Skip to main content

Wheat farmers see infrared

CIMMYT E-News, vol 4 no. 7, July 2007

jul03Infrared sensors help better target fertilizer for wheat on large commercial farms in northern Mexico, cutting production costs and reducing nitrogen run-off into coastal seas.

Farmers of the Yaqui Valley, Sonora State, northern Mexico, and fish in the Sea of Cortez: what ties could they possibly share? Well, if CIMMYT wheat agronomist Iván Ortíz-Monasterio and fellow researchers at Stanford University and Oklahoma State University achieve their aims, both farmers and fish may breathe a little easier.

Ortíz-Monasterio and his partners have been testing and promoting with Yaqui Valley farmers a sensor that measures light reflected from wheat leaves and thereby gauges the health and likely yield of the plants. The device is calibrated to capture red wavelengths, which indicate chlorophyll content, and infrared wavelengths, a measure of biomass. The readings are run through a mathematical model to provide a recommendation about whether or not the crop requires a mid-season application of fertilizer.

Yaqui Valley wheat farmers work large holdings (averaging around 100 hectares), use irrigation and mechanization, and grow improved varieties with fertilizer, fungicides, and other inputs. They typically get excellent yields—on the order of 6 tons per hectare. Despite this, they are feeling squeezed by the rising costs of diesel fuel, water, fertilizer, and other inputs, and many are actually in debt; so they are fervently seeking ways to save money.

Too much of a good thing?

“Farmers here typically apply 230 kilograms of nitrogen per hectare, and 150 kilograms of this goes on 20 days before sowing,” explains Arturo Muñoz Cañez, a consulting agronomist who works a lot of the time with the Asociación de Organismos de Agricultores del Sur de Sonora, an umbrella group that includes seven farmer credit unions serving producers on some 140,000 hectares in the region. “Our studies with Iván have shown that local wheat crops actually use only about one-third of that fertilizer.”

Where does the rest go? Some evaporates into the atmosphere, in the form of nitrous oxide, a notorious greenhouse gas that is nearly 300 times more damaging than carbon dioxide. Another part leaches as nitrate into groundwater, and much of the rest dissolves in run-off irrigation and rainwater, eventually finding its way to the west coast of Sonora and into the sea. There it may fertilize oxygen-hungry algae that can suffocate other marine life and cut into fishermen’s catches.

From Mexico to the world

jul04
With the help of Ortíz-Monasterio, Muñoz, and other agronomists, Yaqui Valley farmers used the sensor on 174 plots in 2006-07, comparing readings from a fully-fertilized comparison strip with those from the rest of the field at 45 days after sowing—a point at which most important differences in crop development are evident. They then followed the resulting recommendations concerning how much additional fertilizer was needed, if any. In 66% of the cases, the recommendation was to apply nothing more. At harvest, yields from both the fully-fertilized strips and 86 test plots were compared by weighing the grain. “92% of the farmers got good yields—that is, comparable to those of fully-fertilized strips—and on average saved around US$ 75 per hectare in fertilizer they did not apply,” says Muñoz. That’s a US$ 7,500 savings for a 100-hectare farm.

Ortíz-Monasterio attributes the success partly to residual fertility in the local soils, but would like to see eventual adoption of more precise, resource-conserving agricultural practices—including direct seeding without tillage, retaining crop residues on the soil surface, and improved water use efficiency—on at least half of the total 200,000 hectares of the Yaqui and nearby Mayo Valleys. “The Yaqui Valley has been a sort of laboratory for the rest of the world,” says Ortíz-Monasterio, who has worked for several years with researchers in Pakistan to adapt the sensor for the country’s extensive irrigated wheat lands. “A lot of what was first developed here—high-yielding wheat varieties, sowing on raised beds, and now the sensor—has gone on to be used in other wheat farming regions of the developing world. In some ways, what happens here is a reflection of how successful or not CIMMYT is.”

Ortíz-Monasterio is also promoting a lower-cost alternative for farmers who may not be able to work with a sensor: “You simply establish a well-fertilized strip in your field. If the rest of your crop looks comparable in health and development to plants in the strip, then you don’t need to apply more fertilizer. If there is any difference, then you apply what you would normally apply. In this way, we’d help at least half the irrigated wheat farmers in the world.”

For more information: Iván Ortíz-Monasterio, wheat agronomist (i.ortiz-monasterio@cgiar.org)

Molecular detection tools for African maize breeders

CIMMYT E-News, vol 3 no. 1, January 2006

MolecDetectionA new DNA detection service provided by CIMMYT and KARI responds to African researchers’ calls for modern technology.

African maize breeders now have access to state-of-the-art biotechnology tools thanks to a service launched by CIMMYT and the Kenya Agricultural Research Institute (KARI). Housed within the laboratories at the International Livestock Research Institute (ILRI) headquarters in Nairobi, under the Canadian International Development Agency (CIDA)-funded Biosciences Eastern and Central Africa (BECA) platform, the lab offers and trains researchers in the use of molecular marker techniques.

The molecular markers are DNA snippets that help researchers locate and select for genes associated with traits of interest, including resistance to pests and diseases, or tolerance to stresses like drought. With markers, breeders can cut the time and money needed to develop plant types that possess such useful traits. Until now, this capability had been unavailable to scientists in sub-Saharan Africa, outside of South Africa.

Led by CIMMYT biotechnologist Jedidah Danson and supported by the Rockefeller Foundation, the service now has its hands full of requests from breeders working with CIMMYT, national agricultural research systems, local seed companies, and universities. “They’ve learnt of the service entirely through word-of-mouth,” she says. “It’s especially attractive because current funding allows us to offer the service free, so more breeders are exposed to the technology.”

Breeders using the service are especially interested in finding ways to incorporate resistance to maize streak virus, a disease endemic in much of sub-Saharan Africa and in enhancing the nutritional quality of herbicide tolerant maize, originally developed as part of a package to control the parasitic witch weed.

“Marker assisted selection is an important tool for breeders in Africa. CIMMYT and KARI must be lauded for being the first in the region to provide the service to public sector researchers,” says Richard Edema, molecular breeder at Makerere University, Uganda. Edema is also coordinator of the African Molecular Marker Application Network, a consortium of about 100 biotechnologists and breeders from across sub-Saharan Africa.

Danson is building a database of markers for genes for resistance to important pests and diseases, including maize streak virus, gray leaf spot, the parasitic weed Striga, and northern corn leaf blight. She also helps train breeders in the effective use of markers. “Clearly, our partnership to support African breeders was long overdue,” she says.

