Skip to main content

It’s out with the old for Ethiopia’s highland maize farmers

CIMMYT E-News, vol 3 no. 11, November 2006

nov02Ethiopia’s highland maize farmers now have a reason to smile—two reasons, as a matter of fact. Argene and Hora, recently released highland maize varieties, are spurring renewed hope for the country’s agricultural productivity.

Speaking at a farmer field day held in Bu’i, Oromiya, to showcase the new varieties’ performance, Economic Advisor to the Prime Minister, Neway Gebre-Ab, termed the new varieties “a great breakthrough in research,” and said the future for highland farmers looked bright. “There is great enthusiasm; the farmers told us they were expecting a bumper harvest of 7 to 8 tons per hectare this season,” said CIMMYT maize breeder and coordinator of the Highland Maize Project, Twumasi Afriyie.

For several decades now smallholders cropping the highlands of Ethiopia have wanted new, higher-yielding maize varieties. The cool, wet climate is ideal for the crop, yet varieties released in the 1970s and 80s did not fully exploit the benign climate. Indeed, the older varieties have been giving lower and lower yields in successive seasons. The old varieties also take a long time to mature. Today, many farmers here consume their entire crop green, leaving nothing to mature in the field, and thus risking their long-term food security. This long maturity period also means that farmers can grow only one crop each year.

Since 1998 CIMMYT and partners have been working to develop new, high-yielding maize varieties for the highlands. Thousands of parent lines have been tested and bred in a systematic collaboration with researchers in eastern and central Africa, with the work in Ethiopia being achieved in partnership with scientists at the Ambo National Plant Protection Research Center of the Ethiopian Institute of Agricultural Research (EIAR).

Argene and Hora have also been bred to withstand the important pests and diseases in the highlands. The new varieties mature in fewer days, and are stockier than traditional ones, which easily fall over (lodge) during storms or in strong winds.

nov03
Afriyie says Oromiya was a logical first home for the improved highland maize. The expansive state spans parts of western, central and southern Ethiopia, and is home to 26 million people. Nearly 90% are rural folk who depend on agriculture.

Higher maize production can make a real difference to the farmers in the region: The versatile crop can be eaten fresh off the cob or dried and pounded into flour to make different dishes. Poorer households are increasingly adding some maize meal to their injera batter (Ethiopia’s best-loved staple, injera is a spongy, fermented flatbread made from teff flour). This is due to teff’s high price. Surplus maize can be dried and stored for later, or sold for cash.

The farmers who are growing the new varieties plan to capitalize fully on the early maturity. “We can practice relay cropping and get two harvests in a season,” said one woman farmer—another double benefit from the new highland maize.

For more information, Twumasi Afriyie (t.afriyie@cgiar.org)

Wheat and Water Win

May, 2005

obregon01CIMMYT shows technology to enhance farmer income and reduce ocean pollution

Wheat farmers in the Yaqui Valley of Mexico’s Sonora State will be the first to gain from a new technology developed by CIMMYT researchers with partners from Oklahoma State and Stanford Universities. And while the farmers in Mexico will benefit, CIMMYT believes that farmers and the environment in many developing countries will reap rewards as well.

“I wish I had known about it this season,” said Ruben Luders when he saw the results. He farms 400 hectares of wheat in the Yaqui valley. “It will save me money.”

What Luders and more than twenty-five other farmers saw in a demonstration was an effective and accurate way to determine both the right time and correct amount of nitrogen fertilizer to apply to a growing wheat crop. Wheat needs nitrogen to grow properly, but until now there has been no easy way to know how to apply it in an optimum way. Traditionally farmers in the region fertilize before they plant their seed and then again at the first post-planting irrigation. The new approach, developed in conjunction with Oklahoma State University in the United States, uses an infrared sensor to measure the yield potential of wheat plants as they grow.

“I had been looking for something to determine nitrogen requirements for a long time,” says CIMMYT wheat agronomist, Dr. Ivan Ortiz-Monasterio. “This technology was already being used by CIMMYT scientists for other things, such as estimating the yield of different genotypes. It has taken time to calibrate it, but now we have a useful tool to determine the nitrogen a wheat plant needs.”

obregon02

The sensor is held above the young, growing wheat plants and measures how much light is reflected in two different colors—red and invisible infrared. In technical terms this is called measuring the Normalized Differential Vegetative Index (NVDI). After much testing, Ortiz-Monasterio and his colleagues from Oklahoma State found they could get a handheld computer to calculate the nitrogen requirement of the plants from the two readings.

The demonstration, conducted in the fields of four different farmer-volunteers, showed they could maintain their yields using far less fertilizer. That is because fertilizer residue from over-applications in past seasons can still be utilized by the new crop.

“We used to feed the soil first, before growing the wheat,” says Luders. “Now we know we should feed the wheat.” He and his friends calculated that with just 80 hectares of wheat the nitrogen sensor, which costs about US $400, could pay for itself in a single season.

The demonstration was made possible because farmers in the Yaqui Valley have consistently supported the research work of CIMMYT and of Mexico’s national agricultural research institute, INIFAP, in the area.

There is much more to this technology than a tool to maximize farm income. A recent Stanford University study published by the prestigious science journal Nature showed that each time farmers irrigate their fields, some of the excess nitrogen fertilizer washes into the nearby Sea of Cortez. The heavy load of nitrogen in the water results in blooms of algae which deplete the oxygen in the water. In other parts of the world such algae blooms can do serious damage to local fisheries. If widely adopted in the Yaqui Valley, the nitrogen-optimizing technology should result in less fertilizer washing into the sea.

Runoff of excess nitrogen fertilizer is a problem that will threaten many more sensitive bodies of water around the world, according to Ortiz-Monasterio. “As farming systems intensify to feed more people, we need to increase production but minimize impact on the environment,” he says. So while farmers in the State of Sonora may be the first to benefit, they certainly will not be the last. Just five days before the demonstration in Ciudad Obregon, the first infrared sensor, a result of a USAID linkage grant with CIMMYT and Oklahoma State, arrived in Pakistan. This way, a technology proven in the field in Mexico will go on to assist farmers in poorer parts of the world and help maintain the health of coastal waters at the same time.

For further information, contact Ivan Ortiz-Monasterio (i.ortiz-monasterio@cgiar.org).

Age Old Wheats in the New World of Plant Breeding

CIMMYT E-News, vol 2 no. 10, October 2005

ageOldIn Mexico, the wheat of the conquistadors helps scientists in their battle against drought.

Wheat first came to the Western hemisphere with the arrival of the Spanish conquistadors about 500 years ago. Since then, generations of Mexican farmers have tended their wheat fields with traditional varieties that differ little from their forebears by virtue of wheat’s self-pollinating nature. Today, these time-tested wheats represent a new source of genetic diversity that could improve yields in drought-ridden areas by as much as 30 percent.

CIMMYT scientists and their Mexican collaborators have gathered thousands of traditional wheat varieties, called landraces, from diverse locations in Mexico. Farmer and natural selection over five centuries have combined to screen these wheats for drought tolerance under often severe conditions. Researchers are looking to capture the drought adaptive traits of these hearty old-timers and breed them into modern, higher yielding varieties. Of the original 2,100 varietal samples collected, nine are very promising.

