Skip to main content

Index insurance to safeguard farmers from climate change

“We’ve got the germplasm and improved varieties, but what can we do to overcome the hurdle of farmer adoption of these technologies?” Jon Hellin, value chain and poverty specialist for CIMMYT’s Socioeconomics Program presented this challenge and how crop-index insurance may be part of the solution, at a high-level Climate Change, Agriculture and Food Security (CCAFS) webcast event Wednesday, 28 January in London. The event covered innovations in index insurance and how Nigeria can implement them, as part of a plan to safeguard its farmers from climate change effects.

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies”

– Jon Hellin

CIMMYT’s Socioeconomics Program

Benefits of Index Insurance

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies,” said Hellin. Traditional crop insurance gives payouts that are explicitly determined on measured loss for a specific client. Index insurance allows farmers to purchase coverage based on an index that is correlated with those losses, such as average yield losses over a larger area or a well-defined climate risk, e.g. erratic rainfall, that significantly influences crop yields.

This approach can address many of the problems that limit the application of traditional crop insurance, including lower transaction costs and eliminating the need for in-field assessments. In addition, because the insurance product is based on an objective index it can also be reinsured, allowing insurance companies to efficiently transfer part of their risk to international markets. This makes index insurance financially viable for private-sector insurers and affordable for small-scale farmers.

CIMMYT is involved in a CCAFS-supported crop index insurance project. One focus is to determine how crop index insurance can enhance adoption of drought tolerant maize varieties. CIMMYT, along with international partners and scientists, has been developing many such varieties under the Drought Tolerant Maize for Africa (DTMA) initiative. “When it comes to these varieties and exciting initiatives like crop index insurance, that’s where we can come together and get great win-wins,” Hellin stated.

 

Challenges and Opportunities

Scientifically-validated crop-index insurance schemes need indices that are affordable and attractive to stakeholders, particularly farmers and the insurance industry and other refinements. However, as demonstrated by examples from Ethiopia, Kenya, Rwanda and Senegal, if implemented correctly index insurance can build resilience for smallholder farmers not only by ensuring a payout in the event of a climate shock, but also by giving farmers the freedom to invest in new technology and inputs, such as seed.

“The Nigerian government’s interest in crop insurance will allow us to test different approaches for bundling insurance with technologies, making it attractive to farmers and private sector actors,” Hellin proposed.

Index-Insurance

Pakistan wheat farmers call for quality seed of the right varieties

A Pakistani farmer carries seed of a new wheat variety for on-farm testing. Photo: Anju Joshi/CIMMYT
A Pakistani farmer carries seed of a new wheat variety for on-farm testing. Photo: Anju Joshi/CIMMYT

Lack of good seed of appropriate varieties is holding back harvests of smallholder wheat farmers in rugged, rain-fed areas of Punjab, Pakistan, said a group of farmers to some 50 representatives of seed companies, input dealers, and research, extension and development organizations, at a workshop in Chakwal, Punjab, on 18 September 2014.

“Ninety-five percent of farmers in Pothwar, a semi-arid region of bare and broken terrain, use farm-saved seed of obsolete varieties, invariably with limited use of modern agricultural technologies and inputs, resulting in poor crop establishment and low yields,” said Krishna Dev Joshi, CIMMYT wheat improvement specialist based in Pakistan. “Their yields average only 0.6 tons per hectare, whereas progressive farmers in irrigated areas get ten times that much.”

Joshi said only three varieties cover 83 percent of the region’s wheat area and the same cultivars have been used for an average of 24 years. “One of these, C591, is a variety that was recommended in 1934 and is still grown on about 14 percent of the region’s nearly 0.6 million hectares of wheat area.”

According to Akhlaq Hussain, ex-Director General, Pakistan Department of Federal Seed Certification and Registration, one problem is that, despite their low yields, the older varieties have many traits that the farmers like. For example, they give stable yields under low inputs and harsh growing conditions and provide the preferred flavor and long-lasting good texture in chapattis.

Muhammad Tariq, Director of the Barani Agricultural Research Institute (BARI), Chakwal, Punjab, said there are few producers or suppliers of suitable, quality seed, fertilizer or other farm inputs for such marginal areas. They may be considered unattractive markets, but more than 70 percent of Pakistani wheat farmers are smallholders, cultivating between one and five hectares of land, according to Tariq.

Such farmers harvest on average only 1.5 tons per hectare and urgently need better seed and technology to raise their yields, said Joshi. “Farmers at the workshop complained they could not get access to high-yielding varieties of their choice,” he explained. “They also criticized the long time — typically three years — required to obtain seed of new varieties, once the varieties are officially released.”

Given this need and the lack of legitimate suppliers, fraudulent seed dealers and middlemen often market inferior or false products. “Last year I bought a bag of seed labelled ‘Galaxy,’ a new, high-yielding variety,” said Haji Muhammad Aslam Ochallee, a farmer from Khushab District, “but the seed inside was of an entirely different variety.”

Some seed dealers may mix seed or sell grain in bags labelled ‘certified seed’ at low prices to lure smallholders, and big landlords may sell cheap seed illegally to neighbors, said Qaiser Rasheed, Managing Director of the company Robert Cotton Association. “All these practices cheat farmers, distort markets and erode farmers’ trust in the formal seed sector,” Rasheed observed.

Pothwar’s problems reflect Pakistan’s overall food security challenge, according to Joshi. “A 2014 bulletin by the World Food Program shows that more than 27 million people in Pakistan are highly-to-severely food insecure,” he said. “The big concern is that most smallholders and vulnerable people live in districts that will need special attention to improve food security.”

 

Activating the Wheat Seed Value Chain

As a part of the Agricultural Innovation Program (AIP) for Pakistan, a project funded by the US Agency for International Development (USAID), CIMMYT is working with the Pakistan Agricultural Research Council (PARC), BARI in Punjab, seed companies and farmers to close gaps in the wheat seed value chain for rain-fed Punjab.

Workshop participants cited the need for better communication and coordination of research and extension agencies with commercial input suppliers sector and, especially, better marketing of new wheat varieties to farmers. “If stakeholders don’t integrate and coordinate, small-scale farmers will remain deprived of modern technologies and innovations, such as wheat varieties that resist new and virulent disease strains,” said Joshi.

“If stakeholders don’t integrate and coordinate, small-scale farmers will remain deprived of modern technologies and innovations, such as wheat varieties that resist new and virulent disease strains”

– Krishna Dev Joshi

CIMMYT Wheat Improvement Specialist

Farmers recommended establishing village committees to choose and access seed of new varieties and help foster truth in labeling. They particularly called for strict punishment for those selling fake seed.

For their part, seed companies said the lack of reliable irrigation or storage facilities hinders seed production in Pothwar. “Because of this, seed must be transported over long distances, raising costs, which in turn discourages buyers and cuts profits,” said one company representative.

The workshop forged an agreement to allow private seed companies to produce pre-basic and basic seed, supervised by concerned breeders and with support from Federal Seed Certification and Registration Department, to speed the marketing of new varieties. One result was that Robert Cotton Association has received pre-basic and basic seeds of two wheat varieties, Chakwal50 and Dharabi11, originally developed and released by BARI, which will provide technical backstopping.

