors show, for example, that simplified landscapes in southern Ethiopia tend to have higher crop productivity. But more diverse landscape in the same area, while hosting more biodiversity, produce more fuelwood, support a higher livestock productivity, provide a greater dietary diversity, and are more resilient to environmental stresses and external economic shocks, all of which being highly valued by local people.
Imagining landscapes where biodiversity and people win
The land sharing versus sparing debate deserves enormous credit for bringing attention to the role of agriculture in biodiversity loss and for pushing the scientific community and policymakers to address the problem and think about how to balance agriculture and conservation. As the authors of this paper show, as researchers from a more diverse range of scientific disciplines join the debate, there is tremendous potential to move the conversation from a vision that pits agriculture against biodiversity and towards solutions that highlight the potential synergies between these activities.
“It is our hope that this paper will stimulate other agricultural scientists to contribute to the debate on how to feed a growing population while safeguarding biodiversity. This is possibly one of the biggest challenges of our rapidly changing agri-food systems. But we have the technologies and the analytics to face this challenge,” Baudron said.
Cover photo: Pilot farm in Yangambi, Democratic Republic of Congo. (Photo: Axel Fassio/CIFOR)
South Asia was the epicenter of the Green Revolution, a historic era of agricultural innovation that fed billions of people on the brink of famine.
Yet despite the indisputably positive nutritional and developmental impacts of the Green Revolution of the 1960s, the era of innovation also led to the widespread use of farming practices—like intensive tilling, monoculture, removal and burning of crop residues, and over-use of synthetic fertilizer—that have a deleterious effect on the soil and cause off-site ecological harm. Excess pumping of irrigation water over decades has dried out the region’s chief aquifer.
South Asia’s woes illustrate the environmental costs of intensive food production to feed our densely-populated planet. Currently, one billion hectares of land worldwide suffers from degraded soils.
The International Maize and Wheat Improvement Center (CIMMYT) works with two of the world’s most widely cultivated and consumed cereal crops. To grow enough of these staple foods to feed the world, a second Green Revolution is needed: one that avoids the mistakes of the past, regenerates degraded land and reboots biodiversity in farm areas.
M.L. Jat, a CIMMYT Principal Scientist, has spent 20 years studying and promoting sustainable agricultural practices for maize- and wheat-based farming systems. In the following Q&A, Jat tells us about regenerative agriculture: integrated farming and grazing practices intended to rebuild soil organic matter and restore degraded soil biodiversity.
Q: What major components or practices are part of regenerative agriculture?
A: Regenerative agriculture is a comprehensive system of farming that harnesses the power of soil biology to rebuild soil organic matter, diversify crop systems, and improve water retention and nutrient uptake. The depletion of biodiversity, degradation of soil health, warming, and drier weather in farm areas have necessitated a reversal in agriculture from “degeneration to regeneration.”
The practices address food and nutritional security challenges while protecting natural resources and lowering agriculture’s environmental footprint, in line with the United Nations Sustainable Development Goals. CIMMYT has worked for years to research and promote conservation agriculture, which contributes to the aims of regenerative agriculture, and is already practiced on more than 200 million hectares globally — 15% of all cropland — and is expanding at a rate of 10.5 million hectares per year.
Q: What are the potential roles of major food crops — maize, rice, and wheat — in regenerative agriculture systems?
A: Regenerative agriculture is “crop neutral;” that is, it is applicable to almost all crops and farming systems. The world’s rice, wheat, and maize crops have an enormous physical and ecological footprint on land and natural resources, but play a critical role in food and nutrition security. Considering that anthropogenic climate change has reduced the global agricultural total factor productivity by about 21% in the past six decades, applying regenerative agriculture approaches to these systems represents a momentous contribution toward sustainable farming under increasing climatic risks.
Q: What elements or approaches of regenerative agriculture are applicable in India and how can they be applied?
A: Regenerative practices for maize and wheat systems in India include no-tillage, crop residue recycling, legume inter-cropping and cover crops, crop diversification, integrated nutrient management, and precision water management.
The potential area of adoption for regenerative agriculture in India covers at least 50 million hectares across a diversity of cropping systems and agroecologies — including irrigated, rainfed, and arid farmlands — and can be approached through appropriate targeting, investments, knowledge and capacity enhancement, and enabling policies.
In the breadbasket region of the Indo-Gangetic Plains, regenerative agriculture can help address the aforementioned second-generation problems of the Green Revolution, as well as contributing to the Indian government’s Soil Health Mission and its COP26 commitments.
Q: In order to get regenerative agriculture off the ground in South Asia, who will be involved?