“What we found was that the best of these landraces show considerably higher expression for certain drought and heat adaptive traits than common wheat,” says CIMMYT wheat physiologist Matthew Reynolds. “Heat and drought stress often go hand in hand. Hot conditions exacerbate drought by evaporating more moisture from the soil, and when plants are dry their temperature rises. But with these traits, we might be able to increase the potential for yield under drought.” Drought plagues more than half of the wheat area in the developing world and so is a high priority for CIMMYT’s Rainfed Wheat Program.

ageOld2

There is a range of traits that can help wheat plants cope with dry conditions. Early in the season, many of the landraces showed an increased ability to accumulate carbohydrates in their stem, reserves that can be used later when the season gets drier for grain growth or to send roots deeper into the soil in search of water. A vigorous and rapidly growing leaf canopy can shade surrounding soil from the sun’s drying rays, thereby conserving soil moisture. Under stress conditions, the wheat spike can contribute to photosynthesis, which in turn promotes better development of the grain. While all of wheat’s organs can play an important role in producing grain in the face of drought, the root system is probably the most vital.

At a depth of 60-90cm below the soil, landraces had a more extensive root system and thus were able to extract more water out of the soil than common wheat. Not only did the landraces find more water, but they also used it more efficiently. “We found an association in these landraces between increased yield and root length density,” Reynolds says. Where there is a more extensive root system, the wheat is able to draw more water and nutrients out of the soil, increasing grain. Tallied up, the potential yield gain from these landraces may be considerable for farmers in dry areas.

“The next step is introducing these traits into the CIMMYT wheat breeding program,” says Reynolds. “Breeding and physiology work very closely to translate new information like this into useful products as quickly as possible by combining new drought adaptive traits with other traits such as disease resistance, good height, and time to maturity.”

For further information, contact Matthew Reynolds (m.reynolds@cgiar.org).

“People Power the Vision”: New CGIAR Human Resource Service Meets at CIMMYT

title_sasHR

April, 2004

sasHrAlthough CGIAR centers share common human resources problems, do they communicate with each other and share successful solutions? Now five of them do just that, as partners in the Strategic Advisory Service for Human Resources (SAS-HR), says SAS-HR Director N.P. Rajasekharan.

Representatives from CIAT, CIMMYT, IPGRI, IWMI, and WorldFish attended the first business meeting of the Advisory Group for the SAS-HR from 14–16 April at CIMMYT-Mexico. These five centers and the CGIAR Secretariat are part of an initiative to develop a CGIAR human resources framework and meet management needs. The ultimate goal is to achieve each center’s vision through the development of high caliber, committed, and motivated staff.

“In talking about those common problems we did find a big convergence,” says conference participant Koen Geerts, IPGRI’s Director of Finance and Administration. “Why not exchange information rather than re-inventing wheels
and sometimes the wrong wheels?”

Geerts thinks it was a big accomplishment for the centers to come together and discuss shared problems. He also thinks the SAS-HR will benefit other centers, which may want to join after the group makes progress and produces results.

Sharing Best Practices

A highlight of the conference’s first day was a best practice showcase, where each center presented its most successful human resources strategies. IMWI focused on its implementation of the OneStaff approach, which was also mentioned as one of IPGRI’s strengths; WorldFish explained its job evaluation system; and CIAT presented its use of the Internet for recruitment, occupational health program, and Social Welfare Fund. CIMMYT described its national staff administration, corporate policies, and management of a recent downsizing.

“I think CIAT has got a very sound policy and practice in place covering occupational health and safety,” says conference participant Doug Dunstan in giving an example of how the centers can learn from each other’s best practices. “We can build on their learning and implement many of these things without having to invest huge amounts of time.”

Dunstan, the Associate Director General for Corporate Services at WorldFish, thinks the SAS-HR will help introduce a higher level of equity in the CG system and show that staff members are valuable resources that need to be looked after.

“The main thrust will be one of harmonization and drawing out some very important themes that must permeate all of the CG system,” says Dunstan. He thinks the meeting was productive in defining project focuses and establishing a plan with detailed milestones. The openness and professionalism among participants impressed him, particularly while discussing sensitive issues.

Off to a Rapid Start

Rajasekharan is optimistic that the SAS-HR will help centers attract, motivate, develop, and retain the people who will accomplish center and CGIAR missions. “We want to foster more teamwork, transparency, and inclusiveness within the CGIAR,” he says. “We started looking at strategic issues and common concerns for the centers last December.”

Participating centers save time and costs by sharing ideas, strategies, and solutions. Using staff and management input, they are already defining human resources needs, developing strategies that recognize center diversity and autonomy, creating solutions, and establishing an e-community of HR professionals.

“The advisory group for SAS-HR is on track to address my main expectations,” says CIAT Director General Joachim Voss. “I hope they will help us to create sensible, effective, and cost-saving changes.”

More Effectives and Equity for CGIAR Center Staff

To ensure CGIAR success, centers must display not only excellence in science but also organizational effectiveness, according to CIMMYT Director General Masa Iwanaga, who opened the meeting. Other speakers included the World Bank’s Eric Schlesinger, who talked about 360-degree appraisal, and CGIAR Director Francisco Reifschneider with Ravi Tadvalkar, who addressed developments in the first CGIAR system-wide compensation survey via video.

“People are the foundation of our knowledge-based CGIAR system,” said Reifschneider. He endorsed the “OneStaff” initiative, which aims to create an inclusive and equitable environment for all staff members regardless of employment contract differences. The initiative will promote transparency by providing equal opportunities and clearly explaining benefit differences to staff. It could facilitate movement from National to Regional to International staff categories by clearly defining what is needed for advancement.

Reifschneider observed that OneStaff will “further develop and support the vision and values that SAS-HR participating Centers have for their staff.” He noted that “the concept behind OneStaff requires a gradual transition in the organizations, part of the evolution of the CGIAR System as a whole.”

Many staff members inquire about “what is going on” within an organization, and management has the challenge of finding the best ways to communicate clearly with everyone, says WorldFish Director General Stephen Hall. “We have to work hard to make it clear where the organization is going and what it is trying to do,” says Hall. He also advocates a transparent framework with open terms for compensation and recognition that bases differentiations not on place of birth or recruitment but rather on what people do for the organization.

If staff members want to voice opinions, they can take advantage of another SAS-HR project: a shared website named PeoplePower that has internal and public components. This tool will improve communication among staff members and management at the five centers. The public site will list vacancy postings and CV postings along with explanations of human resource practices and other features. The internal site will help staff share information, make suggestions, post events, and implement on-line processes such as training and opinion surveys. The website’s prototype, which was introduced at the meeting, includes a database for center policies, e-learning tools, and a virtual resource center.

Planning for Change

Although developing new ideas and approaches will not be difficult, says Geerts, the challenge lies in getting people to accept change. He says clinging to an established way of working is a human reaction, and people will only permit change if they believe it is positive.