Other action points agreed on at the workshop included the following:

  • On-farm trials and demonstrations that allow farmers to learn about and choose from new, high-yielding wheat varieties. To address this, AIP-wheat has already launched participatory varietal selection trials in which farmers and researchers jointly evaluate 14 new, high-yielding, disease resistant wheat varieties of diverse genetic backgrounds on the farms of 65 smallholders across Pothwar. In addition, to help farmers assess and improve crop management practices, the project is conducting 20 on-farm, participatory experiments on fertilizer use and 107 trials on pre-soaking seed, a practice that improves germination and crop establishment.
  • Community-based seed production linked with private companies and supported by proper equipment and training in quality seed production. Achievements to date include seed of 9 new varieties being multiplied directly with 52 Pothwar farmers on more than 42 hectares.

     Group. Photo: CIMMYT
    Group. Photo: CIMMYT

Letter from the field

World Food Prize Borlaug-Ruan Intern Describes Experience with CIMMYT in Turkey

Adam WillmanThe prestigious Borlaug-Ruan International Internship provides high school students an all-expenses-paid, eight-week hands-on experience, working with world-renowned scientists and policymakers at leading international research centers.

Adam Willman, a Borlaug-Ruan International Intern from Iowa, USA, spent last summer working for CIMMYT’s Soil Borne Pathogens (SBP) Division in Eskişehir, Turkey, working and studying root lesion nematodes under Dr. Abdelfattah “Amer” Dababat and Dr. Gül Erginbas Orakcı.

Willman said “Everyone I worked with had something different and interesting to teach me. I experienced a wide variety of the work that is ongoing at CIMMYT-Turkey. These experiments focused on the overall goals of reducing food loss from disease and pests that can plague farm fields across the globe.”

Willman’s work also included assisting Elfinesh Shikur Gebremariam from Ankara University with Fusarium fungus, Fateh Toumi from Ghent University and Jiang Kuan Cui from China’s Ministry of Agriculture with cereal cyst nematodes. “I was exposed to both the threat that plant diseases pose to food security and the cutting-edge research to combat this” he added.

Willman also commented on the unique opportunity to experience Turkey’s people and culture, saying “I witnessed the amazing kindness, generosity and hospitality of everyone from the director of the research institute, to CIMMYT researchers and workers, to everyday strangers. I am very thankful for my time and experience at CIMMYT-Turkey.”

In a final message he thanked Dr. Dababat, Dr. Erginbas and all of the workers and researchers at SBP.

“Working with SBP for eight weeks truly changed my life and gave me the perspective on my education that I am still utilizing today. I hope to in the future become a plant pathologist and continue researching the many diseases and pests that affect the crops that we, as a planet, depend on. Global food security is within reach, and the scientists and workers at SBP are helping us obtain this goal,” Willman concluded.

 

Adam Willman (5th from the left) with the SBP pathogens division, students, visitors and Global Wheat Program Director Dr. Hans Braun during a field day in Eskişehir. This photo was taken in the field of the Transitional Zone Agriculture Research Institute (TZARI) in Eskisehir, Turkey.

 

Gates Foundation predicts agricultural extension will have a big impact on Africa

In their seventh annual letter Bill & Melinda Gates look 15 years into the future to predict the steps needed to improve the lives of poor people faster than in any other time in history. Technology advancements in agriculture, education and global health are key to this vision, with particular reference to the importance of new vaccines, mobile phone technology and online education. “Poverty has been halved because of innovation,” Bill Gates emphasized at the Davos World Economic Forum last week. “Economic miracles start with agriculture, education and then [countries] can participate in the world economy.”

The Gates Foundation has placed their agricultural bets on Africa being able to feed itself in 15 years. This will be achieved through training in crop rotation, no-till farming, fertilizer use and planting techniques. “Investing in extension…is the only way to reap the full benefit of innovation,” Bill and Melinda Gates emphasized. It is predicted this will lead to a 50 percent yield increase across Africa, reducing famines through more nutritious crops and a reduced dependence on imports. Mobile phones will also be a game-changer, giving farmers access to information on improved seed and fertilizer, proper techniques, daily weather reports and market prices.

The notion that scientists should work closely with farmers is central to CIMMYT’s approach. There is a great deal of information out there today and farmers have choices to make. Selecting the right seed varieties and technologies alone is not enough. It is also crucial to combine this knowledge with an understanding of how to develop an integrative agronomic system that connects farmers to a working value chain. In this respect agricultural extension can help farmers achieve their agricultural goals.

Nonetheless, agricultural extension alone will not be sufficient to help African farmers increase agricultural productivity. Extension must go hand in hand with developing new varieties – why use an Altair Basic if you can get a Surface Pro 3? Tanzanian farmer Joyce Sandiya’s success with new drought tolerant maize seed is featured in the annual letter. “That seed made the difference between hunger and prosperity,” she said, eloquently reflecting on the importance of a single seed.

CIMMYT projects in Africa that are funded by the Bill & Melinda Gates Foundation show how to develop and deploy new seed varieties. In eastern and southern Africa, up to 2 million farming households have benefited from improved drought tolerant maize seed emerging from joint work by CIMMYT scientists and seed companies, government exten-sion programs and national research organizations.

Research alone is academic, unless it is informed by awareness of problems on-farm and supported by extension. Agricultural research is essential to develop new seed varieties, technologies and innovations, while extension is crucial to ensure that farmers can use these technologies.

Boosting yields while staving off the spread of wheat diseases

El Dr. Julio Huerta, patólogo experto en royas y científico adjunto (asignado por el Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP)/Investigador de Trigo y Avena INIFAP CIRCE CEVAMEX).

Wheat provides about 20 percent of the world’s food calories. Growing wheat to maturity can be complicated by fast-spreading virulent diseases, which threaten production and land-shortage pressures.

Two among many wheat scientists in the wheat breeding program with the International Maize and Wheat Improvement Center (CIMMYT) near Mexico City, work to develop and fine-tune high-yielding, disease-resistant wheat varieties.

Ravi Singh head of CIMMYT’s Global Spring Wheat Improvement Program and Julio Huerta, a rust pathologist, select the most desirable traits suitable for about 60 percent of the developing world’s wheat growing area across various climates, environments and at risk of threats from diseases and pests.

Their understanding of the selection process evolved from nearly four decades of research, which began as they worked under the mentorship of Sanjaya Rajaram, the winner of the 2014 World Food Prize, at CIMMYT research stations in El Batan, Obregon and Toluca.

“As a teacher, Dr. Rajaram led us through the Socratic method of questioning to help young scientists observe, articulate and learn from what they saw in the wheat fields,” Huerta said.

Inspired by what he refers to as the “freedom to flourish,” through the process of asking and receiving answers to questions which inspired him, Huerta developed an eye for wheat selection and judicial elimination in wheat breeding ultimately becoming one of the top wheat curators in the world.

Over the years, as their skills developed, Huerta and Singh tested the theoretical basis for wheat improvement to help form an applied regime approach whereby the “laws” of science are evaluated in practice – in fields across the globe. This work led to their capacity to produce germplasm – or wheat material – which is ultimately distributed to government-run National Agriculture Research Systems (NARS).

“We develop a set of germplasm that is distributed globally,” Singh said. “However, as we make distribution decisions, we evaluate the locations where these seeds will be grown prior to selecting appropriate traits suitable for specific contexts such as high-heat or early frost.”

After receiving germplasm from CIMMYT, NARS work with local seed nurseries to consider which varieties would be best to grow, adapting recommended varieties to their local environment.

Scientists Singh and Huerta offer vital contributions to the ability of farmers to generate profits while strengthening food security by improving wheat productivity. A key part of this work involves replacing varieties susceptible to disease with durable resistant varieties that mitigate losses.

Over many years, CIMMYT has worked with hundreds of partner organizations and thousands of individuals; seed from CIMMYT’s International Wheat Improvement Network has been delivered to 121 countries.