For more information contact Jedidah Danson (j.danson@cgiar.org)

Winning in the long run

CIMMYT E-News, vol 3 no. 12, December 2006

Three decades of research into drought tolerant maize by CIMMYT and a very strong set of partnerships has made a difference in the lives of African farmers. That achievement has been recognized by the awarding to CIMMYT of the 2006 CGIAR King Baudouin Award.

It began with a small experiment to try to improve the lowland tropical maize population called Tuxpeno for drought tolerance in Mexico in the1970s. The United Nations Development Program (UNDP) started to invest in more significant research around drought tolerant maize in 1986. In the mid-1990s, the focus of the work moved to Africa—to the most challenging maize growing environments world-wide: southern and eastern Africa, where maize is a source of food and livelihoods for some 250 million people.

Today, sufficient seed has been produced to plant over 2.5 million hectares of land in eastern and southern Africa with new varieties that produce more maize both when dry spells occur and under good conditions. The road in-between involved the building of a large partnership with donors, national agricultural research programs, extension programs, small-scale seed producers, community seed producers and individual farmers; developing new ways of screening germplasm in real world conditions; and enhancing farmer-participatory methods to select the best and disseminate the best.

CIMMYT and its partners employed novel methodologies in breeding that were pro-poor according to Marianne Bänziger, the director of CIMMYT’s Global Maize Program.

“Traditional varieties have been developed with fertilizer applied under good rainfall conditions. CIMMYT took a completely different route,” she says. “We took the varieties; we exposed thousands of them to very severe stress conditions—drought, low soil fertility. We selected the best. We brought them to farmers and farmers told us which ones they liked.”

The projects invested in over 25 fully-equipped managed-stress screening sites and more than 120 testing sites owned and operated by national programs. A network was established involving CIMMYT, public National Agricultural Research Systems (NARSs), and the private sector to systematically test new varieties and hybrids from all providers for the constraints most relevant to smallholder farmers in eastern and southern Africa. This network recently provided proof that the stress breeding approach works. In a simple comparison between all maize hybrids from CIMMYT’s stress breeding approach and a similar number of hybrids developed by reputable private companies using the traditional approaches—using 83 hybrids, 65 randomly-stressed locations across eastern and southern Africa, and 3 years of evaluation—the results demonstrated that, under production circumstances most similar to those of resource-poor farmers in Africa (that is, at yield levels of 1–5 tons per hectare), the CIMMYT varieties yielded on average 20% more in the most difficult conditions and 5% more under favorable conditions. Among these the best stress-tolerant hybrids increased yields as much as 100% under drought, showing the great potential contained in maize genetic resources.

The final selection was done through a participatory methodology called the “mother-baby” trial system, in which farmers managed some “baby” plots in their own fields while NGOs, researchers and extension staff conducted a “mother trial” in the center of their community. This way farmers could see how potential varieties actually performed under local conditions.

As a result, more than 50 open-pollinated and hybrid varieties have been disseminated to public and private partners, NARSs, NGOs and seed companies, for seed production and dissemination to farmers. “None of this success would have been possible without the collaboration of many dedicated researchers, NGO and extension staff from the public and private sector.” says Bänziger. “They were the ones evaluating varieties under diverse conditions with farmers. They also started to adopt the new breeding methods in their own programs, developing their own varieties, engaging in seed production and tackling the challenge of getting seed to farmers.”

The story is not finished. CIMMYT researchers are sure the genetic diversity in maize is sufficient to push the drought tolerance in new maize varieties significantly further. “Yield gains are such that with every year of research we can add another 100 kg of grain under drought,” says Bänziger. The greatest challenge is to incorporate these gains into adapted varieties and get the seed to the farmers who need it most—a tremendous task and opportunity given the looming threats of climate change.

For more information, Marianne Bänziger (m.banziger@cgiar.org)

“Hot spots” in Maize for Dry Regions in the Developing World

CIMMYT E-News, vol 2 no. 10, October 2005

hotspotA new genomic map that applies to a wide range of maize breeding populations should help scientists develop more drought tolerant maize.

Throughout the developing world, drought is second only to soil infertility as a constraint to maize production, and probably reduces yields worldwide by more than 15 percent (more than 20 million tons) annually. Lines have now been drawn on a new battleground: a map of the chromosomes that shows important areas that help maize resist drought.

Of the world’s three most important cereal crops (rice, wheat, and maize), maize has the most complex genetic structure. As maize has been bred and adapted to many different growing environments, selection has produced a crop that contains significant differences in levels of genetic diversity. But many genes and genetic sequences should be the same or similar. Scientists are hopeful that genetic traits for drought tolerance can be found in such shared genomic sections, across a wide range of tropical maize types. A new consensus map of genes across maize populations may be the key to identifying universal genetic “hot spots,” those genomic regions that confer drought tolerance in diverse settings to varying degrees.

hotSpot2
“Are there any regions in the maize genome that come out as ‘hot spots’?” Jean-Marcel Ribaut and his team have asked. Known to scientists as quantitative trait loci (QTL), these regions tell scientists approximately where the genes determining a particular plant trait are located. The QTL is not a gene itself but a genomic region in which genes of interest are probably located. Prior genomic maps of QTLs for drought tolerance in tropical maize applied only to specific maize lines or populations. The CIMMYT team and partners have developed a single map that combines available drought QTL data from many trials of different tropical maize types in diverse environments. “Having all the QTL information integrated into a single map should allow us to identify the outstanding genomic regions involved in drought tolerance,” Ribaut says.

Scientists have measured drought related traits such as ear number, chlorophyll, and carbohydrate content of maize plants in the field, and have extracted and analyzed DNA from the same plants in order to plot the traits on the genomic maps. Ribaut, now Director of the Generation Challenge Programme, and CIMMYT molecular geneticist Mark Sawkins hope to link the traits they measured in the field with regions in the maize DNA.

“The idea is ambitious,” says Ribaut, “for it should allow maize breeders to select the right parents for drought tolerant maize by ensuring they have these important regions on their genome.”

With funding from the Rockefeller Foundation, members of the project team will give courses on this approach in to NARS scientists in Kenya and China over the coming months.

For further information, contact Jean-Marcel Ribaut (j.ribaut@cgiar.org) or Mark Sawkins (m.sawkins@cgiar.org).

Resilient Crops for Water-Limited Environments

title_rockf

May, 2004

conference_01Drought, arguably the greatest threat to food production worldwide, was the focal point of a high-level, weeklong workshop supported by the Rockefeller Foundation and CIMMYT, commencing May 24, in Cuernavaca, Mexico.