Dunstan agrees. “Change is a concept which is not readily understood or accepted by a large body of people,” he says. “It’s human nature not to accept initiatives because they are in fact a change from the status quo.”

Geerts sees many best practices emerging from this effort, and he thinks it is vital to think ahead and plan for centers’ needs in five or ten years. “There’s a whole range of crucial HR-related matters on which we need to make progress,” he says. “This is only a start.”

Other meeting participants included JesĂșs Antonio Cuellar, Carlos Meneses, and Gustavo Peralta from CIAT; Coen Kramer, Martin van Weerdenburg, Marisa De la O, Georgina Becerra, and Patricia Villaseñor from CIMMYT; Khar Hoay Tan from WorldFish; and Griselda Marquez from SAS-HR.

What’s Next?

The next SAS-HR meeting is scheduled for 6-8 June in Colombo, Sri Lanka, at IWMI. IWMI has been working on the OneStaff concept and on the reformation of policies and practices, according to Director General Frank Rijsberman. He believes that the CGIAR can improve impacts in the areas where it works and also its position in the labor market by reforming HR policies

The June meeting will include presentations about the PeoplePower website, mainstreaming Gender and Diversity and knowledge management, results of a CGIAR-wide compensation survey, and a review of the projects. Human resources professionals from non-participating centers are invited to attend. The next SAS-HR Advisory Group meeting will be 25 October in Mexico during the Annual General Meeting.

To foster wider learning within the CGIAR, many SAS-HR meetings and initiatives will be open to all centers. For more information, contact N.P. Rajasekharan.

Results of Transgenic Wheat Trial Look Promising

September, 2004

CIMMYT took a historic step in March 2004 by planting a small trial of genetically engineered wheat in its screenhouse at headquarters in El Batan, Mexico. It was the first time that transgenic wheat has been planted in Mexico under field-like conditions, and encouraging results have spurred plans for a more extensive follow-up trial.

dreb_01
dreb_02 DREB plants (left) next to non-DREB plants (right) in the trial.
Striving for Drought-Tolerant Wheat

Researchers used genetic engineering to insert a gene from Arabidopsis thaliana, a relative of wild mustard, into wheat. The gene, DREB1A, was provided by the Japan International Research Center for Agricultural Sciences, and has been shown to confer tolerance to drought, low temperature, and salinity in its natural host. The small trial completed this year was conducted in full accordance with Mexican and CIMMYT biosafety procedures, and represents a critical step toward developing drought-tolerant wheat varieties by allowing scientists to see how the DREB1A-expressing wheat responds under more natural conditions.

Drought is one of the most important agricultural production problems in the world. Combined with shortages of irrigation water, it threatens the ability of many developing countries to produce enough grain to feed themselves. Currently, the 20% of global farmland that produces 40% of the world’s food supply is irrigated.

“Drought is a complicated problem,” says CIMMYT cell biologist Alessandro Pellegrineschi, who led the trial. “When a plant is exposed to drought, there can be moisture stress, but there can also be heat or soil micro-element deficiencies or toxicities.” Because there are so many stresses, it is important to evaluate a potential solution under a variety of environments. Moreover, scientists are discovering that plants react to numerous stresses, especially to water deficiency and high levels of salt, in complex ways.

Encouraging and Consistent Results

Looking at the trial results, Pellegrineschi and colleagues were encouraged when they observed a more normal, non-stressed phenotype in the transgenic lines under drought conditions. Near the trial’s end, the non-DREB control wheat was dry, yellow, and shriveled, while the DREB wheat was still green and thriving. Pellegrineschi was surprised that a single gene could bring about such a visible response.

Pellegrineschi says the results of this trial, which is part of CIMMYT’s joint work with the Australian Cooperative Research Centre for Molecular Plant Breeding, are compatible with previous observations from small pots in the biosafety greenhouse. Many of the measured traits correlated with the improved performance of transgenic lines under water stress. However, the results need to be verified in a larger field trial with selected transgenic lines.

Taking Precautions

This is the first time that a food crop carrying the DREB1A gene has advanced to this level of testing. The Mexican government, which had announced a moratorium on planting transgenic maize under field conditions in 1998, approved the trial in December 2003.

CIMMYT followed strict biosafety procedures and worked closely with the government of Mexico in planning, conducting, and monitoring the trial. Access to the screenhouse was restricted. The researchers covered all plant flowers with bags and did not allow other wheat plants to grow within 10 meters of the trial, even though it is unlikely that self-pollinating wheat plants would cross with each other. After the trial, all plant materials except the harvested seed were destroyed.

What Next?

“This was the first trial transgenic wheat trial after the government removed the moratorium on growing transgenic varieties under field conditions, so we were very conservative in our request to the Mexican authorities for approval of the initial trial,” says Pellegrineschi. “Now that we have had some success, we will submit a request for a larger trial.”

Pending approval from the Mexican authorities, researchers are ready to begin a second trial, which will evaluate the best performing lines from the first trial more closely. In response to lessons learned from the first trial, the researchers are going to use a larger plot, have more replications, and restrict walking and the resultant soil compaction in the plots.

Five years ago, many people thought it was unrealistic that a single gene could improve a complex trait such as drought tolerance. With the right approaches, including the investment in proper field trials, Pellegrineschi believes that it will be possible to produce lines containing effective transgenes within five years.

Why Genetic Engineering?

With genetic engineering, useful genes for traits of interest can be transferred across species. DNA can be directly inserted into individual plant cells. The genetically altered tissue can be regenerated into complete plants and later transferred through conventional breeding into entire lines and varieties. This approach may also applied to rapidly and efficiently transfer traits within species for either research or development purposes. In both instances, CIMMYT remains committed to generating end-products that carry only the gene(s) of interest–that is, the undesired genes (marker genes) have been removed through conventional breeding.

Genetic engineering could increase the productivity and profitability of farming through reduced input use (lowering costs), added pest or disease resistance, and crops with better nutritional content or storage characteristics. Also, genetic engineering may solve problems that conventional breeding methods cannot. Nutritionally fortified crop varieties could be especially valuable in developing countries where millions of people suffer from dietary deficiencies.

Genetic engineering could become an important tool for introducing beneficial traits into maize and wheat. Efforts such as the DREB wheat field trail will allow our scientists to use a range of genes for the benefit of farmers and to pass on the products of cutting-edge technology to research partners in developing countries.

For more information: Alessandro Pellegrineschi or David Hoisington

Nepal-CIMMYT partnerships reach the unreached

nov1More than two decades of joint efforts between researchers from Nepal and CIMMYT have helped boost the country’s maize yields 36% and those of wheat by 85%, according to a report compiled to mark the 25th anniversary of the partnership. As a result, farmers even in the country’s remote, mid hill mountain areas have more food and brighter futures.

Anywhere else, peaks above 3,000 meters would be called “mountains,” but a nation whose collective psyche has been shaped by the towering Himalayas refers to its rugged heartland as merely the “mid-hills.” Comprising deep river valleys and high ridge tops, peppered toward the north with sloping farm terraces, the mid-hills account for more than four-tenths of Nepal’s total land area. They are home to isolated villages whose inhabitants’ lives hold strongly to tradition.