‘Gluten-free’ diets put food security, human health at risk – nutritionist

Hans Braun, director of the Global Wheat Program at CIMMYT examines wheat with nutritionist Julie Miller Jones in a greenhouse at CIMMYT headquarters near Mexico City. Jones presented a talk on nutrition and wheat at CIMMYT. Photo: Xochiquetzal Fonseca/CIMMYT
Hans Braun, director of the Global Wheat Program at CIMMYT examines wheat with nutritionist Julie Miller Jones in a greenhouse at CIMMYT headquarters near Mexico City. Jones presented a talk on nutrition and wheat at CIMMYT. Photo: Xochiquetzal Fonseca/CIMMYT

EL BATAN, Mexico (CIMMYT) — Eliminating wheat consumption to avoid ingesting gluten is at best unnecessary for most people and at worst means that diets could lack cereal fiber and other valuable health benefits provided by grains, according to a top nutritionist.

Complete removal of wheat from the human diet would further cripple global efforts to feed the current global population of 7.2 billion, said Julie Miller Jones during a presentation delivered to scientists at CIMMYT on Tuesday.

Despite providing 20 percent of calories consumed globally, wheat and its protein complex, gluten, are often criticized in books and news stories as the cause of many human ailments. However, wheat and grain-based staples provide an array of nutritional and health benefits.

The claim that such non-cereal fibers as those found in fruit, vegetables and legumes can replace cereal fibers has been shown to be untrue, said Miller Jones, who is professor emeritus of nutrition at St. Catherine University in St. Paul, Minnesota.

Eating fibers from a variety of sources plays a role in maintaining healthy cholesterol and blood sugar levels, she said, adding that they also reduce the risk of gut disorders, help maintain healthy gut bacteria and keep unhealthy bacteria at bay.

Abandoning wheat consumption altogether could lead to a reliance on more costly foods, in short supply or impossible to produce on a global scale to meet the dietary needs of a population expected to increase to more than 9 billion by 2050, said Miller Jones.

“Even if we did decide to abandon wheat as a dietary staple, we don’t have the turnaround time, the availability or the quantity of foods that have been recommended as alternatives in anti-gluten fad diets,” she said.

The popularity of gluten-and wheat-free diets has grown largely due to claims published in such books as “Wheat Belly” by William Davis, “Grain Brain” by David Perlmutter and in the news media, asserting that wheat products are the cause of most health problems. Such claims counter current medical and nutritional advice in international dietary guidelines established in conjunction with the Food and Agriculture Organization (FAO) and the World Health Organization (WHO).

Javier Peña, wheat quality specialist CIMMYT examines bread with nutritionist Julie Miller Jones in the wheat quality laboratory at CIMMYT. Jones presented a talk on nutrition and wheat at the Center. Photo: CIMMYT

“Gluten-free” is a burgeoning industry. Sales have risen 63 percent since 2012, with almost 4,600 products introduced last year, according to “Consumer Reports” magazine.

This is an alarming trend for such nutritionists as Miller Jones, who was also at CIMMYT to discuss the outline for a series of research papers on the various aspects of grain carbohydrates, gluten and health.

“‘Gluten-free’ is actually just another low-carb diet with a hook – any diet that suggests abandoning an entire food group is unhealthy,” said Miller Jones who recommends the DASH diet, which is rich in fruits, vegetables, low fat or non-fat dairy products, whole grains, lean meats, fish, poultry, nuts and beans.

Read the full story here.

Further reading
CIMMYT Review Paper:
Anti-Wheat Fad Diets Undermine Global Food Security Efforts

Safeguarding seeds against agricultural risks

Jill Cairns Photo credit: FarmD
Jill Cairns
Photo credit: FarmD

A webinar on Strengthening and Enhancing Seed Systems to Better Manage Agricultural Risk, was presented by Dr Jill Cairns (pictured), Crop Physiologist at the International Maize and Wheat Improvement Center (CIMMYT) based in Harare, Zimbabwe.

We caught up with Jill today, a day before her webinar.

Whom would you really like to see at this seminar?
Mainly people working – or interested – in agriculture, climate change and risk management in sub-Saharan Africa.

What would you like the take-home message to be?
That inadequate rainfall depresses and destabilises yields in sub-Saharan Africa. One could say that is a truism. However, beyond this doom and gloom there is good news. CIMMYT in collaboration with IITA and partners in participating countries has developed drought-tolerant seed which is already having impact in farmers’ fields.

[widgetkit id=31]

What inspired the idea for this webinar?
A global connection actually. The World Bank has a forum called FARMD – Forum for Agriculture and Risk Management in Development. They approached Marianne Bänziger, CIMMYT’s Deputy Director General for Research and Partnerships, to present at a November 2014 FARMD conference on Managing Agricultural Risks in a Changing Climate in sub-Saharan Africa. The idea was to understand climate change and its implications for agricultural risk management. CIMMYT was approached because of its considerable experience in seed systems and conservation agriculture to reduce production vulnerability for maize in Africa.

And how and when did you – Jill – come into the picture then?
I represented Marianne at that World Bank conference. The presentation led to a lively discussion on the potential of drought-tolerant seed to reduce maize yield variability in Africa. There is a misconception that drought-tolerant maize yield lower in non-drought years and thus has negative production and economic consequences for farmers. However this is not true. The fact is that drought-tolerant maize yields as much as commercial varieties in farmers’ fields. And in many cases, it in fact yields more than current commercial varieties. FARMD approached me after the conference to present again to a wider audience, so here I am!

Related links:

Reaching out to smallholder farmers in Pakistan

CIMMYT entered an important new partnership with Pakistan’s National Rural Support Program (NRSP) on 7 November 2014 for wheat varietal evaluation, promotion and deployment, as well as on-farm agronomic interventions and community-based seed production enterprises.

A not-for-profit development organization established in 1991 that fosters a countrywide network of more than 200,000 grassroots organizations across 56 districts, NRSP enables rural communities to plan, implement and manage development programs for employment, poverty alleviation and improved quality of life. Through direct linkages with some 400,000 smallholder farming families, the organization will help extend the reach of the CIMMYT- led Agricultural Innovation Program for Pakistan (AIP),  according to Dr. Rashid Bajwa, chief executive officer of NRSP. “We can now jointly scale out to a vast number of smallholders with average daily earnings of less than  two dollars a day,” Bajwa said, mentioning the organization’s activities like microfinance enterprise development.

The work of Pakistan’s National Rural Support Program benefits millions of small-scale farmers and landless families. Photo: Mike Listman/CIMMYT.

Aiming to benefit the disadvantaged

The partnership paves the way for a new and different kind of innovation platform focusing on smallholders, tenants and the landless, female-headed households and vulnerable groups such as flood victims, said Muhammad Imtiaz, CIMMYT liaison officer for Pakistan and AIP Chief of Party: “This will contribute directly to the Center’s mission of improving the food security and resilience of those most at risk, not to mention opening avenues for other AIP partners to join hands in testing and promoting appropriate agricultural innovations.”

Taking advantage of NRSP’s gender-responsive approach, the partnership will work directly with and seek to empower women farmers, identifying wheat varieties and technologies that help increase their food security and incomes. Work will identify, test and deploy high-yielding and rust resistant wheat varieties across 23 districts and include improved farming practices for diverse settings from rain-fed to fully-irrigated.

A major focus will be to develop community-based seed enterprises linked with NRSP, small seed companies, farmer associations and seed regulatory bodies, serving remote villages that have heretofore lacked access to improved varieties.

