Skip to main content

CIMMYT–SARO@30

Targeting increasing farm-level food security and productivity to mitigate the effects of climate risk and change: Through the SIMLESA Project, smallholder farmers practice sustainable intensification principles, such as zero or minimum tillage, maize–legume intercropping, and maize–legume rotations. In the photo, Mr. Ringson Chitsiko (standing), Permanent Secretary (PS), Ministry of Agriculture, Mechanisation and Irrigation Development, officially opens CIMMYT–SARO's 30th anniversary celebrations. On  the extreme left is the International Livestock Research Institute’s Representative for Southern Africa, Dr. Sikhalazo Dube. To the PS’s left is the Principal Director in the Department of Research and Specialist Services, Mrs. Denisile Hikwa. Dr. Olaf Erenstein (in striped shirt), Director of CIMMYT’s Socioeconomics Program; and partly in the picture is Dr. Eric Craswell, SIMLESA Project Steering Committee Member.
Targeting increasing farm-level food security and productivity to mitigate the effects of climate risk and change: Through the SIMLESA Project, smallholder farmers practice sustainable intensification principles, such as zero or minimum tillage, maize–legume intercropping, and maize–legume rotations. In the photo, Mr. Ringson Chitsiko (standing), Permanent Secretary (PS), Ministry of Agriculture, Mechanisation and Irrigation Development, officially opens CIMMYT–SARO’s 30th anniversary celebrations. On  the extreme left is the International Livestock Research Institute’s Representative for Southern Africa, Dr. Sikhalazo Dube. To the PS’s left is the Principal Director in the Department of Research and Specialist Services, Mrs. Denisile Hikwa. Dr. Olaf Erenstein (in striped shirt), Director of CIMMYT’s Socioeconomics Program; and partly in the picture is Dr. Eric Craswell, SIMLESA Project Steering Committee Member.

On March 18, CIMMYT Southern Africa Regional Office (SARO) celebrated 30 years of agricultural research and development.

The colourful ceremony, held amid pomp and fanfare, was attended by more than 300 people representing donors, non-governmental organizations, research institutions, Zimbabwe government departments, seed companies and farmer associations. The celebration included an on-station tour, with CIMMYT–SARO showcasing its work.

CIMMYT–SARO has been operating in Zimbabwe since March 1985 with the support of the government of Zimbabwe, and other public and private-sector partners, including the University of Zimbabwe and the Department of Research and Specialist Services. In Zimbabwe, CIMMYT conducts experiments at its main station, as well as at Muzarabani and Chiredzi sub- stations. There are also on-farm trials across the country.

Officially commemorating CIMMYT–SARO’s 30-year anniversary (SARO@30), Zimbabwe’s Minister of Agriculture, Mechanisation and Irrigation Development, Dr. Joseph Made, said, ‘’The regional office has been focusing on developing new maize varieties adapted to smallholder farmers in Zimbabwe and the mid-altitude agroecologies in sub-Saharan Africa. Since then, the office has expanded to include development of research technologies for conservation-agriculture systems, sustainable intensification of production of smallholder farms and postharvest research activities.”

Stay on course, but also look beyond yield
In a speech read on his behalf by Mr. Ringson Chitsiko, the Ministry’s Permanent Secretary, Made applauded CIMMYT’s research work on developing a stock of maize since this was a major staple in the country, and beyond. Although CIMMYT and its partners had introduced various technologies for increasing yields, the Center had to develop more technologies to mitigate the effects of climate change and other challenges.

The minister advised: “CIMMYT needs to work harder and be alert, especially in the face of the ever-growing population, climate change and variability, and new threats through maize diseases and pests. I urge CIMMYT to continue pursuing its mandate for the benefit of the Southern African region.”

In support of this goal and in recognition of CIMMYT’s sustained presence and commitment to the SADC region and Zimbabwe, the Zimbabwe government in 2012 renewed the Host Country Agreement, according CIMMYT–SARO diplomatic status. ‘’We are jointly working towards signing a new collaborative agreement to strengthen maize research to combat a new threat in the form of maize lethal necrosis [MLN] disease recently discovered in East Africa and which has a potential to wipe out an entire maize crop if it spreads to Southern Africa,’’ Made said.

MLN caused 100 percent crop loss for some Kenyan farmers between 2011 and 2012, and cases were also reported in Uganda and Tanzania.