A: Adapting and applying regenerative agriculture’s portfolio of practices will require the participation of all stakeholders associated with farming. Application of these principles is location- and situation-specific, so researchers, extension functionaries, value chain actors, philanthropists, environmentalists, NGOs, farmers, and policy planners all have a role to play in the impact pathway.
CIMMYT, the Borlaug Institute for South Asia (BISA), public and private programs and agencies, and farmers themselves have been developing, refining, and scaling out conservation agriculture-based regenerative agriculture practices for some three decades in South Asia. CIMMYT and BISA will continue to play a key role in mainstreaming regenerative agriculture in local, national, and regional development plans through science-based policy and capacity development.
Q: Farmers constitute a strong economic and political force in India. How can they be brought on board to practice regenerative agriculture, which could be more costly and knowledge-intensive than their current practices?
A: We need to pursue business “unusual” and harness the potential opportunities of regenerative agriculture to sequester soil carbon and reduce greenhouse gas emissions. Regenerative agriculture practices can offer farmers additional income and certainly create a “pull factor” for their adoption, something that has already started and will constitute a strong business case. For example, innovative business models give farmers an opportunity to trade ecosystem services and carbon credits through repurposing subsidies and developing carbon markets for private sectors. CIMMYT, along with the Indian Council of Agricultural Research and private partners such as Grow Indigo, are already helping to put in place a framework to acquire carbon credits through regenerative agriculture in India.
For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.
The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to “‘high-risk’ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,” writes B.M. Prasanna, director of CIMMYT’s Global Maize Program and MAIZE, in the foreword.
“While intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,” says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.
More than 40% of the global agricultural labor force is made up of women, and in the least developed countries, two in three women are employed in farming. Yet, despite being the largest contributors to this sector, women’s potential as farmers, producers and entrepreneurs is frequently untapped due to gender inequalities, limited access to farming assets and inputs, low participation in decision-making spaces, and lack of financing and capacity-building opportunities.
Tackling these gendered barriers is critical not only to help women achieve their highest economic potential, but also to feed an increasingly hungry world. Before this year’s Women’s History Month comes to an end, read the stories of three Bangladeshi women—Begum, Akter and Rani—to find out how the International Maize and Wheat Improvement Center (CIMMYT) are empowering them to become decision-makers in their communities, learn new skills and knowledge to boost their incomes, and advocate for bending gender norms across the country.
Embracing agricultural mechanization has improved Begum’s family finances
Rina Begum lives in Faridpur, a major commercial hub in southern Bangladesh. Before starting a business, her financial situation was precarious. Her primary source of income was her husband’s work as a day laborer, which brought in very little money. This, coupled with the lack of job security, made it hard to support a family.
Rina Begum started out in business as a service provider, hiring agricultural machines to farmers.
About five years ago, Begum’s interest in agricultural mechanization was ignited by the farmers in her town, who were earning extra money by investing in farm machinery and hiring it out. Her first foray into the business world was buying a shallow irrigation pump and setting herself up as a service provider. Next, she saw her neighbor using a power tiller operated seeder and decided to try one out for herself. Finally, after taking part in a potential machinery buyer program run by CIMMYT under the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MEA) and funded by USAID, she took the bold step of purchasing a seeder and adding it to her inventory of machines available for hire.
While her husband learned to operate the seeder, Begum put her business and accounting skills to good use, taking on an essential role in what ended up being the family business and establishing herself as an entrepreneur. Her work defied the established social norms, as she regularly interacted with the mechanics and farmers who came to her for mechanized services. Moreover, she occasionally stepped up alongside her husband to repair and maintain the machines. All this earned Begum a reputation as an experienced service provider, operator and mechanic, and turned her into a decision-maker and a role model to her family and community.
In 2021, Begum used her business profits to pick up the bill for her daughter’s marriage. “I know this job inside-out now,” she says, “and I’m really proud to have paid for the wedding myself.”
This taste of success fueled Begum’s appetite to expand the business even further, pushing her to take part in another training offered by CIMMYT, this time in mat-seedling production. Moreover, Begum, who plans to grow seedlings to sell on to rice farmers this year, has applied for a government subsidy to buy a rice transplanter, which can be hired out for use with mat-seedlings, and increase her stock of agricultural machinery.
With her new skills, Akter is advancing gender equality in Bangladesh’s light engineering sector
At age 18, Nilufar Akter (pictured top) passed her high school certificate and soon after married Rezaul Karim, the owner of a light engineering workshop in Bogura, a city in northern Bangladesh, that manufactures agricultural machinery parts, with a workforce mainly composed of men. Akter’s ambition was to go out into the workplace and make her own money, so when Karim asked her to work alongside him, she agreed and soon became a valuable part of the business. Her primary responsibilities were inventory management and marketing, as well as business management, which she found more difficult.