“This will contribute directly to the Center’s mission of improving the food security and resilience of those most at risk” –Muhammad Imtiaz CIMMYT liaison officer for Pakistan and AIP Chief of Party

A group photo was taken at the NRSP inception meeting and staff training. Photo: Raja Zulfiqar Ali.

Getting Off on the Right Foot

A partnership inception meeting and staff training for NRSP were organized on 10 November in Islamabad, with 32 participants from NRSP and 11 from CIMMYT, including senior management from both the organizations, and with Malik Fateh Khan, NRSP Regional Manager, providing a welcome address.

Imtiaz Hussain, CIMMYT cropping systems agronomist, highlighted conservation agriculture technologies and their relevance for the partnership. Krishna Dev Joshi, CIMMYT wheat improvement specialist, discussed various types of varietal testing, including participatory varietal selection, mother-baby trials and on-farm demonstrations, to creating awareness and demand for improved seed among farmers. Three CIMMYT colleagues who also spoke at the event were: Shamim Akhter, AIP project manager; Amina Nasim Khan, communications specialist; and Ghazi Kamal, monitoring and evaluation specialist.

Honoring the life and legacy of Wilfred Mwangi, CIMMYT Agricultural Economist

WilfredMwangiThe CIMMYT community celebrates the illustrious life and mourns the passing on 11 December of Wilfred M. Mwangi, distinguished Kenyan scholar, statesman and researcher who dedicated his career to improving the food security and livelihoods of farmers in sub-Saharan Africa. In 27 years at CIMMYT, Mwangi made significant contributions both as a principal scientist and distinguished economist with authorship on nearly 200 publications, as well as country and regional liaison officer, associate director of the global maize program, leader of the Drought Tolerant Maize for Africa (DTMA) project and CIMMYT regional representative for Africa.

“He served CIMMYT with distinction for decades and was enormously important in promoting smallholder maize research in Africa,” said Derek Byerlee, retired World Bank policy researcher who led CIMMYT’s socioeconomics team in the late 1980s-early 90s and recruited Mwangi. “Even more, he was a great human being who was highly-respected throughout the region. Africa and the world are poorer for his loss.”

“My Mother Still Tells Me How to Farm”

Born in 1947, Mwangi grew up in Nakuru County, Kenya. He completed a B.A. in Economics and Rural Economy at Makerere University, Uganda, in 1972 and M.A. and Ph.D. studies in Agricultural and Development Economics at Michigan State University (MSU) in 1975 and 1978. Returning to Kenya, Mwangi eventually became a Professor and Chair of the Department of Agricultural Economics at the University of Nairobi. He joined CIMMYT in 1987.

His career included stints as Deputy Permanent Secretary and Director of Agriculture and Livestock Production in Kenya’s Ministry of Agriculture, Livestock and Fisheries, and as a World Bank economist. As Deputy Permanent Secretary, he served as part of a “dream team” of eminent figures convened in 1999 by Richard Leakey, then head of the Kenya Wildlife Service, at the behest of President Daniel arap Moi, to help reform government administration and procedures.

Mwangi’s research at CIMMYT analyzed Africa’s seed sector and farm input markets and measured and explained the adoption of improved crop varieties and practices, particularly characterizing the concerns and decisions of rural households. He contributed on several occasions to CIMMYT’s popular “Facts and Trends” series on wheat and maize research and global markets. In 2006 he was named Honorary Life Member by the International Association of Agricultural Economists (IAAE).

With typical modesty and humor, Mwangi once observed that: “Despite all my academic expertise and impressive career, my mother still tells me how to farm.”

Messages Praise a Legacy of Leadership, Mentoring and Passion

Knowledgeable in politics and with prominent policy contacts, Mwangi provided untiring and invaluable support for CIMMYT’s Africa-based partnerships and work to develop and promote better maize and wheat crop varieties and farming systems, particularly to benefit of the region’s hundreds of millions of smallholder farmers. “We have such a noble mission,” he once said, describing his love for his work at CIMMYT. “This is a calling; you’re working for the poorest of the poor.”

Mwangi mentored hundreds of young, national program scientists from Africa and elsewhere. He was particularly effective arguing in policy circles for a focus on small-scale farmers and improved agriculture to foster development, according to Thomas A. Lumpkin, CIMMYT director general: “Wilf put on a formal air when engaging his numerous high-level contacts throughout Africa, but it was easy to see through to his practicality and passion for serving resource-poor farmers. He touched the hearts of many, and many share the grief that he is no longer among us.”

Messages praising Mwangi’s life work have poured in from Africa and around the globe. “Wilfred was a straight, no-nonsense person whose door was always open to share ideas and provide advice,” said Richard B. Jones, Chief of Party for the “Scaling Seeds and Technologies Partnership” of the Alliance for a Green Revolution in Africa (AGRA). “He was passionate about his work and was always generous in praise of others who supported his mission.”

Mwangi would often express his dedication and wisdom in pointed insights to kindle change and ambitious action, according to Lumpkin. “Someone once said that leaders should be able to motivate and mentor and above all, leave a legacy,” Lumpkin observed. “Wilfred fit that description, and it falls to us to honor and carry forward his legacy.”

The CIMMYT community sends its heartfelt sympathy and prayers to Mwangi’s spouse, Mary, and children Mwangi, Wainaina, Kibiru and Wangui.

Mwangi will be buried in Nairobi on Tuesday, 23 December 2014. Family and friends will meet daily at the PCEA St. Andrews Church, junction of Nyerere and State House Roads, Nairobi, Kenya, during 16-19 December.

Improved maize to boost yields in nitrogen-starved African soils

Sub-Saharan African farmers typically apply less than 20 kilograms of fertilizer per hectare of cropland — far less than their peers in any other region of the world. In 2014, partners in the Improved Maize for African Soils (IMAS) project developed 41 Africa-adapted maize varieties that respond better to low amounts of nitrogen fertilizer and are up for release in nine African countries through 24 seed companies.

A farmer applies nitrogen fertilizer to her hybrid maize. Photo: CIMMYT/IMAS

After water, nitrogen is the single most important input for maize production; lack of it is the main constraint to cereal yields in Africa, in areas with enough rain to raise a crop. Year after year, infertile soils and high fertilizer prices (in rural areas as much as six times the global average) combine to reduce harvests of maize, sub-Saharan Africa’s number-one cereal crop and chief source of calories and protein for the poor. With funding from the Bill & Melinda Gates Foundation and the U.S. Agency for International Development (USAID) and led by the International Maize and Wheat Improvement Center (CIMMYT), an initiative launched in 2010 has made dramatic progress to address this by exploiting natural genetic variation for nutrient-use efficiency in tropical maize. “Partners have been breeding maize varieties that respond better to the small amounts of nitrogen fertilizer African farmers can afford to apply,” said Biswanath Das, CIMMYT maize breeder and coordinator of the Improved Maize for African Soils (IMAS) project. “We’re aiming to raise maize yields by 50 percent and benefit up to 60 million maize farmers in eastern and southern Africa.”

Smallholder Farmer Conditions: A Maize “Reality Check”

A public-private partnership that, along with CIMMYT, involves national research organizations such as the Kenya Agricultural & Livestock Research Organization (KALRO) and South Africa’s Agricultural Research Council (ARC), African seed companies and DuPont Pioneer, IMAS has advanced quickly in part because participants share breeding lines and technical knowhow, according to Das.

“But a real key to success – and a significant legacy of the project – is that IMAS has established in eastern and southern Africa the world’s largest low-nitrogen screening network for maize,” Das explained. “There are 25 sites in 10 countries and a total of over 120,000 experimental plots. Partners can test breeding lines and quickly and reliably spot the ones with superior nitrogen-use efficiency under smallholder farmers’ conditions.” According to Das, nearly a quarter of the plots are managed by seed companies, which recognize the value of nitrogen-use efficiency as a key trait for their farmer clients.