One such villager is Bishnu Maya Nepali, 45 from, Belhara village of Dhankuta district. She is a farmer and a single mother of three. Maya is a “dalit,” one of the poorest castes in the Nepal’s traditional caste hierarchical system.

Up until a few years ago, Maya maintained a hardscrabble existence by planting maize, the region’s main food crop. Like many area farmers, it wasn’t enough. Her farm–which is roughly the size of a soccer field–didn’t produce enough food to feed her family.

Maya’s life began to change in 2006 when she was approached by members of the HMRP. Maya was asked to test maize varieties bred for the mid-hills by the Nepal Agriculture Research Council (NARC) with CIMMYT as one of the partners. She agreed and eventually decided to plant a type of maize, called Manakamana 3, which produced two large ears per plant and which had a shorter, sturdier stalk. To her delight, the new plant thrived. Maya’s maize harvests grew 20-50%. She also discovered the plant stayed green as it matured, providing better forage for her livestock. The project advised Maya to plant vegetables in addition to maize. These intercrops also did well, bringing Maya additional food and income. Maya grew enough food to feed her three children all year long. “Now I have enough food and can sell some surplus to pay for my children’s education,” she said. Maya’s additional income allowed her to put her children into school and even make modest improvements to her homestead.

Support for an agrarian way of life
Nepal is a nation of incredible diversity that depends heavily on agriculture. Of the Nepalese population, 84% live in rural areas and, during the growing season, four of every five adults of the rural population are engaged in agriculture.

In September 2010, Nepal and CIMMYT celebrated 25 years of partnership in developing and spreading improved maize and wheat varieties and cropping practices in benefit of Nepalese farmers and researchers. Given the country’s reliance on agriculture and its financial constraints, the partnership has been invaluable. “Maya’s case is just one example of this,” says Guillermo OrtĂ­z-Ferrara, researcher and liaison officer for CIMMYT’s office in Nepal. The joint efforts have helped raise maize yields 36% and those of wheat by 85%, while 170 Nepali researchers have benefited from CIMMYT training and joint research or fellowships. “The partnership that CIMMYT has maintained over the past 25 years with our research and development institutions in Nepal has been very useful and of significant value to increase maize and wheat production,” says Dr. K.K. Lal, one of the very first CIMMYT maize trainees and former Joint Secretary in the Ministry of Agriculture and Cooperatives of Nepal. “This partnership should continue and be strengthened.”

Fig. 1 Major shift in food security in HMRP collaborating households
Fig. 1 Major shift in food security in HMRP collaborating households

An internal report on HMRP outcomes for 2008-10 by the Swiss Agency for Development and Cooperation showed significant improvements in food security for the more than 21,000 households taking part in the project, with particular focus on women and disadvantaged groups like dalits: the proportion of the population in the groups having food sufficiency throughout most or all of the year (first two sets of bars) grew, while the proportion of the food-insecure—those with enough food for less than six months of the year (last set of bars)—fell.

The Hill Maize Research Program
Begun in 1999 with the cooperation of the National Maize Research Program (NMRP) of the Nepal Agriculture Research Council (NARC), the Hill Maize Research Program (HMRP) promotes the development and adoption of new technologies (improved varieties and crop management) in the hills of Nepal. Funded by the Swiss Agency for Development and Cooperation (SDC), the HMRP works with government, non-government organizations, farmers groups and cooperatives and the private sector to develop and disseminate maize technologies that benefit poor farmers in the Nepali hills. With HMRP-CIMMYT support, NMRP has developed 12 improved maize varieties for commercial production and identified more than 15 promising inbred lines, including 4 QPM lines. These 12 improved maize varieties were released by National Seed Board (NSB) of Government of Nepal. By 2009, 174 farmers groups had produced 664 tons of improved maize seed, increasing maize productivity by at least 30%. A new 2010-14 phase of the HMRP continues the focus on improving the food security and incomes of Nepal hill farm families, especially the poor and disadvantaged. Partners include the Ministry of Agriculture and Cooperatives (MoAC), the Nepal Agricultural Research Council (NARC), the Department of Agriculture (DoA), more than 26 NGOs/CBOs, and thousands of poor farmers. The new phase is jointly funded by SDC and the United States Agency for International Development (USAID).

Winning with wheat
Along with maize, the importance of wheat as a food and cash crop has grown in Nepal. As a result of high-yielding Mexican varieties introduced through CIMMYT during the mid-1960s and intensive research and development efforts by the national partners, Nepal’s wheat area has increased 7-fold, its production 14-fold, and its productivity 2-fold. Overall, yield gains from the release of new varieties in Nepal have averaged 3.5% per year since 1985, which equals or exceeds the yield gains seen in neighboring countries where the Green Revolution began.

nov07During 1997-2008, Nepal’s National Wheat Research Program (NWRP) worked in partnership with CIMMYT, involving farmers in varietal selection and distributing regional nurseries—sets of experimental wheat lines sent out for widespread testing and possible use in breeding programs. Two wheat varieties distributed this way, and bred by the NWRP, have been released in Bangladesh, and a significant number of other Nepali breeding lines have been used in research programs of Nepal and in eastern India.

Farming systems for a tough future
The Nepal-CIMMYT partnership has addressed important farming concerns with research and recommendations on varieties for timely and late sown conditions, appropriate weed management, balanced application of fertilizers, irrigation schedules, and resource-conserving practices such as surface seeding, zero and minimum tillage, and bed planting. The best results have included reduced costs for cropping, greater efficiency of input use, and increases of a ton or more per hectare in grain yields.

“South Asia will suffer particularly harsh effects from climate change, according to experts,” says Mr. Kamal Aryal, Agriculture/Climate Change Researcher, ICIMOD, Kathmandu, Nepal. “More input-efficient cropping systems will help farmers face the challenges expected.”

For more information: Guillermo Ortiz-Ferrara, cereal breeder (g.ortiz-ferrara@cgiar.org)

Moving uphill: Maize’s growing role in Ethiopia

CIMMYT E-News, vol 6 no. 1, January 2009

 

Fueled by high-yielding varieties and national initiatives to promote the crop in highland areas, maize’s popularity is mounting rapidly in Ethiopia. Because farmers can get more food and income with the new varieties, they are calling out for seed. Suppliers—both private and government supported—are clamoring to meet the demand

“Farmers have expressed strong feelings for maize,” says a translator. A group of villagers at Sororo, Ejere District, Oromia, stand in the intense, mid-morning glare of highland Ethiopia and speak to visitors about their experiences with the improved maize varieties they had received from Demissew Abakemal, maize breeder with the Ethiopian Institute of Agricultural Research (EIAR). “It was a very dry year, and your maize is performing well,” the farmers say. “We have a surplus for food and even some for taking to the market—something we’d not seen in all our lives.” They have been harvesting and piling sheaves of wheat from the bottom of the hill, but take the visitors to maize fields up near their dwellings, and proudly show the large ears of the hybrid Arganne and a nearly-as-productive open-pollinated variety (OPV), Hora.