Approximately 140 scientists from Asia, Africa, and Latin America–working on various aspects of drought tolerance in plants–met to present their research results and discuss ways forward with their colleagues. The meeting, entitled the “Resilient Crops for Water-Limited Environments workshop,” looked mainly at maize, rice, and wheat, which account for more than half of the calories consumed by people in the developing world, and are the basis for their food security and livelihoods. Scientists comprehensively addressed drought, looking at drought tolerance from the ground-level perspective of incorporating farmer participation into varietal development, to the heights of molecular genetics, and how plant genes interact and respond to water stress.

The workshop was opened by Dr. Gordon Conway, President, The Rockefeller Foundation, and Dr. Masa Iwanaga, Director General of CIMMYT.

Dr. Conway, in his address, declared a “war on drought.” He explained that 70% of the one billion African and Asians in extreme poverty (less than $1/day) live in rural areas, and that agriculture is their primary route to improved nutrition and income. For developing world farmers, drought wreaks havoc, forcing them to sell off their meager assets, such as livestock or their own off-farm labor, and forego health care and their children’s education. Often the results are far more dire: hunger, malnutrition, and even starvation. In the 1960s and 70s, the Green Revolution saved hundreds of millions from famine, said Conway, but many living in less favored environments were bypassed as much of the success was based on adequate water and soil fertility. What is needed now is a Doubly Green Revolution to lift up the African and Asian smallholders left behind. Drought tolerant crops are key to this cause .

Dr. Iwanaga recounted the long and close relationship between CIMMYT and The Rockefeller Foundation, dating back to the pre-CIMMYT era and the Foundation’s support for Norman Borlaug’s work on semi-dwarf cereals, leading to the Green Revolution. That success led to the birth of CIMMYT and the CGIAR, with considerable backing again provided by the Foundation.

Even today, Dr. Iwanaga pointed out, the Foundation remains one of CIMMYT’s most important supporters, both financially, but more importantly, in the confluence of the Foundation’s goals and CIMMYT’s research activities. Both institutions see drought tolerant crops, soil fertility, and the development of seed markets and distribution systems as essential pillars for improving productivity for smallholder farmers, thereby providing a path out of poverty to better livelihoods for the developing world’s rural poor.

Extended abstracts from the workshop are forthcoming and will be made available to the public before year’s end.

conference_02

Making the Plow Passé

November, 2004

fdelgadoHow could a wheat research station in the middle of a maize-growing state become a resource for its neighbors? Campaigning for conservation agriculture and maize hybrids, CIMMYT’s Toluca Station superintendent Fernando Delgado Ramos is changing the way some farmers think about the plow. What started out as a crop rotation for a wheat experiment is now turning heads for its advances in maize yields.

Julián Martínez is one of the farmers to have noticed. He has seen tremendous differences in his efforts since adopting hybrid maize seeds and direct seeding methods on raised soil beds, which he started two years ago. Early in the season he was ashamed of his crop, but now smiles with pride when people pass on the nearby road, touching the tip of his hat and grinning. His results last year planting hybrids directly into raised soil beds were so abundant that the landowner increased the rent, which compelled Martínez to shift his efforts to a nearby ejido, or communal land. Small as the area may be, another bumper crop came this year, with not a bit of lodging in his straight and strong stocks of maize. Well-protected, fuller husks are another benefit of the particular hybrid Martínez has chosen. Driving through Toluca, located in a mountain valley, it’s obvious that lodging is a prevalent problem here. Even when leaning maize stocks were no longer Martínez’s problem and his yield doubled to eight tons per hectare, many local farmers have not taken the practices he and Delgado espouse seriously.

In the fields of Toluca Valley farmer, Julían Martínez, traditional plowing (left) coupled with local varieties has resulted in lodging—that is, many plants have fallen down. On the right, maize hybrids grown on raised soil beds stand tall.
In the fields of Toluca Valley farmer, Julían Martínez, traditional plowing (left) coupled with local varieties has resulted in lodging—that is, many plants have fallen down. On the right, maize hybrids grown on raised soil beds stand tall.

“My father thought I was crazy when I started,” Martínez says. “‘What are you doing with this?!’ he asked me. He thought I wasn’t being a good farmer, that I was doing bad work,” Martínez admits, and explains that at first he wasn’t allowed to rent his father’s three hectares. In May and June, when early-maturing local varieties dwarfed his late-maturing hybrids, he was worried, “but not anymore,” he says. By the end of the 2003 harvest, his father and brother were convinced. Martínez’s mentor throughout this process, Delgado sees these experiences as valuable because “if one farmer takes up the technology, I am happy, and the idea will spread itself.” Next year he anticipates helping two farmers in Jalisco convert over 250 hectares to permanent soil beds. Big strides for an idea that has started out small.

An Off-station Sideline Brings Local Benefits

Delgado is a leader among an array of seasoned and experienced field workers at Toluca Station, many who have been working there for over 20 years. Their combined experience and constancy have been enormously beneficial to Toluca’s success developing wheat for acidic soil and high rainfall environments. It has only been in the last few years that Delgado has made progress helping the maize farmers around the station, something he accomplishes as a sort of sideline after completing a full day of balancing office and fieldwork. Farmers gravitate to this tall Mexican, who knows his stuff after working at CIMMYT for 14 years. Educated in agronomy, he started out in a joint program between the International Center for Agricultural Research in the Dry Areas and CIMMYT, providing Latin America with improved barley strains, and now he has risen to superintendent at Toluca.

After exhausting other sources of information and assistance, it is the serious farmers, bent on improving their harvests, who flock to Delgado. Most Toluca Valley farmers do not fully depend on agriculture; rather, they supplement their day jobs with these side ventures. The ambitious ones want to improve their yields, but most just sow to fill the land and hope for a moderate harvest. Still, each year about 600 farmers attend presentations led by Delgado on conservation agriculture. Although their established methods do not allow them to thrive, local farmers are reluctant to change, he explains. “I put their hand to the land and show them. It’s not impossible to change their minds.”

Putting Aside the Plow

But it is intensive work, conversing, going through all options and strategies of this new idea, sometimes for five hours at a time. The “culture of the plow” is ingrained in Mexican life, and to uproot it is hard work. This is why Delgado works with children as well, going to schools and introducing his ideas. “To change the culture is to put conservation agriculture into the minds of children,” he says, “It is beautiful to explain to children, for they appreciate how they eat, and what they eat.”