Speaking at the same occasion, Dr. Olaf Erenstein, Director of CIMMYT’s Socioeconomics Program who represented Dr. Thomas Lumpkin, CIMMYT Director General, said CIMMYT, since its establishment in Mexico in 1966 currently has 13 representative offices around the world. Its mandate and mission is to sustainably increase the productivity of maize and wheat systems to ensure global food security and reduce poverty. The regional office, he said, is serving its purpose in contributing to increasing food security.

Just one year shy: John Chifamba (foreground, in blue shirt, and cap, facing the camera), receives his long-service certificate. With 29 years of service under his belt, he’s been with CIMMYT–SARO for almost as long as it has existed.

‘Easy Friday’: Reflect, Celebrate, Play, Plan for The Future
As part of the continued celebrations, March 27 was ‘Easy Friday: CIMMYT–SARO hosted a luncheon and sports day for its staff. Thirteen long-serving employees who served for between 15 and 29 years were honored for their commitment. The employees were from administration, finance, Global Maize Program and Conservation Agriculture Program.

Sixty-two year-old Mr. John Chifamba, a recorder who has worked for CIMMYT for 29 years, said, “CIMMYT is my home. I have gained considerable on-the-job experience in maize research. “Any plans of leaving CIMMYT?” To this, Chifamba said an emphatic no. “Very soon, it will be retirement time and I will find a plot to utilize the good agricultural practices I have seen and learned at CIMMYT.“

Joining hands: From Zambia to Afghanistan
Mekuria continued: ‘’Our partnership approach will give us more capacity to meet with our constituents at the highest level, strengthening our relationships with governments as they formulate the most effective agricultural policies for the good of their people and natural resources.”

CIMMYT says ‘Thank You!’ CIMMYT–SARO staff who have served the Center for between 15 and 29 years each received a long-service certificate, which they display here.

CIMMYT–SARO is part of the world’s largest public drought and low nitrogen stress research network. Every year 500,000 envelopes of maize seeds are sent to over 70 institutions worldwide. The demand for CIMMYT–SARO maize germplasm extends from Zambia to Afghanistan.

During the past 10 years, sustainable intensification strategies based on the principles of conservation agriculture (CA) have been successfully promoted in Malawi, Mozambique, Zambia and Zimbabwe. Making use of the combined benefits of minimum soil disturbance, crop residue retention and crop rotation, CA increases yields when compared to conventional agricultural practices after two to five cropping seasons. Trials on farmers’ fields in Malawi, for example, increased yields by 20 to 60 percent. In Zambia and Zimbabwe, yields were increased by almost 60 percent using animal traction CA technologies.

Major highlights during the 30 years existence of CIMMYT in Zimbabwe include the development and release of more than 50 maize hybrids and open pollinated varieties (OPVs) adapted to drought-prone regions. These new varieties are expected to benefit almost 12 million people, helping to enhance food security, increase livelihoods and reduce poverty in Southern Africa.

CIMMYT’s seed system activities and support in training and technical assistance have led to the emergence of smaller domestic seed companies in the various Southern African countries. Farmers’ access to seed has improved. In addition, the Center has trained more than 200 technicians and graduate students through short- and long-term training in their various disciplines. Nearly 30 percent of these trainees are women. Trainees are drawn from southern Africa, the rest of Africa, and beyond.

Mexico meeting outlines scientific roadmap for increasing wheat yields

International scientists attending a meeting in Ciudad Obregon, Mexico, plotted out how current and potential research projects around the world could boost wheat yields to meet population and climate pressures. CIMMYT/Julie Mollins
International scientists attending a meeting in Ciudad Obregon, Mexico, plotted out how current and potential research projects around the world could boost wheat yields to meet population and climate pressures. CIMMYT/Julie Mollins

CIUDAD OBREGON, Mexico (CIMMYT) — Mexico aims to boost domestic wheat production 9 percent to 3.6 million metric tons by 2018, said a government official speaking on Tuesday at a conference in the town of Ciudad Obregon in the northern Mexican state of Sonora.

Productivity will increase as a result of growing investment in infrastructure, machinery, equipment and technological innovations, said Sergio Ibarra, Sonora delegate of the country’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA).

“The strategic vision of the Mexican government is to promote an agricultural landscape that supports a productive, competitive, profitable, sustainable and fair agri-food sector to ensure food security,” Ibarra said, addressing 75 international scientists and wheat breeders attending the International Wheat Yield Potential Workshop hosted by CIMMYT.