Continue reading

CIMMYT brings the best in wheat

CIMMYT E-News, vol 3 no. 3, March 2006

mar_symptraver2Scientists talk wheat at the place where the green revolution began

Prominent players in global wheat research—hailing from Azerbaijan to Zimbabwe and about 20 countries in between—arrived at Ciudad Obregón, Mexico in late March to chart a course for wheat research in the developing world for the coming decade.

Approximately 130 participants attended the weeklong “International Symposium on Wheat Yield Potential: Challenges to International Wheat Breeding,” sponsored by CIMMYT and the Australian Centre for International Agricultural Research (ACIAR).

“This symposium has been a tremendous opportunity for sharing ideas and learning right across the world’s wheat research fraternity,” concludes Tony Fischer, ACIAR Program Advisor for South Asia. “The representation from both the developing and the developed world is very good and we once again see that in the developing world innovation system CIMMYT continues to play a huge leadership role.”

“The original purpose,” says symposium organizer and CIMMYT wheat physiologist Matthew Reynolds, “was to disseminate new technologies that would improve the efficiency of wheat breeding in lesser developed countries. We achieved that and much more. We delivered the results of our ACIAR project on early generation selection and improved understanding of the fundamental constraints to yield potential, but then went on to a wide range of very topical subjects covered by top experts in the field.”

mar_symptraver

The meeting opened with a keynote address by Dr. Norman Borlaug entitled “Personal Reflections of 62 Years of Fighting Hunger.” Following the warmly received address, the symposium got down to business with a series of 40 technical presentations. A poster session addressing wheat breeding and production (and related constraints) in 17 countries ensured that NARS perspectives were well represented. The concluding day of the meeting was devoted to breakout and reporting sessions to define wheat research initiatives and explore the roles of CIMMYT, advanced research institutes, and NARS in putting the plans into action.

CIMMYT held a similar meeting nearly ten years ago to the day, which focused primarily on increasing yield potential, breeding for drought, and the use of molecular tools. While these items, particularly water use efficiency, remain high on CIMMYT’s agenda, the symposium participants observed that the world wheat situation and agriculture generally is rapidly changing, and consequently, new priorities have emerged. NARS representatives flagged high priority issues such as conservation agriculture, the need for higher quality wheat bred for specific food and industrial uses, and breeding with climate change in mind, notably heat stress.

Bayan Alimgazinova, Deputy Director, Science Department, Ministry of Agriculture of Kazakhstan

“CIMMYT provides and facilitates the exchange of germplasm and this is very important for our breeding efforts. The Kazakhstan-Siberia Network for Spring Wheat (KASIB) is a good example of this. It’s a new type of collaboration for us, with the shuttle breeding, traveling seminars, and other activities. We’ll be studying more than 1,000 entries in the trials and many of these will be useful for Kazakhstan. Our varieties go out as well. The impact of this is multiplied because all of the information from the trials and conferences gets published in journals (in Russian), as do a range of other publications and training course materials. CIMMYT is the main reason this is happening. A small but important component of our relationship with CIMMYT is the interaction with the outside scientific community that they provide to Kazak scientists.”

There were a number of exciting new ideas that emerged from this symposium, says Hans Braun, Director of the CIMMYT Wheat Program, “all of which depend on ever closer links between scientists in the international wheat community. In our final sessions we crystallized these into research thrusts that we would like to incorporate into our existing program.”

Braun said three major areas cited for more intensive research emerged from the interactions:

  • Integration of physiological trait-based approaches into conventional breeding schemes to advance progress on complex traits associated with yield and stress adaptation. This entails dissecting yield into its physiological components and using conceptual models to increase the likelihood of combining complementary genes to capture the desired trait. CIMMYT terms this use of physiological markers physiological breeding or “smart crossing.”
  • More systematic characterization of target environments than in the past. Combining comprehensive environment data with CIMMYT’s exceptional and extensive phenotypic data of genotypes will greatly expand our knowledge about genotype x environment interaction. This will be further catalyzed by new tools and methodologies in the areas of geographic information systems, advanced statistics, modeling, and bioinformatics.
  • Conservation agriculture (CA) was strongly endorsed as a strategy for buffering the adverse effects of environment on crop yields, especially in the face of climate change and reduced water resources. This is in addition to CA’s role in stabilizing the natural resource base and reducing long-term dependence on agro-chemical inputs.

For further information contact Matthew Reynolds (m.reynolds@cgiar.org)

New life for old varieties

CIMMYT E-News, vol 3 no. 11, November 2006

nov04A CIMMYT scientist is working to see if instead of replacing old varieties with “new and improved”, it is possible to combine the best of the new while retaining the old.

In the village of Tumbadero, Mexico, adjacent to CIMMYT’s Agua Fría maize research station, the farmers place a very high value on their traditional varieties. The maize they grow has small ears so it does not yield much. What makes each ear special is a long husk that dwarfs it. The village is close to a major transportation route and traders pay a premium for the husks, which are used to wrap one of Mexico’s most famous foods, the tamale. “We make more money selling the husks than we do selling the grain” says Ruben López, a farmer in the village. But he and the other villagers have a problem: storing the ears without their husks is an open invitation to insects to feast on the maize. With so little yield, saving every grain possible for food is extremely important.

Less than a hundred kilometers from Tumbadero is another village—Cañada Rica. It is well off the beaten track and far from traders. Farmers like Eva Cruz care much more about the cooking quality of the maize flour than they do about the husks, which they cannot sell. Eva uses husks as kindling for the fire on which she cooks tortillas each morning. “Our maize makes the best tortillas,” she says. “They are thick and filling, much better than ones you make with maize flour from the store.” But Eva Cruz’s maize is not without problems either. Storage pests attack her harvest regularly, just as they do the maize in Tumbadero.

nov05
Clearly the traditional varieties grown by the farmers of these two villages are very different and have been bred by them to meet specific needs. Each variety is also well-adapted to its local environment. Farmers have no desire to abandon those traits, but also need maize that yields, stores, and tolerates stress better than their traditional varieties. That conundrum became a challenge for Dave Bergvinson, a CIMMYT entomologist who specializes in maize pests. “What if, instead of breeding whole new varieties on a mass scale, you gave the farmers themselves a chance to breed their own?” asks Bergvinson. “You take their best and combine it with our best and then let them do the rest.” To test the idea, he is working with farmers in isolated, economically disadvantaged regions in Mexico. He takes seed from farmers to a CIMMYT research site, like the station at Agua Fría, where he can cross it with CIMMYT maize that has the characteristics missing in the farmers’ varieties. Each cross is specific to a particular village or farmer. After one season of crossing, Bergvinson selects the progeny that perform the best and most closely match farmer preferences for husk, grain type, adaptation, and other traits. Finally, he returns seed of the improved local variety to the farmers. From then on each farmer has what is basically his traditional variety, but with certain improved characteristics.