Reza Engineering Workshop began working with CIMMYT in 2020 as part of CSISA-MEA, an initiative that supports light engineering workshops in Bangladesh with staff development, access to finance, management, and business growth. Under this project, CIMMYT organized a management training at the Bangladesh Agriculture Research Institute (BARI), which Akter attended. With the confidence these new skills gave her, she went back to the workshop and introduced a few changes, including building a computerized finance management system and updating the stack management. Moreover, she also established a dedicated restroom for female employees.
“We need human resources to maintain things in the business—and women can do a fantastic job”, Akter says. “We had no idea what good source of strength women workers would be for the factory. Therefore, if we provided them with adequate facilities, we could create jobs for many women who really need them”, she adds.
Akter’s current priorities are workshop safety and occupational health, two issues she’s tackling using the knowledge she learned in the CIMMYT training. Recently, she’s created some occupational health and safety posters, and established a series of workshop rules. “I used to think I wasn’t cut out for light engineering because it was primarily male-dominated, but I was mistaken”, Akter confesses. “This industry has a lot to offer to women, and I’m excited at the prospect of hiring more of them”, she adds.
Producing better quality rice has boosted the income of Rani and her family
Monika Rani lives in Khoshalpur, a village located in Dinajpur district in northern Bangladesh, with her husband Liton Chandra Roy and their two-year-old child. They farm just a quarter of a hectare of land, and Liton supplements their income with occasional wages earned as a day laborer.
Monika Rani wanted to increase her family’s income to provide better schooling opportunities for her children.
Rani was looking for ways to increase their income so they could give their children an education and a better life. During last year’s boro rice-growing season (December to May), she and her husband joined the premium grade rice production team of CIMMYT as part of CSISA-MEA. The market value and yield of premium quality rice is greater than other types, so when Rani heard that she could make more money producing that variety, she decided to make a start right away. CIMMYT provided her with five kgs of premium seed for the 2021-22 winter season and trained her in premium quality rice production technology and marketing, which she followed to the letter.
Through hard work and persistence, Rani and her husband avoided the need to hire any additional labor and were rewarded with the maximum yield possible. She dried the premium quality rice grain according to buyer demand and sold 1,600 kgs, in addition to 140 kgs to farmers in her town.
“Knowing about premium quality rice production has tremendously changed my future for the better,” Rani explains. “I had no idea that, through my own hard effort, I could have a better life”, she added.
Cover photo: Nilufar Akter is using the knowledge she gained in CIMMYT training to focus on workshop safety and occupational health in her business.
The war in Ukraine and the sanctions against Russia will disrupt wheat supply chains, fertilizer exports and other components of food systems. Their combined effect, along with other factors, could unchain a major food security crisis as well as increased inequality.
Explore our analysis and coverage on major media outlets and journals. To get in touch with our experts, please contact the media team.
CIMMYT scientists have also made available a summary of key facts and figures about the impact of the Russia-Ukraine war on wheat supply (PowerPoint, 32MB): changing patterns of consumption and effect on food prices, geographic export supply concentration, global wheat imports, and specific vulnerabilities particularly in the Global South.
The Russia-Ukraine conflict will cause massive disruptions to global wheat supply and food security. Agricultural research investments are the basis of resilient agri-food systems and a food-secure future.
War highlights the fragility of the global food supply — sustained investment is needed to feed the world in a changing climate, Alison Bentley explains on Nature.
A new Bloomberg op-ed urges nations to steer more money to organizations like CIMMYT that are advancing crucial research on how to grow more resilient wheat and maize crops in regions that are becoming steadily less arable.
The war in Ukraine, coupled with weather-related disruptions in the world’s major grain-producing regions, could unleash unbearable humanitarian consequences, civil unrest, and major financial losses worldwide, say Sharon E. Burke (Ecospherics) and Bram Govaerts (CIMMYT) on The Boston Globe.
Women’s involvement in maize production is often shrouded in assumptions. One might assume that women have minimal say in management decisions, especially regarding jointly managed plots, due to rigid gender norms that prioritize men’s decisions on farming-related matters. However, operating under such assumptions about women’s role in the management of maize farms risks confining women to specific roles and not meeting their needs in the maize seed system.
To break these assumptions, Rachel Voss, Gender Specialist at the International Maize and Wheat Improvement Center (CIMMYT), and a team of fellow researchers are conducting a study, “Unpacking maize plot management roles of women and men in smallholder households in Kenya.” The study, part of the Accelerating Genetic Gains in Maize and Wheat (AGG) project, aims to asses the gender dynamics of maize management in Kenya in order to categorize plots and households, analyzing intrahousehold decision-making and evaluating which women have the power and agency to apply their preferences for seed on their farms — and which ones do not.