In an exciting 2014 development, regulatory agencies in eastern Africa began evaluating maize national performance trials — which varieties must pass as a prerequisite for release — under nitrogen stress in the IMAS network. “This is a clear recognition by policymakers of poor soil fertility as a critical constraint for African maize farmers,” said Das. “To meet farmers’ needs, IMAS varieties are also bred for drought tolerance and resistance to the region’s major maize diseases.”

Also Yielding Under Well Fertilized Conditions

Partners are augmenting conventional breeding with DNA-marker-assisted selection and use of “doubled haploids,” a high-tech shortcut to genetically-uniform maize inbred lines. Experimental breeding stocks thus developed are field tested under low-nitrogen stress through “high-precision phenotyping,” involving careful measurement of key traits in live plants.

Low nitrogen trials in Kiboko, Kenya, where new maize varieties are tested. Photo: CIMMYT/IMAS.

“In this way, we’ve quickly developed maize varieties that yield up to 50 percent more than existing varieties under low-fertility stress, characteristic of smallholder farming systems,” Das explained. “Crucially for farmers, these varieties also perform well under well- fertilized conditions, whilst several carry resistance to maize lethal necrosis, a devastating viral disease spreading through eastern Africa.” In 2014, 41 such varieties were nominated for release in nine countries in Africa, in partnership with 24 seed companies.

This year IMAS also worked with seed companies to support the production and dissemination of 3,000 tons of seed of nitrogen-use efficient maize hybrids in Kenya, Mozambique, Tanzania and Zimbabwe, potentially benefitting more than 120,000 smallholder maize farmers and helping to enhance food security for over half a million household members, according to Das. “Close collaboration with the private seed sector has been instrumental to IMAS since its inception,” Das said. “These partners host over a quarter of the regional nitrogen stress screening network and have helped with the quick increase of seed of nitrogen-use efficient varieties and with managing farmer demonstrations and field days to support the fast release of new varieties.”

A December 2014 report by the Montpellier Panel – comprising agricultural, trade and ecology experts from Europe and Africa – details the economic and ecological threats of degrading soils in Africa, and is highlighted in an 04 December BBC feature.

New wheat breeds can help avert food security disaster

new wheat breedsBy Sanjaya Rajaram

Wheat breeders involved in the monumental global challenge of ensuring food security for 9.5 billion people by 2050 face enormous hurdles.

Overall, we need to double the amount of food produced to meet demand as population grows steadily from just over 7 billion today, according to the World Bank.

Recent statistics from the U.N. Food and Agriculture Organization indicate that at least 805 million people are estimated to be chronically undernourished.

Wheat, a major staple crop, currently provides 20 percent of the overall daily protein and calories consumed throughout the world. Production must grow 70 percent over the next 35 years, according to the international Wheat Initiative – an achievable goal if annual wheat yields are increased from a current level of below 1 percent to at least 1.7 percent.

Governments and the private sector must more fully support research efforts into developing new wheat varieties or face the risk of further global insecurity related to price instability, hunger riots and related conflict.

Modern-day model

The prevailing vision of the “Father of the Green Revolution” Norman Borlaug, my great friend and mentor who died in 2009 at age 95, provides a sound scientific and humanitarian basis upon which we must build.

Borlaug, with whom I worked at the International Maize and Wheat Improvement Center (CIMMYT), was awarded the Nobel Peace Prize in 1970 because, more than any other single person of his era, he helped to provide bread for a hungry world.

The wheat varieties he developed are credited with saving 1 billion lives with the disease-resistant, high-yield semi-dwarf wheat varieties he developed. Previously, Borlaug had introduced similar innovations throughout Mexico – where CIMMYT is headquartered – leading to the country’s self-sufficiency in wheat.

When he accepted the Nobel Peace Prize, he claimed it on behalf of the “army of hunger fighters” with whom he had worked.

“I’m acutely conscious of the fact that I am but one member of that vast army,” he said in his Nobel acceptance speech. “I want to share not only the present honor but also the future obligations with all my companions in arms, for the Green Revolution has not yet been won.”

Two years after he won the Nobel Peace Prize, Borlaug stepped aside and appointed me head of the CIMMYT wheat breeding program where I spent most of my career fighting alongside other Green Revolutionaries developing resilient wheat varieties, except for the eight years I spent at the International Center for Agricultural Research in the Dry Areas (ICARDA).

Those wheat varieties are now grown on 58 million hectares (143 million acres) worldwide, contributing to the average 700 million metric tons (770 million tons) of wheat produced annually. We estimate these varieties provide wheat to more than 1 billion people a year.

At ICARDA, first as director of the Integrated Gene Management Program, then as special scientific advisor, I also oversaw the promotion of new technologies to help farmers in the Central and West Asia and North Africa (CWANA) region.

We developed wheat improvement strategies to tackle some of the challenges facing wheat in dry areas, including stripe rust disease, which can put wheat crops around the world at risk.

Ensuring results

The challenges we face today are vastly more complex than they were during Borlaug’s time, but they are not insurmountable.

Global objectives for food security can most definitely be met. However, we must be able to rely on guaranteed research funding from both the public and private sectors to address the many challenges we face, including decreasing land availability and erratic environmental changes related to climate change.

Researchers are developing wheat varieties tolerant to the drought, heat, extreme wet and cold conditions that impact wheat now and that are anticipated by scientists to grow more extreme as global average temperatures continue to warm and weather patterns become more volatile.

These efforts must be accelerated. Funding must cover training so that we can carry on the Borlaug legacy – if we do not have that capacity we will not be able to keep up with the demand for wheat and famine will be the result.

Combining biotechnology with conventional breeding methodologies can help both smallholder farmers and large corporate farm operations to avert potential disaster, but we need financial backing to conduct trials.

Moreover, we must address such wide-ranging concerns affecting wheat as soil health, disease resilience, seed diversity, water management, micronutrient imbalance and the impact of carbon emissions.

The world must wake up to the costs of these challenges and the price of not meeting them.

Sanjaya Rajaram is the 2014 World Food Prize Laureate for scientific research that led to an increase in world wheat production by more than 180 million metric tons (200 million tons). He worked at the International Maize and Wheat Improvement Center (CIMMYT) for 33 years.

This article originally appeared on the Thomson Reuters Foundation website as part of the 2014 Borlaug Dialogue co-hosted by the World Food Prize Foundation and CGIAR Fund. The op-ed series titled The Greatest Challenge in Human History: Sustainably Feeding 9 Billion People By 2050 highlighted how agricultural research and development are not only tied to food security and nutrition, but that they are also central to achieving many of the forthcoming U.N Sustainable Development Goals (SDGs).

Updated Web Wheat Atlas 3.0 prioritizes user experience

Wheat Atlas
Wheat at sunset at CIMMYT headquarters near Mexico City. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) — Got a question about wheat? Whether you are a scientist, a researcher or simply interested in learning more about the vital staple crop that provides 20 percent of the world’s calories, the Wheat Atlas can help.

The online resource developed by the Global Wheat Program (GWP) at the International Maize and Wheat Improvement Center (CIMMYT) provides statistics on wheat production and trade, wheat varieties, production challenges and international wheat nurseries, which evaluate the suitability of wheat to diverse environments.

“Although the primary users are wheat scientists, we know from anecdotal evidence that donors and policymakers are also using it,” said Petr Kosina, who led the development and recent revamp of the interactive website.