Delgado’s movement toward conservation agriculture started as a way to save money in operations at the Toluca Station through use of less water, fuel, and machinery passes. Fifty percent of the station’s land is used for wheat experiments, and the other half is devoted to crop rotations to sustain the land. It was in this section that Delgado started using direct seeding methods on raised beds to rescue money for other projects. After a couple of harvests, 10 tons of grain was recovered per hectare, compared to an average of 5–8 before. Conservation agriculture had captured his attention.

It is obvious that the planet has been disturbed by human existence, and conservation agriculture is “a little bit to support the world,” Delgado says. He feels very passionately about this, his words coming slowly and deliberately. “Conservation agriculture is the future,” he affirms, “It is common sense, it is how we help the environment.” Its goals include preservation, improvement and more efficient use of resources such as soil, water, and fuel for machinery. As well as the environmental benefits, conservation agriculture makes farming more sustainable with better yields. To realize these goals, a permanent soil cover must be allowed to develop, which makes plowing obsolete. This is the detail farmers find most difficult to swallow, because tilling the land is the way they and their parents have survived. They assume that not using a plow to turn the soil allows weeds to overrun a field, and find the idea of planting seeds into a field with last year’s stubble untidy. But using conservation agriculture with well-timed herbicides and proper crop rotations can actually improve yields.

“People visit the station, and the farmers want to be better than CIMMYT,” Delgado laughs. A friendly rivalry has grown out of Toluca’s success, and now the farmers want to better their own yields to exceed the research station’s results. He thinks this is “nice, because the healthy competition has transformed the farmers to better their techniques. A little revolution in Toluca, but a big change in the farmer’s mind. Farmer to farmer to farmer.” he says. The same people who, a few years ago, were saying how crazy the innovative farmers were, are now asking how they can try the new technology.

Adaptation, to make fit by modification, not adoption, is suggested for the farmers to make a seamless transition to conservation agriculture. Rather than purchasing all new equipment to replace what they already have, Delgado promotes the adjustment of their current machinery. “For the small farmer, to spend USD 1,800 on a new machine is not an option. But to insert a piece that can be bought for half that is practical, and they can afford it.” Delgado says. This enables the small- and medium-sized farmers like Julián Martínez to start off in conservation agriculture. CIMMYT wheat agronomist Ken Sayre applauds Delgado’s efforts. “People like Fernando still believe that improving the crop production situation directly in farmers’ fields is the most valuable way to achieve impact,” he says. His practical initiatives are certainly helping many farmers to increase their productivity and profitability.

Tanzanian mother takes charge of change

nov04Through their own determination, and with support from local researchers, CIMMYT, ICRISAT, and organizations in Australia, sub-Saharan African farmers are applying improved maize-legume cropping systems to grow more food and make money.

On a hot August day near the village of Kilima Tembo, and amid the sounds of barking dogs and clucking chickens, Felista Mateo stepped out of the house she built by hand, walked into her fields, and proudly admired her maize crop. The plants reached toward the sun, verdant and strong. Her plot stood in stark contrast to neighboring fields, which were pocked by brittle, knee-high plants.

A few years ago, things did not look so promising for Felista. She had separated from her husband and was left alone to care for her four children. Felista is a slight woman, not much more than five-feet tall, but her appearance belies her strength. Typically, a separated woman is ostracized when she returns to her parents’ home. Felista refused to see her newfound independence as an affliction. In Kilima Tembo, women do not own land, but Felista set out to acquire a plot from her father. She was determined to succeed. After the elders of the Village Council gave their approval, Felista became an independent farmer. It was this same strength of character that made her the perfect candidate for a new pilot program in the area.

Maize-legume intercrops boost African farmers’ food security and incomes

Intercrops with legumes are popular among small-scale farmers in sub-Saharan Africa: they increase grain output per unit land area, help block weed growth, contribute to soil fertility, and reduce the risk of total crop failure. Launched in 2010, SIMLESA is a collaborative effort between CIMMYT (the International Maize and Wheat Improvement Center) and national agricultural research and extension systems in Ethiopia, Kenya, Tanzania, Malawi, and Mozambique, to improve the productivity of smallholder farmers growing maize and legume crops. Partners include the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Tanzania’s Selian Agricultural Research Institute (SARI), the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA), the Agricultural Research Council (ARC) of South Africa, Murdoch University, and the Queensland Department of Employment, Economic Development and Innovation (QDEEDI) and Murdoch University. SIMLESA is supported by a grant from the government of Australia through the Australian Centre for International Agricultural Research (ACIAR). Activities include socioeconomic studies, market and value chain analysis, and directly involving farmers in the testing and selecting of crop varieties and conservation agriculture practices for tropical maize-legume intercropping systems.

New intercrop fills her granary
Frank Swai is an extension agent with the Ministry of Agriculture who works with farmers and the Selian Agricultural Research Institute. He convinced Felista to plant a new kind of maize seed and advised her on better farming practices. Felista listened. She planted both the high-yielding maize Frank suggested and a tasty, early-maturing variety of pigeon pea. Neighbors were skeptical. Initially, Felista was the only one in the community who participated in the project. Villagers watched closely as Felista planted a crop never before seen in the area.

Months later, when it came time to harvest, it was clear Felista’s hard work had paid off. She grew enough maize to feed her children and had leftovers to sell in the market. “My yields have increased so much that I’m going to have to build a larger granary to store my harvest,” she said.

Enough to eat and export
Felista was aware that pigeon peas were exported directly to India, but in Tanzania farmers don’t sell directly to international markets. Instead, crops are sold through walanguzi, a pejorative term used to describe the middlemen who dominate the markets. Nevertheless, Felista retained some bargaining power with the middlemen by finding out actual market prices in India from Frank Swai, and by storing her harvest in her granary, waiting to sell until prices were high. Tanzanian farmers won’t ever be free of the walanguzi, but they can further their interests by banding together to get the lowest prices on inputs such as seed and fertilizer, and the most for their exports.

Her risk pays off
Felista is not your average Tanzanian farmer. Her hard work paid off. Had she failed, she may have been left trying to scrape together enough to survive. Tanzanian farmers like Felista have little margin for error. Initially, she planted three-fourths of an acre as requested by the pilot program. Next year, she plans to plant more. She now trusts the SIMLESA project and is willing to try new seed, different crops, and alternative farming methods. Others in the community have noticed. “My neighbors admire my crop since I planted the improved seed,” said Felista, as she waved a hand over her field, “and are also interested in joining the project.”

Felista waded into her field to pose for a photo. The maize towered above her head. A breeze whistled through the plants and she wrapped herself in a bright yellow kanga. As she steadied herself for the photo her eyes danced over her home and fields. A small, relieved look pushed up her face and then spread into a full, joyous smile.