Challenging perceptions
Take, for example, Sofa Eshiali, a 60-year-old farmer from Ikolomani, western Kenya, who participated in the study. She defies the stereotype of women having a limited role in maize farming, as she is deeply involved in decision-making on maize production in her household and represents an important client for new breeding efforts and more inclusive seed distribution programs. Together with her husband, she has grown maize primarily for family consumption since getting married, getting involved in all matters concerning their half acre farm. “For us, when we want to plant [our maize seeds], we sit together and discuss the cash we have at hand and decide if we can get two hands to help us work our half acre of land,” she says.
Eshiali and her husband make a joint decision on the maize seed variety they plant every season based on performance of the previous planting season. “We previously used the H614D [maize seed variety] and it did well in our farm — except when it gets very windy, as our crops fall and our bean crop gets destroyed before it is ready for harvest. Last season, we decided to use the H624 because it remains there even when it is windy,” she said, demonstrating her knowledge of maize seed variety.
In addition to seed choice and farm labour, Eshiali and her husband also discuss what fertilizer to use and when they need to shift to a new choice, and they make decisions together concerning their farm and farm produce. This includes deciding what amount of harvest they can sell and what to do with the sale proceeds. For a household like Eshiali’s, new maize varieties need to appeal to — and be marketed to — both spouses.
Sofa Eshiali, a 60-year-old maize farmer from Ikolomani, Western Kenya, who participated in the study. (Photo: Susan Umazi Otieno/CIMMYT)
Farming roles
Eshiali’s reality of equitable engagement in the farm may not be the case for other households in her community and across Kenya, meaning that reaching women with new varieties is not always simple.
As Voss points out, women are often less involved in major household decisions than men, frequently due to longstanding social norms. However, there is little understanding of how decisions are negotiated at the household level, particularly when crops are jointly produced. Furthermore, in many places, men are perceived to be the “real” farmers, while women are viewed to only play a supportive role within household farming. This can lead to the exclusion of women from extension activities, trainings and input marketing efforts.
Against this background, Voss notes that the ongoing study aims to identify in which types of households women have control over seed choice and in which households other constraints might be more important.
“To get new maize varieties into men’s and women’s fields, we need to identify the bottlenecks to reaching women. This means understanding, among other things, how decisions about seed are made within households and how households source their seed,” she explains.
Vignettes showing five different decision-making scenarios based on fictitious husband and wife characters. (Photo: Susan Umazi Otieno/CIMMYT)
Best-case scenario
To overcome the challenge of discussing the sensitive topic of decision-making roles between spouses and to encourage more culturally unbiased, candid responses, the study uses vignettes, or short stories, to describe various scenarios. This enables farmers to relate with different farm management decision making scenarios without pointing fingers at their spouses.
The study’s coauthor and research team leader, Zachary Gitonga, explains that the use of vignettes is still a relatively new method, especially in agricultural research, but enables digging deeper into sensitive topics.
Data collection involved a joint survey with both men and women household heads about maize plot management before breaking into separate discussions using the vignettes. These presented five possible decision-making scenarios with fictitious husband and wife characters. The five scenarios were then used to discuss strategic seed choices, operational decisions related to issues such as planting date and hiring farm labor, and financial decisions such as the use of the income from the maize sales.
“By presenting a set of short stories, a farmer can determine what scenario they relate with. In the study, farmers can talk about sensitive interaction without having to assign responsibility to their spouse, especially negatively, in the way decisions are made,” Gitonga said.
The vignettes also made it easier for both the enumerators to explain the scenarios and the farmers to understand and freely give their feedback. Sometimes, he pointed out, what men and women perceive as joint decision-making might not be the same. For instance, some men may think informing their wives that they are going to buy a particular seed means involving them. Here, the vignette activity aims to unpack the reality of joint decision-making in households.
From East Africa to Asia
During a recent field visit to the study area in Kakamega, Kenya, Hom Gartaula, Gender and Social Inclusion Research Lead at CIMMYT, noted the study’s importance to the inclusion of women in the farming cycle. “We urgently need to better understand the reality of women’s and men’s situation in terms of access to maize seed and other needed inputs and services. Otherwise, we risk designing breeding and seed systems that do not address the needs of the most vulnerable farmers, including women,” he said, adding that data from the study will enable insights into and comparison with the gender dynamics of wheat production in South Asia through cross-regional learning.