The Wheat Atlas was the brainchild of Hans Braun, GWP director, he explained, adding that the project evolved into a collaboration involving Kosina, web master Paul Moncada, senior scientist David Hodson and Tom Payne, head of the Wheat Germplasm Bank, which stores seeds. CIMMYT’s Geographic Information Services team created maps.

Improvements include a redesign of site structure and navigation based on user trends observed in data provided by Google Analytics and a 2013 survey. The website now features daily wheat news on the homepage.

“The work is ongoing,” Kosina said. “We’re in continuous ‘beta mode’, improving the functionality of the site and user experience. For example, we’re developing an online submission form for users to input data on newly released wheat varieties and a wheat scientists’ ‘hall of fame’. Before the end of the year we’ll also improve data visualizations.”

The website provides up-to-date information on new wheat varieties being released worldwide, as well as data from the U.N. Food and Agriculture Organization, the U.S. Department of Agriculture, the World Bank and the U.N. Development Programme.

Since the official launch of the Wheat Atlas in 2009, web traffic has increased to an average of 2,200 unique visitors a month, said Kosina, who works closely with webmaster Moncada.

“We’re very happy with recent access statistics, which have improved since the Search Engine Optimization we did earlier this year, but we need secure funding for bigger plans and development,” he said. “We need a new source of funding.”

The Wheat Atlas was supported until 2013 by the Durable Rust Resistance in Wheat project, which aims to reduce the devastating impact of stem rust disease on wheat, led by Cornell University.

The CIMMYT library has a large historic database of scientific publications with descriptions of new wheat varieties compiled over a 15-year time span, Kosina said.

“My dream is to consolidate this database with the Wheat Atlas and GRIS, the world’s largest database of wheat germplasm, with more than 160,000 accessions, and make it available online in the Wheat Atlas – this would be absolutely unique and smashing,” he added.

Every two years, the site managers gather information to provide a snapshot of the most important wheat varieties grown by farmers in developing countries, including acreage estimates. Mina Lantican in CIMMYT’s socio-economics program is conducting the 2014 review as part of an impact assessment study.

Ethiopia’s seed co-ops benefit entrepreneurs and smallholder farmers

ethiopia-seed
Farmer and social entrepreneur Amaha Abraham in a wheat field in Bishoftu, Ethiopia. CIMMYT/Julie Mollins

BISHOFTU, Ethiopia (CMMYT) — Farmer and social entrepreneur Amaha Abraham sets his sights high.

The 45-year-old aims to become as wealthy as Saudi Arabian-Ethiopian Mohammed Al Amoudi, who in March 2014 was estimated by Forbes magazine to have a net worth of $15.3 billion.

In an effort to achieve that goal Abraham is backing big reforms in Ethiopia’s agriculture sector.

He is at the forefront of a new grassroots seed marketing and distribution program supported by the Ethiopian Agricultural Transformation Agency (ATA) and the Ministry of Agriculture to improve the country’s wheat crop through the marketing of improved seed by multiple producers and agents.

Under the program, government-subsidized farmer-run cooperatives produce high-yielding, disease-resistant wheat seed, accelerating distribution and helping smallholder farmers grow healthy crops to bolster national food security.

About 50 farmers belong to each cooperative, planting about 100 hectares (250 acres) of government-certified seed, which produce improved wheat varieties they then multiply and sell to smallholder farmers. Seed sales garner a 15 to 20 percent price premium over wheat-grain sales, providing a significant financial incentive.

“I’ve reached so many farmers, so that their land will be covered by proper improved seeds,” Abraham said.

“When I take the seeds to them I give training and advice, which attracts more farmers to get involved. The government visits and organizes training on my land – they recognize my efforts and they’re pushing other farmers to do the same thing.”

STREAMLINED SYSTEMS

The Direct Seed Marketing (DSM) program is part of Ethiopia’s “Wheat Productivity Increase Initiative,” which aims to end the country’s reliance on wheat imports – equal to 1.1 million metric tons (1.2 million tons) or about 24 percent of domestic demand, which is 4.6 million metric tons in 2014, according to the Wheat Atlas, citing statistics from the U.S. Department of Agriculture.

Previously, the process of getting new wheat seed varieties to farmers was allocation based, with limited producers and agents and a limited choice of varieties, said Sinshaw Alemu, wheat and barley chain program analyst at ATA.

“It was a seed distribution system, not a seed marketing system,” Alemu explained. “DSM is based on the concept that the producers of the seed should be able to market and then sell it at the primary level and farmers will have their choice of seed.”

Farmers can now collect seeds from a certified agent – either a primary cooperative or a private outlet where a direct channel is established with seed producers, leading to timely deliveries and better estimates of potential demand. They can buy government-allocated seed as they did under the other system or the agent can now contact the seed enterprise and purchase additional wheat varieties at a farmer’s request with no fixed allocations in DSM.

“One of the issues in the previous system was that due to delays on demand estimations from woredas (district councils), the unions and primary cooperatives had little or no control over the kind and quality of seed allocated to them,” Alemu said.

“Primary cooperatives had to take it and seed remained unsold at the end of the planting season because either the variety or quality wasn’t what they were looking for – the primary cooperative was left with hundreds of quintals of seed and they had no use for it.”

“We tried the DSM in five woredas in 2014, and it was very successful – 97 percent of the seed delivered was sold and the remainder taken away – we’ve seen some very encouraging results in this area,” he added.

DISEASE THREAT

In recent years, Ethiopia’s wheat crop has been hit hard by stem and yellow rust epidemics, which at their worst can destroy entire crops. Rust infestation can lead to shriveled grain, yield losses and financial troubles for farmers, who must avoid susceptible wheat varieties.

The revamped seed marketing system can help get the new disease-resilient wheat varieties to farmers more efficiently, said David Hodson, a senior scientist based in Ethiopia’s capital Addis Ababa with the International Maize and Wheat Improvement Center (CIMMYT) who manages RustTracker.org, a global wheat rust monitoring system supported by the Borlaug Global Rust Initiative.

Rust Tracker generates surveillance and monitoring information for emerging rust threats. The information provides an early warning system for disease and can help farmers prepare for epidemics, which could otherwise wipe out their crops.

The Rust Tracker is funded by the Durable Rust Resistance in Wheat project, which is managed by Cornell University and supported by the UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation.

GENERATING GERMPLASM

CIMMYT, a non-profit research institute which works with partners worldwide to reduce poverty and hunger by increasing the sustainable productivity of maize and wheat cropping systems, plays a key role in providing germplasm to be tested and improved by government-run national agricultural research systems before it is potentially released to farmers.

Additionally, CIMMYT provides smallholder farmer training and skills development on such topics as crop management and agricultural practices. In Ethiopia, these activities, along with seed multiplication and delivery are being supported by a new $5.75 million grant from the U.S. Agency for International Development (USAID).

“CIMMYT supports Ethiopia’s agriculture research in a variety of ways including by training researchers, development agents and farmers skills on modern sciences and filling technical gaps by providing field and laboratory equipment, farm machinery, installing irrigation systems, modernizing breeding programs, improving quality of data, providing germplasm and project funds,” said Bekele Abeyo, a CIMMYT senior scientist and wheat breeder based in Addis Ababa.

“The government is now putting an emphasis on agriculture and the situation is far better and improving,” he said. “The structure and extension systems are there to help farmers – Direct Seed Marketing is making it easier to increase the availability of seeds and complements more traditional public seed.”