For more information: Mulugetta Mekuria, CIMMYT Southern Africa regional liaison officer and SIMLESA project leader
(m.mekuria@cgiar.org)
See also:

New boost for maize-legume cropping in eastern and southern Africa

Simlesa’s most recent activites

Plowing through poverty

CIMMYT E-News, vol 6 no. 4, June 2009

As part of the global work to test and disseminate conservation agriculture, CIMMYT and partners have introduced and promoted new agricultural machinery in Bangladesh, helping farmers to improve their crop yields, food security, and livelihoods.

Continue reading

Brothers on the land

CIMMYT E-News, vol 4 no. 7, July 2007

Somewhere between the romance of the Silk Road and the land mines, CIMMYT works as part of the team that is rebuilding the shattered agriculture of Afghanistan.

It looked like a scene from a Tolstoy novel—four, weathered men with hand sickles working under the blazing, noonday sun to harvest a field of wheat. No combine harvester here, just the power of their backs and arms and hands. But Tolstoy wrote 140 years ago. This scene is today, 2007, in northern Afghanistan near the city of Mazur i Sharif, not far from the Uzbekistan border. Wheat is the most important food crop in this embattled country where 85% of the population depends on agriculture to sustain life. Yet wheat yields on its worn soils are notoriously low—only 2-2.5 tons per hectare, even on irrigated land. Unlike the republics of the former Soviet Union to the north, land holdings in this part of Afghanistan are small and do not lend themselves to large scale mechanization. You can understand what that really means when you talk to the farmers themselves.

jul06Faizal Ahmad and his brother Hayatt Mohammad are sharecroppers on this 8 hectare parcel of land. They pay the landowner a share and the crew that is harvesting gets a share, and with what is left, they try to feed their families, maybe sell a little.

“From the sharecropping we just survive,” Faizal says. “We are not going to get rich and we won’t make very much money.”

The crew working the field is part of a community harvesting system. They are paid in wheat seed rather than cash and get two meals for the day’s work. They too keep some land for wheat. In Afghanistan, no matter what else you grow, wheat comes first for family food security.

During the Taliban and warlord times, the brothers fled with their families to Pakistan but returned with the installation of the new government in 2004. And even though farming this irrigated land year round is tough, Hayatt, who is married with a son and daughter, says they are making a go of it. “Life is difficult, and we are struggling and hope things could improve.”

They are growing an improved but older wheat variety called Zardana Kunduzi which they get through an informal farmer-to-farmer seed system. Unhappily, their land is infested with wild oats. The weed reduces the wheat harvest, both by competing for space and by taking nutrients. No matter what the farmers try, the weeds come back every season. Of course herbicides are not an option for people with so little.

This is the milieu in which CIMMYT finds itself in Afghanistan—older varieties that are more susceptible to pests and diseases, a seed system that needs rebuilding from the ground up and agronomic practices that need improvement to give farmers like Faizal and Hayatt a real chance on the little land they have.

In partnership with the Ministry of Agriculture Irrigation and Livestock of Afghanistan (MAIL), CIMMYT has been testing potentially better wheats for conditions specific to different parts of the country. Already a new variety of durum wheat is available and not far from where Faizel, Hayatt and the crew are working another farmer is growing the durum for seed. His field is healthy and the crop looks excellent. He has been contracted by one of the new seed production companies that are part of a project sponsored by the Food and Agriculture Organization of the United Nations (FAO). Making that seed system sustainable, while providing seed at an affordable price is a great challenge.

The new agriculture master plan for Afghanistan prepared by MAIL praises CIMMYT for “considerable training of Afghans (that) sets a desirable standard.” In fact more than 50 Afghan researchers have had training at CIMMYT and more than 70 technicians, farmers and NGO workers have taken technical training at workshops in Afghanistan. Much of CIMMYT’s work in Afghanistan is supported by Australia through both the Australian overseas aid program, AusAID and the Australian Council for International Agricultural Research (ACIAR).

jul07At least three more varieties developed from materials originally from CIMMYT (some via the winter wheat breeding program in Turkey) are in the new varietal release pipeline that Afghanistan has implemented. They have already demonstrated in farmers’ fields that they are well-suited to local conditions and can provide more wheat per hectare than farmers currently harvest with yields in on-farm trials of almost 5 tons per hectare, double what most farmers get. These wheats can be seen in trials at the Dehdadi Research Farm near Mazur, almost within sight of the sharecropping brothers.

 

Nevertheless, Mahmoud Osmanzai, the CIMMYT country coordinator in Afghanistan says there are still real challenges to close the gap between the yields that can be achieved in well-managed demonstration plots and the yields poor sharecroppers like Faizel and Hayatt actually achieve. “We have good varieties that will make good bread,” he says. “Now we have to find a way that let’s resource-poor farmers get the most from them.”

For the sharecropping brothers, a little more income from their small piece of borrowed land could go a long way. “Yes if we could save, we could have a second business.” says Faizal. “We would probably get a shop as well or buy a car, run a taxi, build something to produce more.”

For more information: Mahmood Osmanzai, Afghanistan country coordinator (m.osmanzai@cgiar.org)

Conservation by the numbers: Reducing genetic drift in crop gene bank collections

CIMMYT E-News, vol 3 no. 1, January 2006

conserving1CIMMYT’s biometrics team receives special recognition for advancing the science behind crop genetic resource conservation.

The nightmare of a gene bank curator: You have a collection of 25,000 precious, unique samples of maize seed; one of the world’s most extensive. You store it carefully, keep it cold and dry, but—little by little over the years—the seed dies! Eventually you’re left with so many packets of useless kernels, and the precious genetic diversity they once embodied is lost to humanity forever.

To keep this very bad dream from becoming a reality, Suketoshi Taba, head of maize genetic resources at CIMMYT, and his team constantly monitor the germination capacity of collections. When it drops below 80-85%, they take viable seed from the endangered accession (the term for individual, registered samples in the bank), sow it under controlled conditions, and harvest enough from progeny to replenish the accession. Known as “regeneration,” the process sounds simple, but in fact must be done painstakingly to capture a faithful snapshot—rather than a faded copy—of the genetic diversity from the original accession.