Gartaula also noted that, even though men predominantly manage South Asia’s wheat agriculture, women significantly contribute to it, especially in smallholder farming systems. In recent years, women’s contribution to providing labor and decision-making in wheat agriculture has increased due to the feminization of agriculture and livelihood diversification among smallholders.
Since women’s contributions to wheat farming are often vital to pre- and post-harvest processes, Gartaula notes they ought to be part of the entire maize and wheat value chain. That includes building more equitable seed delivery systems. “It is therefore important to have seed products that address the needs of different users and include home consumption and commercial sales,” he says.
The study will inform future efforts to ensure equitable seed access for both men and women farmers. Ultimately, if both men and women farmers access the best seed based on their needs and priorities, incomes will rise, households will be better sustained, and communities will become more food secure.
In the traditional Indian society Madhulika Singh grew up in, girls choosing to study science, technology, engineering or mathematics (STEM) was as radical as choosing a life partner on their own.
“They say women hold up half the sky. I believe they should hold up as much and contribute equally in STEM too,” says Singh, now an agriculture specialist at the International Maize and Wheat Improvement Center (CIMMYT).
In her early teens she saw her mother, a school headmaster, comfortably navigate her career along with her domestic responsibilities without a sweat. She later saw a similar example in her sister-in-law. “I grew up thinking ‘there is so much that a woman is capable of,’ whether at home or her workplace,” Singh recalls.
This strong idea of women’s potential led her to pursue studies in science. “Many women before me, like my mother’s generation, were encouraged to take up [careers in] humanities — become a teacher, or pursue home management courses — to ensure a smooth transition once married,” Singh explains. She hoped this would change during her time and that following a career in STEM would be a matter of choice — not gender.
Singh’s goals and ambitions were very clear from the very beginning. In school, she was interested in biology, particularly plant studies and botany. Her inquisitive nature was reflected in her projects and presentations, scoring her high grades. She demonstrated a thorough understanding of plant physiology and her passion for the subject. The budding scientist always wanted to know more and to do more, which Singh feels resonates with her current research and publications.
A popular quote attributed to Mahatma Gandhi says “Be the change you want to see in the world.” When Singh chose to take up plant science in graduate school and then agriculture science for her doctorate, she became the change she had hoped to see in her home and society as a young girl. With the support from her family but a skeptical society, she went ahead and pursued a career in STEM, beginning her research on maize genotypes and conservation agriculture. In 2013 she joined CIMMYT as a physiologist.
CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)
Helping farmers transition to conservation agriculture
Singh currently works in her home state of Bihar for the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. She is engaged with over ten thousand farmers from the states of Bihar and Uttar Pradesh, supporting the adoption of conservation agriculture practices.
Farming is vital for the region, as nearly 70% of the population is engaged in agriculture and extension services. However, food and livelihoods are threatened by the small size of farms, low incomes, and comparatively low levels of agricultural mechanization, irrigation and productivity.
Singh and her colleagues have led the transition from traditional farming to sustainable intensification practices — like early wheat sowing, zero tillage and direct-seeded rice — which have helped smallholder farmers increase their yield potential substantially.
“We believe a project like CSISA, along with the government and partners, can help advance and support in realizing the full agriculture potential of these regions,” Singh explains.
Roots in the soil
Her grandparents were farmers. “To be able to care for the land that provided you nourishment and a living was always admired upon,” she says. As a crop scientist, Singh’s family acknowledges her work as an extension of the services her grandparents practiced.
Sustained by this motivation and encouragement, Singh feels reassured of her role: joining other scientists, partners and farmers to make agriculture sustainable and our communities food-secure.
“The fact that the data we generate from our experiments serve as building blocks in the generation of knowledge and help farmers optimize the cost of inputs and increase their productivity is fulfilling and enriching to me,” Singh expresses.
Apart from working to build the capacity of farmers and extension workers, Singh supports the implementation of field trials and community-based technology demonstrations. She also helps refine key agricultural innovations, through participatory testing, and optimizes cropping systems in the region.
Leading the way for for the next generation
A true representative of the STEM community, Singh is always learning and using her experience to give back to society. She has co-authored numerous books and contributed to journals, sharing her knowledge with others.
Other women leaders in STEM have inspired Singh in her professional life, including CIMMYT’s former deputy director general for research Marianne Banziger. Singh believes Banziger was trailblazing and that young girls today have many female role models in STEM that can serve as inspiration.
The change is already here and many more young women work in STEM, pursuing excellence in agriculture sciences, engineering and research studies contributing to as well as claiming “half the sky.”