According to Bergvinson, CIMMYT lacks the resources to carry out such work on a global scale. “It’s not a mass, large-scale solution,” says Bergvinson. “But it is a way of getting to the small pockets of deep poverty and giving those farmers a chance.” It also provides another way for breeders to get a true sense of what end-users of breeding products—the farmer and consumer—consider important.

The pilot project is only in it’s fourth season and there is much analysis to be done, but farmers like Eva Cruz and Ruben López have grown their new seed and can see the improvement. They also see that the traits they value so much in their maze have not been lost.

For more information, David Bergvinson (d.bergvinson@cgiar.org)

A Maize for Farmers on the Edge

May, 2005

peru01CIMMYT-Peru maize, Marginal 28, outstrips expectations for farmers in Peru

On a hillside that abuts more than 3,000 kilometers of Amazonian expanse beginning in Peru and reaching clear across Brazil to the Atlantic, farmer Virgilio Medina Bautista weeds his maize field under the stifling equatorial sun. He and his wife Sabina Bardales typically arise before dawn to cook a meal for their field workers, and will work all day until bedtime, around 9 p.m. “We come to the field with the food for brunch and ready to work,” Medina says. “It’s a hard life, but there’s no other way, for someone without an education.”

Like 90% of the farmers in this region of Peru—the lowland zones east of the Andes known as the “jungle”—as well as many on the coastal plains or in inter-Andean valleys, Medina sows Marginal 28. This open-pollinated maize variety, developed in the 1980s by Peru and CIMMYT, is popular for its high yields and broad adaptation. It provides two or three times the average yield of the local variety it replaced, and grows well in diverse environments. “Private companies have been trying to introduce maize hybrids here, but they yield only six tons per hectare,” says Edison Hidalgo, maize researcher from the National Institute of Agricultural Research (INIA) “El Porvenir” experiment station, whose staff help spread productive farming practices throughout the region. “Marginal 28 gives that or more, under similar management, and because it’s an open-pollinated variety, farmers don’t have to purchase new seed every season.”

Luis Narro, CIMMYT maize researcher in South America and a native of Peru who helped develop Marginal 28, says the cultivar’s adaptation and uses have far outstripped expectations. “This variety is sown most widely in jungle zones—truly marginal, lowland areas characterized by poor soils, heavy weeds, and frequent drought, to name a few constraints,” Narro says. “But I was just at a station in Ayacucho, at over 2,700 meters in the Andes, and saw seed production fields of Marginal 28 where the yields were probably going to hit seven tons per hectare.” Farmers in jungle areas use it chiefly in animal feeds or for export to the coast. Coastal farmers grow Marginal 28 because the seed is relatively cheap and yields high-quality forage for their dairy cattle. In the Andes, the grain goes for food and snacks.

Its adaptability may be explained in part by its genetically diverse pedigree, which even includes as a parent an internationally recognized variety from Thailand. “This suggests part of the value of a global organization like CIMMYT, which can combine contributions from around the world to develop a useful product for small-scale farmers,” Narro says.

Can Poor Farmers Stop Chopping Down Jungles?

peru02Despite the clear benefits of Marginal 28, Peruvian farmers are still struggling as markets shift, production costs rise, and maize prices remain low. Farmer Jorge Dávila Dávila, of Fundo San Carlos, in Picota Province, in the Amazon region of Peru, grows maize, cotton, banana, and beans on his 10-hectare homestead. Because he is relatively far from the trans-Andean highways leading to the coast, where maize is in heavy demand for use in poultry feed, middlemen pay him only US $70 per ton of maize grain—well below world market prices. “Maize is a losing proposition; that’s why so many farmers here are in debt,” he says. “They can’t take their maize to local companies for a better price, because they already owe it to the middlemen who provide inputs.”

Unlike most peers, Dávila makes ends meet through hard work and what he calls “an orderly approach” to farming. Many in the region slash and burn new brushland, cropping it for two or three seasons till fertility falls off, and then they move to new land. Dávila has stayed put for eight years on the same fields. “I tell my neighbors not to cut down their jungle,” he says. “I’ve seen that leaving it brings me rain.” With support from INIA researchers like Hidalgo, Dávila is testing conservation agriculture practices. For example, on one plot he plans to keep maize residues on the soil surface and seed the next crop directly into the soil without plowing. Research by CIMMYT and others has shown that this practice can cut production costs, trap and conserve moisture, and improve soil quality.

For further information, contact Luis Narro (l.narro@cgiar.org)

The Color Orange: Key to More Nutritious Maize?

CIMMYT E-News, vol 2 no. 10, October 2005

colorOrangeThe HarvestPlus Maize group examines progress toward breeding maize with enhanced pro-vitamins A, iron, and zinc.

CIMMYT maize scientists and colleagues from national programs in the key countries targeted by HarvestPlus reported significant progress in identifying maize with elevated concentrations of iron, zinc, and pro-vitamins A (chemicals the human body can convert to vitamin A) in their elite maize varieties and germplasm collections. The results of two years of work were presented at the second HarvestPlus Maize meeting hosted by EMBRAPA, the national agricultural research program of Brazil at their maize and sorghum research station in Sete Lagoas.

Maize is a key target crop for nutritional enhancement because it is so widely consumed in areas where high malnutrition—especially vitamin-A deficiency—exists. Scientists working in the HarvestPlus program hope eventually to breed high-quality, high-yielding maize with enhanced pro-vitamins A, iron, and zinc content. These micronutrients in maize will have to be in a form that survives processing and can be utilized by the human body.

The first planning meeting for the maize scientists was held in 2003 in Ethiopia. “We’ve come a long way since we first met two years ago,” says Kevin Pixley, the HarvestPlus Maize coordinator and Director of CIMMYT’s Tropical Ecosystems Program. “But we have also realized that this is a very complex subject with many assumptions that have to be validated.”

colorOrange2
CIMMYT maize breeder Dave Beck showed the group results of screening of CIMMYT elite highland and transition zone maize germplasm for enhanced levels of pro-vitamins A, zinc, and iron. HarvestPlus nutritionists have set minimum targets for the concentrations of these micronutrients in maize. The good news is that for zinc, CIMMYT has identified material that was already above the threshold. For iron the picture is less promising as existing lines identified have only 60 percent of the required minimum level for iron. For pro-vitamins A CIMMYT has examined hundreds of lines. The best CIMMYT lines have about 75 percent of the minimum requirement, but sources identified by project partners in the USA have the minimum required level of pro-vitamins A. The CIMMYT team is now breeding to enhance pro-vitamins A concentration for highland, transition zone, mid-altitude, and lowland-adapted materials.

A topic of keen interest at the meeting was how to convince people to adopt any nutritionally enhanced maize varieties that might be developed. In much of eastern and southern Africa, white maize is preferred over yellow maize. Scientists in Zambia and Zimbabwe had conducted studies about the acceptability of yellow maize. Both studies found that yellow maize is associated with food aid and that was one reason people did not want to eat it. Scientists know there is a strong correlation between the color of the maize and the total level of carotenoids. Some of these carotenoids are precursors for vitamin A “pro-vitamins A.” Torbert Rocheford, a professor of plant genetics at the University of Illinois, suggested that the debate should not actually be about yellow maize in many parts of Africa. He said what we should be talking about is orange maize—something new that will not carry the stigma of yellow maize but will have high pro-vitamins A content.