Adopting improved wheat varieties increases the number of food secure households by 2.7 percent and reduces the number of chronic and transitory food insecure households by 10 and 2 percent respectively, according to CIMMYT scientist Menale Kassie, one of the authors of “Adoption of improved wheat varieties and impacts on household food security in Ethiopia.”

Ethiopia’s wheat-growing area in 2013 was equivalent to 1.6 million hectares (4 million acres), and the country produced 2.45 metric tons of wheat per hectare, according to the country’s Central Statistical Agency.

VENTURE EVOLVES

In 2013, Abraham harvested about 250 quintals (25 metric tons) of the Digalu wheat seed variety near Bishoftu, a town formerly known as Debre Zeyit in the Oromia Region situated at an altitude of 1,900 meters (6,230 feet) 40 kilometers (25 miles) southeast of Addis Ababa.

Abraham is optimistic. He expects he will soon be able to hire many employees, as he plans to expand his agricultural interests to include beekeeping, dairy cattle, poultry and livestock, he said.

“My main aim is not only to earn more money, but also to teach and share with others – that’s what I value most,” he said. “Regardless of money, there are certain people who have a far-sighted view and I want them to be involved. That’s what I value – I’m opening an opportunity for others and envisioning a far-sighted development plan.”

He still has a way to go before he catches up with Al Amoudi, ranked by Forbes as the 61st wealthiest person in the world.

RECOMMENDED READING:

Adoption of improved wheat varieties and impacts on household food security in Ethiopia

Global wheat-rust research aids Ethiopian farmers

global-wheat-rust-research
Like many other farmers in Ethiopia, Abdela and Bayisu Kadir grew kubsa wheat variety until it succumbed to disease. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) — Until a few years ago, farmers Abdela and Bayisu Kadir grew “Kubsa,” a semi-dwarf bread wheat variety on their small landholding in the Ethiopian highlands known as the Roof of Africa.

The couple manage a 3-hectare farm, which is situated at an elevation of 2,400 meters (7,874 feet) in the Arsi region about 175 kilometers (110 miles) southeast of the capital Addis Ababa.

Kubsa, just one of 480 wheat varieties bred by 2014 World Food Prize laureate scientist Sanjaya Rajaram during his 40-year career, has had a long and successful run since it was first released in 1995.

The variety, developed by Rajaram at research stations operated by the International Maize and Wheat Improvement Center (CIMMYT), came from the high-yielding Atilla wheat breeding line he created in 1990.

By 2010, Kubsa was grown on 250,000 hectares (620,000 acres) of cropland in Ethiopia. Over time, as wheat rust disease fungi have mutated in the region, Kubsa has become vulnerable to yellow rust and stem rust, which can devastate crops leading to shriveled grain, yield losses and financial troubles for farmers.

“After yellow rust disease began to appear in our crop a few years ago, we switched to the Kakaba wheat variety,” said Bayisu Kadir, who has six children.

“Last year Kakaba gave us more than 5 (metric) tons of wheat per hectare (75 bushels per acre),” she added, explaining that her husband had sprayed their crop with fungicide to protect it from potential damage.

By 2012, the CIMMYT-derived variety Kakaba covered more than 200,000 hectares in Ethiopia, according to the online Wheat Atlas, and so far remains resistant to yellow rust.

CIMMYT is a member of the Borlaug Global Rust Initiative, an international consortium of more than 1,000 scientists from hundreds of institutions that works to reduce vulnerability to mutating rust diseases. CIMMYT continuously produces high-yielding disease-resistant wheat varieties.

BACKBONE GENES

Atilla, called Kubsa in Ethiopia, is a family of wheat varieties released by governments under different names in various countries. Its two main sister lines were widely adopted around the world.

One sister line, which became the leading variety for over a decade in the bread basket region of northwestern India, contains a combination of resistance genes including Sr31, Yr9 and Yr27, recognized by Rajaram as genes that provided resistance to both stem and yellow rusts.

The other sister variety carried the Yr27 gene and was widely cultivated in many wheat-growing countries. At one time, these two sister varieties were grown on about 8 million hectares throughout Africa, the Middle East and South Asia.

Overall, Rajaram’s adaptable, high-yielding wheat varieties are grown on more than 58 million hectares worldwide. He is credited with producing 480 wheat varieties, which have boosted worldwide yields by more than 180 million tons. These increased yields provide food to more than 1 billion people each year.

He also developed aluminum-tolerant varieties together with Brazilian researchers that were planted in acid soils, areas previously unable to grow wheat.

“Rajaram’s varieties led to more yield and better income for farmers, less yellow rust disease and less chemical application,” said Zuo Yuchun, a professor at the Sichuan Academy of Agricultural Science in China who collaborated with Rajaram for more than 20 years.

Rajaram is the 2014 World Food Prize Laureate for “advancing human development by improving the quality, quantity or availability of food in the world.” He received the award at the World Food Prize ceremony on October 16 in Des Moines, Iowa.

VITAL STAPLE CROP

Globally, wheat provides 20 percent of the world’s daily protein and calories. Production must grow 60 percent over the next 35 years to keep pace with demand, according to the Food and Agriculture Organization of the United Nations.

“The prodigious increase in wheat production through Dr. Rajaram’s work is a furtherance of the success of the ‘Green Revolution’,” said molecular scientist Kameswara Rao, formerly with India’s University of Agricultural Sciences in Dharwad and currently chair of the Foundation of Biotechnology Awareness and Education.

“The wheat varieties developed by Dr. Rajaram have been grown by both small- and large-scale farmers across a diverse range of agricultural environments in 51 countries, contributing to an enhancement of food security.”

The late CIMMYT scientist Norman Borlaug, who mentored Rajaram, led efforts to develop semi-dwarf wheat varieties in the mid-20th century that helped save more than 1 billion people in the developing world in what became widely known as the Green Revolution. Borlaug was awarded the 1970 Nobel Peace Prize for his work and subsequently initiated the World Food Prize.

INNOVATIVE BREEDING

Rajaram joined CIMMYT, which aims to sustainably increase maize and wheat productivity to ensure global food security and reduce poverty, in 1969. As head of CIMMYT wheat breeding, Rajaram increased yield potential 20 to 25 percent.
During his career, Rajaram visited farmers groups and cooperatives to teach them about new technologies, said Arun Joshi, CIMMYT senior wheat breeder for South Asia. He taught them tillage and seeding techniques.

“Rajaram’s participatory approach brought confidence among the farmers and they took more interest in their agriculture and new technologies,” Joshi said.

“Training was mostly delivered as roving seminars organized in farmers’ fields before the start of sowing, during sowing, about a month after sowing and at crop maturity. Such initiatives generated new leadership among farmers and helped faster dissemination of technology among less privileged farmers.”

Although Rajaram retired from CIMMYT in 2003, he continues to help train new wheat breeders.

“We’re grateful for the hundreds of new varieties of wheat that Dr. Rajaram has developed,” said U.S. Secretary of State John Kerry.

“These will deliver more than 200 million more tons of grain to global markets each year and Dr. Rajaram has helped to feed millions of people across the world through his lifetime of research and innovation.”

Q+A: Young scientist wins award for “Taking it to the Farmer”

Taking-it-to-the-Farmer EL BATAN, Mexico (CIMMYT) — Conservation agriculture, which improves the livelihoods of farmers by sustainably boosting productivity, is becoming a vital part of the rural landscape throughout Mexico and Latin America, leading to a major World Food Prize award for Bram Govaerts.

As associate director of the Global Conservation Agriculture Program at the International Maize and Wheat Improvement Center (CIMMYT), Govaerts works with farmers to help them understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields, increase profits and protect the environment.