The Mexican government has a long and storied tradition of working alongside CIMMYT, which developed improved varieties of wheat under the leadership of the late Nobel Peace Prize winner Dr. Norman Borlaug, helping the country become self-sufficient in grain production in the 1960s. Currently, demand for wheat in Mexico outstrips the domestic supply produced.

One collaborative project, the Sustainable Modernization of Traditional Agriculture, led by SAGARPA and known locally as MasAgro, helps farmers understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields and sustainably increase profits.

ENVIRONMENTAL PRESSURES

Delegates at the Wheat Yield Potential Workshop, held from 24 to 26 March, plotted out how current and potential global research projects could dovetail under the International Wheat Yield Partnership (IWYP), a public-private partnership focused on developing new high-yielding varieties of wheat.

Findings in a report released last year by the Intergovernmental Panel on Climate Change (IPCC) state it is very likely that heat waves will occur more often and last longer throughout the 21st century and rainfall will be more unpredictable. Mean surface temperatures could rise by between 2 to 5 degrees Celsius or more, the report said. Current crop models show scenarios of the impact of rising temperatures on wheat varieties, which provide 20 percent of calories and protein consumed worldwide.

“Models indicate that a 2 degree increase in temperature would lead to a 20 percent reduction in wheat yield; a 6 degree increase would lead to a 60 percent reduction,” said Hans Braun, head of CIMMYT’s Global Wheat Program and the Consultative Group for International Agricultural Research Research Program on Wheat. “The consequences would be dramatic if we had a 40 percent yield reduction because we already know wheat production has to increase by 60 percent to keep up with population projections,” Braun said. “If we add modeled climate risks, the challenge is compounded, and we’ll need to double the yield capacity of our current varieties.”

“CIMMYT has demonstrated that the rate of improvement in yield gain has slowed to the point that, if it carries on the present rate, we’ll have a large gap between the amount of available wheat and what we need to feed the population,” said Steve Visscher, international deputy chief executive at Britain’s Biotechnology and Biological Sciences Research Council (BBSRC). The Council is the largest financial contributor to IWYP, which has so far secured 50 percent of the $100 million in funding it seeks to develop higher yielding wheat varieties.

“The sooner we act, the greater the chances are that we can close the gap between forecast demand and the availability of wheat,” Visscher said. “The scale of that challenge means that we need an international community effort, and the work on wheat yield that CIMMYT has initiated has now been taken forward through IWYP. I pay tribute to the role of SAGARPA and the Mexican government for backing CIMMYT and providing funding in recent years.”

Rothamsted Research in the UK is trying to meet the wheat food security challenge through a program to increase the yield of wheat to 20 metric tons per hectare within the next 20 years.

“Given that the UK record yield is currently 14.3 tons, that’s a big, big target,” said associate director Martin Parry, whose work aims to boost wheat photosynthesis, leading to increased yields.

“There are big risks both in terms of food security and political stability– it’s critical that the world’s population has enough food to eat– we need to work in a collegial, collaborative way, and IWYP offers an ideal opportunity to do that,” Parry said.

KALRO and CIMMYT: cementing a longstanding relationship

All this week, CIMMYT headquarters in Texcoco, Mexico, has the honor of hosting Dr. Eliud Kireger, the Acting Director General of the Kenya Agricultural and Livestock Research Organization (KALRO). Today, we sit with him for a candid conversation on crop research in Africa.

According to Dr. Kireger, one of the burning issues in agriculture today in Eastern and Southern Africa is “low productivity per unit area. The increase we’ve seen in yields across different countries is largely due to expansion in land area.” He attributes this low productivity per unit area to lack of technologies and knowledge that can boost productivity. This dearth translates itself in many ways such as not using fertilizers, improved seed or mechanization.

Another key factor hampering production is climate change, which in Eastern and Southern Africa manifests itself mainly through drought, floods, frost and hail. “There is also an increase in new pests and diseases, as well as postharvest losses, low value addition and lack of regulated markets which erodes the incentive to work hard and produce more. All these are the issues we need to address in our research and development agenda,” Dr Kireger says.