For further information, contact Kevin Pixley (k.pixley@cgiar.org).

South Asian Partners Host Trustees for Extended Field Visits

April, 2004
South Asian Partners Host Trustees for Extended Field Visits

Much of CIMMYT’s research focuses on improving the livelihoods and food security of poor households in South Asia, which is home to more of the world’s poor–43 percent–than any other region. To observe the impact of CIMMYT’s efforts there and to assess opportunities to help farmers, CIMMYT’s Board of Trustees and senior management visited India and Nepal in March. Officials of both countries hosted the visiting delegation.

India and Nepal are two key partners for CIMMYT. India’s relationship with CIMMYT began before the Green Revolution, and the world has benefited from the research products of this collaboration. CIMMYT also has maintained a long partnership with Nepal, where the National Agricultural Research Center (NARC) has hosted CIMMYT’s South Asia Regional Office for 18 years.

Field Visits in India

visitingNepalOn the first day of the field visits, about 200 farmers from nearby villages greeted the delegation and expressed appreciation for new practices that were helping them to diversity agricultural production and conserve resources such as water and soil. The delegation was welcomed in Kapriwas, Gurgaon by senior officials of the Indian Council of Agricultural Research (ICAR), including Director General Mangala Rai, Deputy Director of Crops and Horticulture G. Kalloo, and M.K. Miglani, Vice Chancellor of Haryana Agricultural University. They explained how new tillage and planting practices helped Indian farmers by saving labor, fuel, and irrigation, while maintaining or increasing yields.

Many farmers were extremely enthusiastic about the visit. One farmer was sprinkle irrigating wheat that was close to maturity, which is something that is not typically done. When one of the visitors asked why he was doing this, the farmer replied that he was overjoyed by their visit and wanted to show off his sprinkle irrigation system. (The technical explanation was that he wanted to lower the heat stress and improve grain filling.)

The visitors saw research to identify salt-tolerant wheat and other crops and to study the long-term effects of saline water use at Bawal Research Station. They also saw an experiment showing how paired-row wheat planting on beds produced high yields, large spikes, and large grains, which help wheat fetch a higher market price. Although all the farmers who joined the delegation agreed that wheat planted on beds in paired rows gives higher yields with less labor and fewer inputs, they said there is a shortage of bed planters for Indian farmers. CIMMYT, ICAR, and the private sector are working to improve the situation.

Another experiment they observed evaluated the potential for growing maize in Haryana, where limited production and high demand compel people to buy maize in Delhi or Rajasthan.

On the second day the delegation visited Durgapura Research Station of Rajasthan Agricultural University. They learned about a wide spectrum of research, including breeding for resistance to rust and to cereal cyst nematode and for tolerance to saline conditions. They heard about issues related to the use of brackish and saline water in crop production in arid regions. Some participants expressed concern about the long-term health effects of this practice, especially in the production of green vegetables.

On the third day the delegation was received by farmers of Kallogarhi-Matiala Village, as well as PP Singh (Vice Chancellor, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut) and Larry Paulson (USAID-India). Board members were very interested in locally developed, low-cost equipment for promoting conservation agriculture. They saw the comparative performance of wheat planted using zero-tillage drills with “inverted T” and double disc openers. Farmers at this site are developing a permanent “double no-till” system of conservation agriculture to grow rice and wheat.

During dinner, representatives of Raja Balwant Singh College Trust thanked CIMMYT for more than 50 years of partnership in Indian agricultural development, dating back to before the Green Revolution. They suggested that CIMMYT and RBS, the largest and one of the oldest agricultural colleges in India, could benefit from a joint visiting scientist program.

Field Visits in Nepal

In 2003, Nepal’s national average wheat yield surpassed 2 t/ha for the first time, an achievement that gives some idea of the constraints that farmers there have overcome. The National Wheat Research Program Coordinator, Mr. M.R. Bhatta, described the impact of disease and yield nurseries that CIMMYT and NARC distribute throughout South Asia, and observed that more than 20 wheat varieties have been released in Nepal in the past 15 years.

At Khumaltar Research Station, NARC researchers highlighted studies in areas such as pathology, breeding, agronomy, soil sciences, mechanization, and biotechnology.

The visitors also heard researchers from the Hill Maize Research Project describe how communities have become self-sufficient in maize, their staple food, for the first time. Nearly 80% of Nepal’s maize is grown in the mid-hills, where more than 10 million people depend on the crop for food, income, and animal feed. Shortages are chronic. The Hill Maize Research Project provides the farmers with source seed, plus training in seed production techniques, storage, and marketing. It also ensures that there is sufficient seed of new maize varieties for farmers to replace old improved or local varieties, which yield very little.

Through their efforts, communities have produced more than 150 tons of maize seed. Community-based seed production accelerates seed replacement, disseminates new technologies, improves household food security, and raises incomes. This work, supported by the Swiss Agency for Development and Cooperation (SDC), is having an enormous impact in isolated hill sites.

A visit to farmers’ fields in Thecho Village in the Kathmandu Valley showed how farmers’ access to better wheat varieties and growing practices was increasing through participatory research. The farmers partner with NARC, CIMMYT, the University of Bangore, the Agricultural Development Organization (ADO), and others in a project funded by the UK Department for International Development. Farmers enthusiastically shared their experiences with participatory variety selection and seed production. Some groups are earning enough additional income from growing wheat to purchase new equipment or make other investments.

NARC and ADO have extended participatory variety selection to rice, legumes, vegetables, and other crops throughout Nepal after seeing the success with wheat. (In India, similar exciting work is being done in collaboration with Banaras Hindu University.)

Thanks to Our Hosts

board_memberCIMMYT’s Board and staff are grateful to P.P. Manandhar, Nepal’s Secretary of Agriculture, and officials at the Ministry of Agriculture and Cooperatives for their constant support for CIMMYT’s South Asia Regional Office, and to NARC Executive Director R.P. Sapkota and his colleagues for support and field visits. They are also most grateful to ICAR Director General Mangla Rai, Deputy Director of Crops and Horticulture G. Kalloo, and the many representatives of experiment stations, colleges, and universities in India who made the visit a success. The opportunity to meet and visit the field with representatives of DFID, FAO, the Japan International Cooperation Agency, SDC, USAID, and the World Bank, among others, was also greatly appreciated.

We also thank the farmers who so kindly shared their experiences and hospitality with us.

Weighing Pros and Cons of Genetically Modified Crops in Africa

September, 2004

Should Africa embrace genetically modified crops to help feed its hungry people? That question is explored by a recent paper entitled “Debunking the Myths of GM Crops for Africa: The Case of Bt Maize in Kenya.” The paper compares the benefits of genetically modified crops to information available on the risks, and finds that most objections are not backed by evidence. Hugo De Groote, Stephen Mugo, and David Bergvinson from CIMMYT, along with Ben Odhiambo of the Kenya Agricultural Research Institute, conducted the study, which argues for a discussion based on scientific evidence and evaluation of potential benefits against concerns.