Cover photo: CIMMYT researcher Madhulika Singh (center-right) stands with farmers from self-help groups in the village of Nawtanwa, West Champaran, in India’s Bihar state. CIMMYT works on gender inclusion and participation through partnerships with other organizations and self-help groups. (Photo: CIMMYT)
Over the past several decades, maize breeders have made considerable strides in the development and deployment of new hybrids. These offer higher yields compared to older varieties and reduce the risks farmers face from the vagaries of a changing climate and emerging pest and disease threats. But, for small-scale farmers to adopt new, improved climate-resilient and stress-tolerant maize hybrids at scale, they must be first available, accessible and their benefits need to be widely understood and appreciated. This is where vibrant national seed industries potentially play an important role.
Prior to the 1990s, government agencies tended to play the lead role in hybrid production and distribution. Since then, expectations are that the private sector — in particular locally owned small-scale seed enterprises — produce maize hybrids and distribute them to farmers. When successful, local seed industries are able to produce quality new hybrids and effectively market them to farmers, such that newer hybrids replace older ones in agrodealer stores in relatively short periods of time. If small seed enterprises lack capacities or incentives to aggressively market new hybrids, then the gains made by breeding will not be realized in farmers’ fields. By monitoring seed sales, breeders at CIMMYT and elsewhere, as well as seed business owners, gain insights into smallholders’ preferences and demands.
A recent publication in Food Security assesses the capacities of 22 small and medium-sized seed enterprises in Mexico to produce and market new maize hybrids. The study draws on the experience of the MasAgro project, a decade-long development whereby the International Maize and Wheat Improvement Center (CIMMYT), in partnership with Mexico’s Department of Agriculture and Rural Development (SADER), engaged with dozens of locally owned seed businesses to expand their portfolio of maize hybrids.
The authors, led by CIMMYT senior economist Jason Donovan, highlight the critical role the MasAgro project played in reinvigorating the portfolios of maize seeds produced by small and medium-sized enterprises. MasAgro “filled a gap that had long existed in publicly supported breeding programs” by providing easy access to new cultivars, available to local seed companies without royalties or branding conditions, and without the need for seed certification. The enterprises, in turn, showed a remarkably high capacity to take up new seed technology, launching 129 commercial products between 2013 and 2017.
“Without doubt the MasAgro project can be considered a success in terms of its ability to get new maize germplasm into the product portfolios of small seed companies throughout Mexico,” Donovan said.
The authors also delve into the challenges these maize enterprises faced as they looked to scale the new technologies in a competitive market that has long been dominated by multinational seed enterprises. They observed a lack of access to physical capital, which in turn evidenced a lack of financial capital or access to credit, as well as limited marketing know-how and capacity to integrate marketing innovations into their operations. While most maize enterprises identified the need to expand sales of new commercial products, “signs of innovation in seed marketing were limited” and most of them relied heavily on sales to local and state governments.
According to Donovan, “The MasAgro experience also shows that a strong focus on the demand side of formal seed systems is needed if breeding programs are to achieve greater impact in less time. This implies more attention to how farmers decide on which seed to purchase and how seed companies and seed retailers market seed to farmers. It also implies strong coordination between public sector to make building the local seed industry a national imperative.”
Beyond the Mexican context, the paper’s findings may be of particular interest to development organizations looking to supply local seed industries facing strong competition from regional and multinational companies. One example is the effort to support small seed businesses in Nepal, which face strong competition from larger Indian companies with long histories of engagement in Nepalese seed markets. There are also important lessons for policymakers in eastern and southern Africa, where strict controls over seed release and certification potentially lead to higher production costs and slower rates of introduction of new products by local maize seed companies.
This international Women’s Day, March 8, 2022, the International Maize and Wheat Improvement Center (CIMMYT) celebrates the essential role that women play in agriculture and food systems, and acknowledges that gender equality is essential to achieve a sustainable future. The burden of climate change impacts women disproportionately, even though we rely on them to drive change in climate adaptation, mitigation and solutions.
For example, in the last year, CIMMYT research found that educating women farming wheat in Bihar, India, increases the adoption of climate-smart agricultural practices, which, in turn, reduces greenhouse gas emissions, and boosts nitrogen productivity, eco-efficiency and yield. Additionally, in Mexico, a CIMMYT study found that women are less likely to default on agricultural credit than men, but seldom receive loans. Connecting women to financial capital to obtain agricultural inputs is an essential step in boosting their decision-making in food production.
Read more about our pathbreaking work in gender research in the collection of stories below!