The Crop Science Society of America recently bestowed the honor of “2004 Outstanding Paper on Plant Genetic Resources” on an article by CIMMYT biometricians that provides models for proper handling of repeated cycles of regeneration. Their work, which was funded by the Australian Grains Research and Development Corporation (GRDC), is particularly relevant for outcrossing, genetically diverse crops like maize, legumes, or sorghum, to name just a few.

conservation2

“For maize regeneration, we use artificial pollination, to avoid out-crossing with pollen from other maize fields,” says Taba. “But even the individuals in a maize population or accession are genetically diverse. How can we decide on the best way to pollinate the plants, or how many ears we need to harvest, or how many and which seeds to choose from each ear?” According to Taba, the danger is ending up with a sample that differs from the genetic make-up of the original. And with each successive cycle of regeneration, you can drift further and further.

Building on a strong body of work in this area by CIMMYT biometricians since the 1980s, the award-winning paper refines and expands the statistical model and provides reliable computer simulations. “Among other things, the simulation model shows exactly how many alleles are likely to be lost through various sampling and regeneration strategies,” says Jiankang Wang, CIMMYT biometrician who is first author of the study. “It describes how different strategies can affect the conservation of alleles and gives gene bank curators options that can be tailored for specific types of accessions.”

Jiankang Wang says he and his co-author, CIMMYT biometrician José Crossa, are now working with Taba to apply the paper’s model in managing CIMMYT’s maize gene bank collection. “Many other gene banks will find this approach useful,” says Crossa, explaining why their study received the award. “For example, we collaborate closely with the National Center for Genetic Resources Preservation in Fort Collins, Colorado, in the USA. They can apply the same principles in their regeneration work.”

Jiankang Wang was excited by the recognition and the fact that peers might find his work useful. “In middle school, teachers saw I had talent and told me to specialize in mathematics, but at the university I discovered that I was most interested in the practical applications of mathematics,” says Jiankang Wang. “Using science to help preserve the world’s crop genetic resources is a great satisfaction.”

For more information contact Jiankang Wang ( j.k.wang@cgiar.org)

Threat level rising

CIMMYT E-News, vol 3 no. 12, December 2006

decWheat lines that resisted virulent stem rust last season have now succumbed.

Observations from wheat rust screening trials in Kenya indicate even more of the world’s wheat is at risk from a stem rust attack than originally thought. Scientists from CIMMYT and its partners, studying wheat planted at the Njoro Agriculture Research Centre, report that more than 85% of sample wheats, including cultivars from the major wheat producing regions of the world, have succumbed to the stem rust known as Ug99. Most importantly some wheat lines which showed resistance to Ug99 stem rust a year ago now appear to be susceptible to the disease.

In August, 2005 an expert panel raised the first alarm about the new, virulent form of stem rust that could devastate world wheat crops. These new observations could mean the threat to the global wheat harvest is now significantly greater.

The Njoro Research Centre is in an area of Kenya where the virulent form of stem rust fungus is endemic. For the past three years scientists have used the station to expose wheat to the disease to see which is susceptible and most importantly, which is not. In March of 2006 more than 11000 different types of wheat and relatives of wheat from all over the world were planted and exposed to the fungus.

Studies are still underway to clarify the situation but it appears that at least one of the major stem rust resistance genes that has protected many of the world’s wheats for decades is no longer effective against the rust fungus at Njoro. This new development enhances the significance of what is already recognized as a dangerous threat to future global wheat harvests.

Wheat grows on more than 200 million hectares in both the developed and the developing world and the new data indicate that very little of that area is planted to varieties which resist the stem rust found at Njoro. Though stem rust may not be able to thrive in all parts of the world, scientists estimate that well over half of the total wheat area could suffer rust epidemics if susceptible varieties planted there are exposed to the pathogen.

“I was shocked at what I saw this season,” says Rick Ward, coordinator of the CIMMYT-ICARDA led Global Rust Initiative. “Essentially we have to find a way to replace all of the world’s wheat.”

dec01
Stem rust is one of the most dreaded of all plant diseases. In the mid-1950s it wiped out up to 40% of the North American spring wheat crop. Thanks in large part to the wheat breeding work of Nobel Peace Prize laureate, Dr. Norman Borlaug and those who followed him, the disease has not been a significant threat for almost half a century. Breeders combined several sources of resistance to the fungus into new varieties of wheat. Unfortunately, over time, the rust pathogen evolved and mutated and in 1999 scientists found a strain in Uganda (Ug99) that could bypass much of that resistance. The spores of the Ug99 fungus can travel great distances on the wind. The pathogen has already spread from Uganda into Kenya and Ethiopia. An outbreak of yellow rust originated in the same region of eastern Africa and eventually spread across the Arabian Peninsula and into the major wheat-growing areas of India and Pakistan. Studies of wind patterns in the region have led scientists to conclude that the new pathogen will eventually threaten wheat crops on a global scale.

CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA), together with partners such as the Kenya Agricultural Research Institute (KARI) are leading a global effort to characterize the rust pathogen; to track its spread and to find new sources of resistance to the disease and breed them into new wheats. This is especially important to farmers in the developing world who have little access to fungicides that could help reduce the damage.

“The good news is that some samples at Njoro did resist the fungus,” says CIMMYT wheat scientist, Ravi Singh. “That has given us a good place to start.” In fact Njoro is also the site where potential resistant breeding lines are now undergoing test.

For more information, Rick Ward (r.w.ward@cgiar.org)

I have farmed forever

June, 2005

How quality protein maize is changing lives in one Indonesian village.

“I have farmed forever,” says Yasam Saanim. He works the steep slopes of the mountainous land near the village of Carin on the Indonesian island of Java. From childhood his life has been one of hard labor with little reward. He and his wife struggled to raise seven children on their tiny piece of rented land. With no money of his own Yasam has to borrow from the landowner every year to buy fertilizer for his third of a hectare of rice. He also grows a few bananas, cassava, sweet potatoes, and durian, a pungent Southeast Asian delicacy. In return he pays the landowner 180 kg of rice at harvest. He does not think it is a fair deal but says he has no choice. The family survives but Yasam has never had money. It has been that way all his life.

Now, at the age of seventy, he finally sees some light in the seemingly endless tunnel of hopelessness that has been his lot as a tenant farmer.

The landowner has decided to plant maize—in particular, quality protein maize—on 1.2 hectares of land adjacent to Yasam’s. Quality protein maize is a high lysine and tryptophan type developed by CIMMYT. It can enhance the nutrition of the poor whose diets depend heavily on maize and raise the quality of maize-based pig and poultry feeds. The landowner’s maize production is for seed, which markets locally at five times the value of grain and reflects Java farmers’ growing interest in quality protein maize. To Yasam’s delight, he and some village women were hired to weed, fertilize, and harvest the plot. Yasam earns 12,500 Indonesian Rupiahs (US $1.30) for each half day he works. The women are paid less (7,500 Rupiahs), but in a village with little money this new income is very welcome.