Genetically modified crops have been successful in many countries, including Canada and the US, where they have increased yields, lowered labor and cultivation costs, and reduced the use of chemical inputs. Genetic engineering has the potential to enhance food security and nutritional quality in ways not possible with conventional technology. Because the technology is contained in the seed, it is easy to distribute to farmers. This is particularly important in Africa, where extension services have largely collapsed and transport infrastructure is poor.

Concerns about deploying genetically modified crops in Africa include food safety, ethics, environmental risk, loss of landrace biodiversity, and the lack of appropriate biosafety regulations. Although long-term effects need to be analyzed, current studies by national and international organizations reveal no demonstrated toxic or nutritionally harmful effects of foods derived from genetically modified crops.

Sounding Out Public Opinion

The study by de Groote and his colleagues focused on Kenya, where maize, the main food crop, is planted on 30% of arable lands. It drew on a variety of data sources, including participatory rural appraisals and farmer and consumer surveys. De Groote thinks it is important to make research results understandable to the general public so everyone can participate in the debate.

To gauge awareness and attitudes about genetically modified crops, the researchers interviewed 604 consumers, only half of whom were aware of them. Many appreciated the benefits but worried about potential negative effects on health and the environment, especially on local plant varieties. De Groote says consumers are increasingly aware of genetically modified food and generally accept it, but their concerns about environmental safety and biodiversity have to be addressed.

Several seed companies in Kenya have expressed interest in producing and distributing Bt maize seed, which offers an effective and practical method for reducing stem borer damage in maize. Genetically engineered Bt maize contains a gene from the soil-dwelling bacteria Bacillus thuringiensis, which produces a toxin that helps control certain pests but is not harmful to humans or livestock. The Bt gene was first introduced into the commercial maize market in 1996. It has provided control for many pests and could help decrease pesticide use.

“The major surprise was that, contrary to the usual claims, Bt maize is very likely to benefit poor farmers and small seed companies,” says de Groote. “Stem borers are a real concern for farmers, especially in low-potential coastal and dry areas.”

Farmers in Kenya lose 400,000 tons, or about 14%, of their maize to stem borers. That is roughly the amount the country imports each year. De Groote says Bt maize alone will not solve this problem, but could help reduce losses and increase food security.

The IRMA Project

In 1999, the Insect Resistant Maize for Africa (IRMA) project was launched in Kenya to develop borer resistant varieties using both conventional breeding and biotechnology. Kenya already had experience with genetically modified crops and had biosafety policies in place. IRMA, a collaborative project between CIMMYT and the Kenya Agricultural Research Institute, receives financial support from the Syngenta Foundation for Sustainable Agriculture.

Before initiating the project, all parties involved agreed that transformed plants would carry only the gene of interest, without marker genes; that transgenic crops would only be developed for countries with appropriate biosafety regulations; and that only genes in the public domain would be used. They also agreed that the project would work under the highest scientific standards. When the project ends, other countries in Africa will be able to evaluate results from Kenya’s experience and decide for themselves which path to follow.

“I hope that the results will be accepted not only by the scientific community but also by the general population, in Africa as well as in the developed world,” says de Groote. “I also hope they will put to rest some of the major concerns about Bt maize for Africa.”

To make informed choices possible, the researchers contend that scientists in Africa need hands-on experience with the new technology. They need to test and adapt it using the appropriate regulatory framework and precautions. Further, the researchers believe that the technologies need to be developed in a participatory approach, since African farmers and consumers have the right to choose technologies based on the best knowledge available. They should not be denied the chance to improve their livelihoods as a result of an academic debate in which they are not included.

For more information: Hugo De Groote or Stephen Mugo

Ethiopia study on biofortified maize reveals tasty results

Quality protein maize can reduce or prevent stunted growth in young children, according to a recently published study.

nov02In eastern and southern Africa, maize is the least expensive and most prevalent cereal crop, but quantity cannot make up for quality. A maize-dominated diet helps keep bellies full, but does not provide a balanced diet. Specifically, maize lacks the essential amino acids lysine and tryptophan necessary for efficient protein synthesis. Quality protein maize (QPM)—a type of maize with increased levels of those two crucial amino acids—is the focus of a recent CIMMYT co-authored publication based on two studies conducted in separate locations in Ethiopia1.  The article delves into the role QPM can play in improving the nutritional status of young children in Ethiopia, where nearly 40% of children under five-years-old are underweight.

The first of the two studies ran from August 2002-03, in Wama Bonaya District, and showed that children who consumed QPM had a 15% increase in the rate of growth in weight over those who consumed conventional maize. The second study took place from October 2005-06 in the neighboring Sibu Sire District. Here, children fed a QPM diet had a growth rate in height 15% greater than that of children who ate conventional maize.

Both study sites were selected to represent high maize-producing and -consuming areas with high levels of child malnutrition. Sites were also selected based on environmental factors, such as rainfall and altitude, and for ease of operation for conducting the study. For almost all (97%) of the 341 participating households, farming was their sole occupation. Average farm size was 1.2 hectares. In both districts, maize was the dominant food for children—in Wama Bonaya  only 31% of families reported feeding their children foods other than maize, and in Sibu Sire 70% of the children regularly ate maize at least once a day. This highlights the vital role more nutritious maize could play in the future health and development of Ethiopian children.

Though there have been other studies on the effects and effectiveness of QPM (see Kernels with a kick: Quality protein maize improves child nutrition) this cumulative study varies slightly because it measures the effects of QPM when fully incorporated into the agricultural practices and home life of targeted households: study participants were given seed which they themselves grew and then prepared and consumed according to normal and locally-preferred practices, rather than being given pre-prepared QPM-based food products. This more closely mimics the impact QPM could have in a “real life” situation compared to some other previous study methods.

The study shows that although maize alone is not enough to sustain a nutrient-balanced diet, QPM can substantially improve the nutrition of children whose diets are, out of necessity, heavily based on one crop.

The paper was the result of collaboration among researchers Girma Akalu and Samson Taffesse of the Ethiopian Health and Nutrition Research Institute (EHNRI), Nilupa Gunaratna of the International Nutrition Foundation, and Hugo De Groote from CIMMYT-Kenya.

For more information: Hugo De Groote, agricultural economist (h.degroote@cgiar.org)

_________________________

Girma Akalu, Samson Taffesse, Nilupa S. Gunaratna, and Hugo De Groote. 2010. The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food and Nutrition Bulletin, 31(3): 418-430.

No maize, no life!

CIMMYT E-News, vol 6 no. 4, June 2009

In Morogoro, a drought-prone area in Tanzania, farmers are using certified maize seed and urging other farmers to grow a new drought tolerant variety, TAN 250, which they say is like “an insurance against hunger and total crop failure, even under hot, dry conditions like those of recent years.”

Continue reading