Gender equality for climate-resilient, sustainable food systems
A farmer weeds a maize field in Pusa, Bihar state, India. (Photo: M. DeFreese/CIMMYT)
Gender-responsive and gender-intentional maize breeding
A new paper by CIMMYT researchers takes stock of lessons learnt on gender inclusivity and maize breeding in Africa. Scientists also assess knowledge gaps that need to be filled to effectively support gender-responsive and gender-intentional breeding and seed systems work.
Alice Nasiyimu stands in front of a drought-tolerant maize plot at her family farm in Bungoma County, in western Kenya. (Photo: Joshua Masinde/CIMMYT)
Towards gender-transformative research in the CGIAR
Gender scientists from ten CGIAR centers and key partner institutions came together in a hybrid workshop to integrate gender-transformative research and methodologies into the new CGIAR Initiatives. In this series of videos, GENNOVATE partners share their insights on this topic.
On this International Day of Women and Girls in Science, CIMMYT speaks to Tripti Agarwal, whose research paper delves into the impact of Climate-Smart Agricultural Practices (CSAPs) on women and farming households in Bihar, India. CSAPs offer a promising solution to address environmental issues through gender-inclusive technological interventions. As we celebrate the achievements of women in science today, we see CSAPs bridging the gender gap and empowering women.
Hello Tripti, it’s great to talk to you about labor migration and how the adoption of CSAPs ensures household food security. Could you share how this approach influences gender equality in farming households?
My paper istitled “Gendered impacts of climate-smart agriculture on household food security and labor migration: insights from Bihar, India.”Bihar is highly vulnerable to hydro-meteorological natural disasters that cause agricultural production loss. The issue is that the male workforce migrates to other cities to seek different employment opportunities and improve their families’ livelihoods, often leaving the women behind to farm. Women left behind are then responsible for household and farming activities, making them overburdened. Therefore, Climate Smart Agricultural Practices (CSAPs) could play a vital role in safeguarding the loss in production and supporting livelihoods. The concept of Climate-Smart Villages (CSVs) links this, acknowledging the gender gap and striving to promote gender-equitable approaches in knowledge enhancement, capacity development, and better practices. CSAPs empower women to support farming decision-making and a better utilization of resources
That is interesting. Would you also tell us how the CSV program addresses climatic risks from technological and social perspectives?
As per the study I mentioned earlier, climatic stress that affects crop production directly impacts a household’s food security and, more severely, women’s food security. The CSV program promotes adopting climate-resilient practices and technologies that mitigate the risk of crop loss and ensure enough food for the household. CSV is a promising solution to address environmental issues through gender-inclusive technological interventions.
Ensuring food for the household is the most important thing. We also see that this paper highlighted the knowledge gaps between men and women farmers in terms of CSAPs. What action plan is needed to have a more equitable gender-responsive environment at the policy level?
The paper attempts to drive the concentration of the state/policymakers in providing more opportunities to women in having access to resources. Policies or strategies — driven towards ensuring female education, knowledge and capacity building — are likely to play a significant role in providing access and control of resources to women across their lifetimes in varied areas of work.
As per the research paper,the probability of out-migration is reduced by 21% with the adoption of CSAPs. What factors do you think are the critical indicators of this trend?
The increase in knowledge about CSAPs, both for men and women, supports household decision-making in adopting CSAPs. With the adoption of CSAPs, the increase in agricultural production reduced the compulsion of males to migrate, and better female literacy also had a negative and significant effect on male out-migration
The study also reveals that the farmer’s education has a direct impact on the adoption of CSAPs. Is there any plan to bridge this gap? Or a suggestion for the policy makers to address this issue?
There are two steps to be covered on this front. First, to have gender-equitable knowledge dissemination and to ensure that women receive the required and necessary information about CSAPs. For this, the role of women in society needs to be strengthened and would primarily come from (i) support from the family & society and (ii) right to education. Second, knowledge alone is not enough to contribute to economic activities. Gender-inclusive strategies need to be framed and implemented to provide women the required access and control over resources. For this, multi-sectoral efforts are necessary, like having policies from the government, corporates supporting the cost of efforts, specialized agencies providing the expertise, NGO partners working with the community, and foremost, support from the society.
Very rightly said, and we hope that some strong measures are taken at the policy level. Today, women play a huge role in agriculture; thus, it becomes vital to enhance their capacities, especially in newer technologies. In this context, what approaches can you suggest to strengthening their skills and knowledge to achieve a gender-empowered agricultural domain?
There is no limit to enhancing the skills and capacities of an individual. And when we talk about women, especially in rural/agricultural contexts, we see that support from the family is critical for them. To ensure that, we need ways to educate men on how women can support them in providing better livelihoods. Creating plans and roadmaps for women would help achieve a gender-empowered agricultural domain, but we must also bring behavior change among men towards a more accepting role of women in farming and decision making.