On the island of Java, Yasam tends this plot of quality protein maize for his landowner.

Indonesia has released two open-pollinated varieties of quality protein maize. They were developed using experimental varieties from CIMMYT by Dr. Marsum Dalhan, head of the Breeding and Germplasm Section of the Indonesian Cereal Research Institute. Marsum has benefited both from CIMMYT training activities and through support for his work from the Asian Development Bank.

Virtually no maize is grown around Carin. That is good news for landowners who produce maize seed and, especially, that of quality protein maize. Because the quality protein trait is “recessive”—that is, both parents must carry it and pass it on, for it to be expressed in offspring—any plants that are fertilized with pollen from other types of maize will not produce quality protein seed.

The economics look good to the landowner. He produces two crops of quality protein seed a year. Still there is a risk. The market for this maize is in its infancy in Indonesia where most animal feed is artificially fortified with lysine at the feed mill. Nevertheless, Yasam Saanim, a person who has farmed forever, beams with cautious optimism. “It looks like we will have a benefit from the maize,” he smiles.

Of Wheat and Weather

CIMMYT E-News, vol 2 no. 10, October 2005

ofwheat2A new study from the Carnegie Institute of Washington, Stanford University, and CIMMYT shows wheat yield gains in northern Mexico could be due mostly to the weather.

Since the beginning of the Green Revolution in the 1960s Mexico has seen a continuing rise in average wheat yields. At the end of the 20th century yields were 25 percent higher than they were in 1980. It started with the improved wheat that Dr. Norman Borlaug developed during the 1940s and 50s in the Yaqui Valley of Mexico’s Sonora State.

CIMMYT scientists and partners have tracked yield trends in the area for decades, noting changes in varieties, cropping practices, disease pressures, and even policy changes that might have an impact on the final tonnage a farmer gets from the field. Trends observed here, in the cradle of the Green Revolution, may be good indicators for other parts of the wheat producing world.

CIMMYT agronomist Dr. Ivan Ortiz-Monasterio and his colleagues from Stanford University were curious to evaluate the most significant factors in that yield gain. But before they could look at the contribution of fertilizers or improved varieties, they decided to eliminate any impact that changes in climate might have had. This is no easy task, and often in calculations in the past, the weather was assumed to have been relatively constant and therefore would not affect a trend in yield.

hotspot
By taking climate into account, the team came up with a surprising result, one that has long-term implications in a world where global warming is likely a major part of ongoing climate change.

Taking detailed weather data from 1987 – 2002 recorded at two weather stations close to farms whose output of wheat per hectare was well documented, they used a computer model for how wheat grows to simulate what would happen to wheat yields using the real weather data and leaving every other potential impact constant. The result was that from 85-100% of all the change in wheat yield could be explained by the climate.

“Basically a two-degree change in temperature accounted for nearly all of the yield change,” says the Carnegie Institute’s Dr David Lobell, the principal author of the study.

The study found that the nighttime temperature had the most significant impact on wheat yield. The weather data showed that over the 15-year period there had been a gradual trend toward cooler nights. During that time, farm yields in the areas studied in the Yaqui and Mayo Valleys (Sonora State) and in the San Luis and Rio Colorado Valleys (Baja California) increased from below 5 tons / hectare to about 6 tons / hectare, a significant increase.

“Although higher yielding wheat varieties were developed during the 15 years of the study, these were not widely grown by farmers in the region,” says Dr. Ortiz-Monasterio. “This was due to the breakdown of disease resistance or bread making quality limitations.”

Not satisfied with a result based on a single computer model, the team decided to try a second approach to get at the impact of temperatures on production. Again, the independent analysis produced very similar results.

The new study, published in the current issue of Field Crops Research and supported by the National Science Foundation and the Packard Foundation, has important implications for directions in wheat research. Climate changes, in particular increases in average temperatures, could have important, negative effects on wheat yields in the future.

For further information, contact Ivan Ortiz-Monasterio (i.ortiz-monasterio@cgiar.org).

Field Laboratory Identifies Ways to Reduce Environmental Impacts of Intensive Agriculture

May, 2004

sav_satelliteIn the next 25 years, a very large share of the additional wheat needed to feed the rising population in developing countries will come from intensive farming systems. It is more important than ever to learn how to reduce the impact of intensive agriculture on the environment while ensuring that those systems can supply much-needed food in the years to come.

One such system is the Yaqui Valley in northwestern Mexico, site of CIMMYT’s main wheat research station. “Because of its location—between the ocean and a mountain range—the Valley serves as an ideal laboratory for investigating the long-term effects of intensive farming on neighboring ecosystems,” comments David Lobell, a Stanford University researcher collaborating with CIMMYT. “These effects have regional implications—for example, for the Sea of Cortes and adjacent ecosystems—as well as global consequences, since they contribute to global warming and, ultimately, climate change.”

Remote sensing by NASA satellites, started in 1999 as part of the CIMMYT/Stanford University collaborative study, is a new way of studying farming activities in the Valley. Forty percent of the wheat produced in the developing world comes from irrigated environments resembling the environment in the Valley. Because of this similarity, investigations conducted in the Valley have applications far beyond it, particularly in the intensive production systems of South Asia, which feed billions of people.

The Latest Applications of Remote Sensing in the Valley

The Yaqui Valley can be thought of as a large experimental field, made up of individual farmers’ fields. These farmers can be divided into three groups. Some plant wheat too early, others plant it on time, and others plant it too late. During each cropping cycle, researchers use remote sensing to make thousands of observations across the whole Valley and determine how different sowing dates affect wheat yields. This procedure is more effective than establishing a trial specifically to test the effects of different planting dates at a research station.

Based on the resulting information, CIMMYT researchers have calculated that in bad years, when temperatures are high and water is scarce, late planting causes yield losses worth about US$ 10 million in the Valley. “This information comes just in time for wheat farmers, who can adjust their sowing dates and cope better with the intense drought we’ve had in the Valley for the past eight years,” says Ortiz-Monasterio.

In good years, when there is enough water and cool temperatures, the effect of late sowing on wheat yields is either negligible or nil. Nonetheless, data on when most farmers sow their wheat are potentially useful to decision makers, who, based on these data, could ensure that credit and irrigation water are available to producers when they are ready to plant.

Remote sensing is also being used for tracking nitrogen derivatives that are released into the atmosphere or leached into the soil with irrigation water. Currently several Stanford professors are leading teams that study the effect of irrigation water that flows from the Yaqui Valley into the Sea of Cortes, about 20 km away. They are observing the increases in the algae bloom and/or the plankton in the Sea, and so far the increases seem to coincide with the outflow of irrigation water from the Valley. If this finding is confirmed, recommendations need to be made to Valley farmers that would allow them to reduce their nitrogen fertilizer applications.