Govaerts, winner of the 2014 Borlaug Field Award , played a major role in developing a Mexican initiative known as the Sustainable Modernization of Traditional Agriculture (MasAgro), and in June 2014 the 35-year-old assumed leadership of the project, spearheading the coordination of related initiatives throughout Latin America.

According to Govaerts, there are two choices – “Either agricultural production is going to grow in unsustainable ways, depleting our resources, or we take action now, investing in sustainable agriculture so that it can be a motor for growth as well as a motor for sustainable development.”

MasAgro is a partnership led by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food and CIMMYT involving more than 100 agricultural research organizations. It offers training and technical support for farmers in conservation agriculture and gives them access to high-yielding, conventionally bred seeds.

The overall aims of MasAgro include raising the yield potential of wheat by 50 percent and increasing Mexico’s annual production by 350,000 tons (318,000 metric tons) in 10 years. Goals also include raising the production of maize in rainfed areas.

MasAgro’s “Take It to the Farmer” component was inspired by a statement made by the late CIMMYT scientist Norman Borlaug who won the Nobel Peace Prize in 1970. He believed that scientists should work closely with farmers, an idea central to CIMMYT’s overall approach to agricultural research and practice. Borlaug led the development of semi-dwarf wheat varieties in the mid-20th century that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world. He also founded the World Food Prize .

“Take it to the Farmer” integrates technological innovation with small-scale farming systems for maize and wheat crops, while minimizing harmful impacts on the environment. Farmers on more than 94,000 hectares (232,280 acres) have switched to sustainable systems using MasAgro technologies, while farmers on another 600,000 hectares are receiving training and information to improve their agricultural techniques and practices. Techniques include crop diversification, reducing tilling of the soil and leaving crop residue on the fields.

Govaerts, who has also worked on conservation agriculture projects in Ethiopia and India, discussed his work after winning the award.

Q: What inspired the “Take it to the Farmer” component of the MasAgro project?

A: The strategy stemmed from the fact that there’s a great deal of information out there today for farmers, starting with seed varieties. Farmers have many choices to make about technology to increase productivity, but they need to understand how to integrate it and make it sustainable. We work closely with farmers to develop conservation-based agricultural systems so that they can generate high, stable crop yields over time. Doing this offers farmers the best opportunity for higher incomes, but also lowers environmental impact.

MasAgro helps the farmers develop an agronomic system – including the technology. In that way it’s not so much taken to the farmers, but it’s developing a system together with the farmer. We innovate with the farmers and connect them to a working value chain and we then combine what we call our hub approach. We’re connecting research platforms with farm innovation modules and from there we develop systems influenced by farmer knowledge.

Q: Is it possible for this to work on any farm in any location?

A: The key is to adapt to the specific locations of each of the farmers. We have to make the strategies work for specific farming and then on top of that we need to include other technologies to make it work. Technology might simply be hand-planting, not necessarily high-tech huge machinery. It is really about establishing basic conservation agriculture principles and working together to make those basic principles work.

Q: Are you trying to help farmers achieve their agricultural goals by helping them save money by not spending on fertilizers?

A: It depends; if you’re in an area where farmers are over-fertilizing it helps to reduce costs if they don’t use fertilizers as much. On the other hand, some farmers are not using fertilizers at all so there we recommend using them in an integrated manner. There might be areas where production costs go up slightly because farmers were not investing in any inputs or technologies, but because productivity is increased in the end they have a higher return on investment.

Q: Can you give an example of a farmer who has changed practices?

A: Some smallholder farmers in Oaxaca, Mexico, are improving their production practices as they raise the local [indigenous] maize landraces. We connected them with a niche maize market in New York City. They are now exporting and selling their specialty maize to chefs in New York who use them in high-end restaurants. So they are not only increasing productivity, they are also connected to markets to sell their extra produce. The challenge now is to take this effort to scale. What we realized is that by only increasing productivity, we’re actually bringing the farmers into a risky situation unless they can find bigger markets.

We helped a novice wheat farmer who is renting land. He’s been adjusting his farming system and is now using conservation agriculture technology. As a result, because he has a slower turnaround time, when he planted his summer crop, instead of planting only 100 hectares, he jumped to 350 hectares. In a strict sense, he was not a smallholder farmer, but we work with big and small farmers.

Another example is the use of mobile phones – farmers can subscribe to a short message service, or SMS text-messaging system. Once subscribed, the farmer receives information on different topics, including technical recommendations or warnings. For example, one of the warnings we sent out during the wheat-growing season was that there was going to be an imminent frost. That led to some of the farmers irrigating their crops because that helped mitigate the damage and saved part of their crops.

Q: What challenges do you face?

We’re working with more than 150 institutions and organizations and we’re connected to more than 200,000 farmers. When Dr. Borlaug was working the world was simpler, we not only have to increase yields but we also have to work in an environmentally friendly manner. We also have to provide environmental services via agriculture and we have to make sure that farmers have sufficient income and this in a complex, institutional.
We can no longer accept that we’re just doing the science and then leave it up to others to apply the science. That’s not how it works – we scientists need to ensure that the technology is actually implemented and that it is expanded by new ideas from farmers, technicians and others along the value chain. We need to take responsibility that our knowledge and science is used and is responding to a real need. Public and private investment in agriculture should increase, especially in Latin America because it’s going to be a motor of transformation.

Q: How do you encourage farmers to change their practices?

A: We do a lot of training. In some areas our first step is bringing new seeds – connecting seed companies with a new variety CIMMYT has developed, making sure the seed system is working. There are some interventions that are rather linear – one-shot interventions. There are methods that from the beginning are going to be complicated and the farmer has to wait five years before changes are seen. That’s quite difficult, but if you can show an intervention where the farmer can store maize better and instead of losing 40 percent he’s only losing 10 percent during storage, that’s an intervention that can then start the dialogue to a more complicated system change. Much of our focus is on knowledge exchange, as well as in training and innovation.

Q: What is the significance of your award for Mexico?

A: The award has a special significance for Mexico. It recognizes Mexico’s bold decision to invest in agricultural innovation and to take responsibility not only for the country but for the region. We are proud of CIMMYT’s achievements within its host country.
Before CIMMYT’s collaboration with the Mexican government there was a real disconnect between agricultural science and the reality of farmers on the ground. As a result, this award is not only a recognition of scientific excellence, but the importance of getting the results out to the farmers. Mexico is a complex country.

Here we have all types of farmers – from large commercial farmers who exploit market opportunities for export to smallholder farmers who do not have access to markets. Mexico also hosts a wide range of unique agro-ecological environments. These circumstances offer CIMMYT scientists a unique laboratory to conduct their research and gives us an opportunity to explore new ways of doing science and connecting with farmers to ensure that science has impact.

Q: This year the World Food Prize Borlaug Dialogue was titled “Can we sustainably feed the 9 billion people on our planet by the year 2050?” What are your thoughts on the topic?

A: This is not just a numbers game. We will need to feed more than 9 billion people while working in a more complicated institutional and political environment and at the same time safeguarding natural resources. These global challenges are moving at a fast pace, so CIMMYT needs to move fast and expand its scientific excellence. We are at a turning point where we have to take advantage of these rapid changes in science and technology, which are becoming increasingly interlinked.

Working to help provide nutritional food for 9.5 billion people will be a collective effort. There won’t be one Norman Borlaug but a consortium of people working together with different expertise to achieve this goal. This will require new collaborations, especially public-private partnerships. CIMMYT is one of the best institutions to create these partnerships but we need to be better equipped for what is needed at this time. Complacency and living in the past is not an option.