One last question related to this special day. Why do you love your work? And how is science exciting for you?
I was assigned the position of Project Administrator; however, after working for many years with a team of experts, my interest in research slowly ignited. Thanks to the support I received, I decided to work closely on the subject and identify the areas where I may add value. Linking my knowledge and field studies, I started contributing to relevant publications like this one, which is the output of my years of experience at CIMMYT. I received a lot of support from my team, especially from Dr. M.L. Jat, who has been a great mentor throughout my journey of learning and growth.
M.L. Jat is a Principal Scientist at CIMMYT and co-author of the article. Building on this publication, CIMMYT’s gender research will be further strengthened under the One CGIAR Regional Integrated Initiative on Transforming Agri-Food Systems in South Asia (TAFSSA), which has a core learning site in Bihar.
New improved maize varieties may fall short in meeting the needs of women and the poorest of farmers – a concern that remains a focus of the International Maize and Wheat Improvement Center (CIMMYT) and the wider CGIAR.
Lower than expected adoption rates for some new maize varieties suggest that innovative strategies in breeding and seed delivery are likely needed. There is broad recognition of the need to get new germplasm from the CGIAR and its partners into the fields of more farmers in less time.
CIMMYT research on markets and social inclusion focuses on understanding two related dynamics: the unique preferences, needs and circumstances faced by women and the poorest farmers, and the implications these carry for how breeding programs and seed companies design and market new varieties.
Taking stock of knowledge and gaps in gender and maize breeding
Decades of research on maize preferences have sought to understand if and how men’s and women’s preferences differ. However, existing data provides unclear guidance to maize breeders on gender-relevant traits to prioritize in product profile design. The evidence suggests a lack of meaningful differences in what men and women are looking for in maize—yield, drought tolerance and early maturity—are high priorities almost across the board.
One reason for the similarity in preferences among women and men may relate to how we evaluate them, the authors argue. Preference studies that focus on evaluation of varieties’ agronomic and productivity-related traits may overlook critical components of farmers’ variety assessment and seed choice, including their household and farming context. Ultimately, they say, we need to explore new approaches to evaluating farmer demand for seed, considering new questions instead of continuing to look for gender-based differences in preferences.
A first step in that direction is to figure out how demand for maize seed differs among farmers according to their needs, priorities and resource limitations. Gender is definitely a part of that equation, but there’s much more to think about, like how maize fits into household food security and livelihoods, decision-making dynamics around maize production, and seed accessibility. New tools will be needed for understanding those and how decision-making around seed happens in real-world contexts.
Understanding how farmers make decisions on seed choice
The authors offer several practical suggestions for maize breeders and other researchers in this space:
First, explore tools that allow farmers to evaluate varieties in their household context. Large-scale farmer-managed on-farm trials have gained attention in the CGIAR as tools for more accurate assessment of farmer preferences. These approaches have several added advantages. They enable evaluation of variety performance under realistic management conditions—including under management practices used disproportionately by women, such as intercropping, which is typically excluded from larger researcher-managed trials. These approaches also enable farmer evaluation of maize varieties not only in terms of in-field performance and yield at harvest stage, but in terms of grain quality after harvest. This is particularly important for social inclusion, given women’s disproportionate attention to traits related to processing and consumption.
Second, move beyond gender-based preferences in evaluating seed demand. Gendered preferences matter, but they may not be the sole factor that determines a farmer’s choice of seed. We need to understand market segments for seed in relation to farmers’ aspirations, risk perceptions and tolerance, livelihood priorities, and household context. This also means exploring the intrahousehold gender dynamics of maize farming and seed choice to understand women’s roles in decision-making in maize production, processing, and consumption.
Finally, consider questions related to maize seed systems more broadly. Are maize seed systems capable of delivering gender-responsive and gender-intentional varieties to women and men? What are the barriers to wider uptake of new varieties aside from variety suitability? Innovative marketing and delivery mechanisms may be critical to realizing gains from more gender-intentional breeding.
With the transition to the One CGIAR, sharing tools and lessons learned across crops will be increasingly important. Researchers in the CGIAR community have developed new tools for gender-responsive and gender-intentional breeding. This includes through the Gender and Breeding Initiative, which has published the G+ tools to support gendered market segmentation and gender-intentional product profile development.
While learning from one another’s experiences will prove essential during the transition, recognizing that the gender dynamics of maize production may be very different from sweet potato production will also be key. Here, the new Market Intelligence & Product Profiles initiative and SeEdQUAL initiative on seed systems will both create new spaces for exploring these issues across crops.