In years past, CIMMYT wheat agronomists have worked out strategies that could dramatically reduce the amount of fertilizer applied to wheat without affecting yields. For example, farmers could reduce nitrogen applications by more than 30% if they apply less fertilizer exactly at the time when the crop starts pulling nitrogen from the soil. Currently farmers apply nitrogen with irrigation water, weeks before wheat is actually sown. This practice causes nearly 35% of the nitrogen to be lost through gas emissions and leaching before the crop is even in the ground.

Sensing Plants’ Nutrient Needs

Another way of fine-tuning fertilizer applications is to use an electronic sensor that is held over the wheat crop by a technician walking through the field. The sensor detects which plants need fertilizer and allows farmers to apply the exact amount of nitrogen at the right time, thereby reducing waste and farmers’ production costs. But, most importantly, this practice would reduce the amount of unused nitrogen that leaches through the soil and into the Sea of Cortes with the outflow of irrigation water. “Because individual farmers cannot afford to have their own sensors, we envision that district representatives in the Valley could offer this detection service to farmers districts every crop cycle,” comments Ortiz-Monasterio.

For more information, contact Ivan Ortiz-Monasterio.

Revised IRMA II Project Plan Stresses Regulatory Issues and New Management Structure

November, 2004

The Insect Resistant Maize for Africa (IRMA) project was launched in 1999 with the primary goal of increasing maize production and food security for African farmers through the development and deployment of improved maize varieties that provide high resistance to insects, particularly stem borers. To achieve this goal, KARI and CIMMYT scientists will identify conventional and novel sources of stem borer resistance and incorporate them into maize varieties that are well suited to Kenyan growing conditions and to farmer and consumer preferences. Major funding for the project is provided by the Syngenta Foundation for Sustainable Agriculture.

A revised project plan for IRMA II, geared to better address regulatory issues related to Bt maize and to enhance project management, was released in October 2004, the culmination of months of intensive planning meetings and workshops. “In the course of implementation of IRMA II it became clear that the regulatory issues were not exhaustively covered in the original project plan,” explains IRMA Project Manager Stephen Mugo. The need to more thoroughly address regulatory issues (through the assembly of regulatory dossiers) emerged full force as field testing and eventual release of Bt maize in Kenya became more imminent.

In June 2004, consultant Willy De Greef provided IRMA parties with an overview of regulatory issues related to transgenic crops. At that special IRMA Steering Committee meeting, a working group was established to formulate and oversee IRMA II strategies for fulfilling regulatory regimens. Appointed to the group were B. Odhiambo (KARI), S. Mugo (CIMMYT), J.K. Ng’eno (MOA), and F. Nang’ayo (Kenya Plant Health Inspectorate Service [KEPHIS]). Dr. Simon Gichuki (KARI) was appointed to be the IRMA Project Internal Regulator.

mmulaaTo get the ball rolling, five scientists were designated to attend an intensive two-week course on regulatory issues and processes, conducted in August at Ghent University, Belgium. The scientists were involved in either IRMA II or regulatory processes: A. Pellegrineschi and S. Mugo (CIMMYT), M. Mulaa and S. Gichuki (KARI), and R. Onamu (KEPHIS). On the heels of the regulatory workshop, a two-day workshop to develop, plan and incorporate regulatory activities in the IRMA II project plan was held in Nairobi in September 2004. Twenty-one participants from seven institutions attended the workshop: KARI, CIMMYT, KEPHIS, National Council for Science and Technology (NCST), Syngenta Foundation for Sustainable Agriculture, African Agricultural Technology Foundation (AATF), and International Biotech Regulatory Services. The objectives of the meeting were to (1) update the status of Bt maize in IRMA project; (2) identify information needed for a dossier on Bt genes to be deployed by the project;(3) determine sources of the needed information and identify gaps to be filled through research; (4) determine activities needed to fill the gaps, including resources and assigning responsibilities; and (5) update the IRMA II project plan, specifically on regulatory issues. After agreeing on the components of a regulatory package, the team split up into working groups and identified the required information, and developed activities over time, including budgets and responsibilities. Subsequently, a small task group incorporated the regulatory strategies into the project plan and created a revised structure for IRMA II. Ten themes were recommended:

  • Bt maize event, development of Bt source line, and human health safety assessment
  • Development of conventional and Bt products and compositional analysis
  • Environmental impact assessment
  • Insect resistance management and contingency plans
  • Regulatory issues and requirements
  • IPR/licensing
  • Seed production
  • Market assessment and analysis
  • Economic impact assessment
  • Communication/promotion (public awareness, media relations, extension)

Each theme is interdisciplinary and involves a team of entomologists, biotechnologists, breeders, economists, communications experts, IP counsels, extension officers, policymakers, regulatory officials, and most importantly, Kenyan farmers. The first testing of Bt maize source lines will be in the biosafety greenhouse complex in 2004 and in the field in 2005. OPVs will be pre-released in 2010, with large-scale release in 2011. Hybrids will follow a year behind OPVs. In developing the project plan, probabilities of success and risks, and contingency measures were identified. Milestones were set, against which progress will be measured. These fall in four broad categories: (1) facilities and permits; (2) breeding; (3) environmental safety assessments; and (4) socioeconomic impacts. Dispersal of funds by Syngenta Foundation will take these milestones into account.

To actualize the milestones and objectives, a new project management structure was developed. Under the new scheme, an Executive Committee (EC) composed of KARI, CIMMYT, Syngenta Foundation, MOA, and The Rockefeller Foundation directors, and CIMMYT African Livelihoods Program director was established with overall responsibility for the project. The position of Project Manager was instituted and given overall responsibility for the projects day-to-day activities and oversight, and reporting to the EC. An advisory board of experts from the public and private sectors will be appointed by the EC to provide expertise in their respective areas and to monitor progress on the project plan. A project management team, composed of the 10 project theme leaders, will hold quarterly meetings and report monthly to the project manager.

The five-year budget for the project is approximately USD 6,670,000. Although the Syngenta Foundation will be the principal development partner, The Rockefeller Foundation will provide support for seed issues. Other potential donors will be approached to provide support for one or more of the specific outputs of the project. Collectively, these development partners, together with those involved with IRMA I, and especially the farmers of Kenya, will work to ensure that the products needed by the farmers of the nation and sub-Saharan Africa actually reach them.