Finance and romance
The crunch in all this is low funding for the agricultural sector. African heads of state committed to devoting a minimum of 10 percent of their national budgets to agriculture in the 2003 Maputo Declaration. Not only have few nations honored this commitment, it is also a disadvantageous relationship, as Dr Kireger reveals. “For example, in Kenya, agriculture accounts for 30 percent of the GDP but the exchequer allocates less than two percent to agriculture, and even less to research. We therefore rely on our partners and collaborators in funding most of our research and development work, and that is where partners like CIMMYT come in to help us bridge the gap by accessing funding we would not otherwise have got, by training our scientists, and by helping us obtain high-quality germplasm.”

Dr. Eliud Kireger (left), KALRO Director General, in deep discussions with CIMMYT scientists during his visit to CIMMYT headquarters. He was accompanied by Stephen Mugo (right), CIMMYT’S Regional Representative for Africa and also country representative for Kenya. Dr. Kireger also met with CIMMYT's senior leadership.
Dr. Eliud Kireger (left), KALRO Director General, in deep discussions with CIMMYT scientists during his visit to CIMMYT headquarters. He was accompanied by Stephen Mugo (right), CIMMYT’S Regional Representative for Africa and also country representative for Kenya. Dr. Kireger also met with CIMMYT’s senior leadership.

But it is a reciprocal relationship between CIMMYT and KALRO, with CIMMYT too enjoying KALRO’s generosity through a rich potpourri of priceless resources – land for field and laboratory work; a robust nationwide network covering all corners of Kenya; immense social capital accumulated through time by a known, tested and trusted name; community mobilization; and local liaison with policy- and decision-makers on sensitive matters such as germplasm exchange and other weighty issues. “In Kenya CIMMYT does not have land, but since we work together, KALRO allows us to use their land for our work,” notes Stephen Mugo, CIMMYT–Africa Regional Representative and also Kenya Country Representative, who has accompanied Dr Kireger to CIMMYT Headquarters. “These are the benefits of synergy: ‘What you do not have, and I have, we share’. There is no single institution — working alone — that can be able to address all the challenges facing agriculture. From very early on, CIMMYT decided that the only way was to team up with national institutions and work together, so that CIMMYT-developed germplasm , know-how and technologies reach intended beneficiaries countrywide for the benefit of maize and wheat farmers. CIMMYT and KALRO jointly design common projects on clear and specific areas to improve maize and wheat, then seek funding for these projects to address drought tolerance, crop pests and emerging diseases.”

CIMMYT–KALRO MLN screening facility at KALRO's premises in Naivasha, Kenya.
CIMMYT–KALRO MLN screening facility at KALRO’s premises in Naivasha, Kenya.

One such emerging disease is maize lethal necrosis (MLN), which CIMMYT and KALRO are jointly tackling through ultra-modern shared facilities for MLN screeing and for doubled haploid (DH) technology that both stand on KALRO land. “With these facilities, we are able to screen a large volume of germplasm from both the public and private sectors. DH technology allows breeders to very rapidly— especially for cross-pollinated crops like maize — develop parental lines in about 18 months than can then be used to develop hybrids,” says Mugo. “With conventional methods, the same process could take anywhere between six and eight years. Once we identify maize types that are disease-resistant, drought-tolerant or good for low-nitrogen soils, we can fast-track them for rapid hybrid development. KALRO also facilitates exchange of germplasm — particularly important now in the face of MLN — by liaising with other government agents such as the Kenya Plant Health Inspectorate Service. This helps not only Kenya but also other countries, including both the public and private sector. By working together, institutions are able to solve problems that at first glance seem insurmountable,” Mugo observes.

KALRO and CIMMYT started working on climate-smart crops long before the term was coined. The goal was ‘insurance’ to increase production during drought. CIMMYT embarked on research from the late 1980s to increase production even when drought strikes. Collaboration with KALRO in this work started in the early 1990s, and did not stop there. “We now have a large network of research sites in Eastern and Southern Africa,” says Mugo.

The next frontier, and the future we need not fear if we prepare
Touching on genetically modified crops, Dr. Kireger laments “the negative publicity and misinformation on transgenics. To counter this, one of the first courses of action we are taking is making information available to the general public. Transgenic materials have the potential to resolve some of the problems that we have in Eastern and Southern Africa. We are working together with CIMMYT to provide information to the public because the largest fault-line is lack of information, which opens the door for misinterpretation. This hampers and dents the good work that is being done.”

Mugo concurs: “The only way to address this is for research institutions like KALRO and CIMMYT to provide the correct information, based on authoritative and impartial research findings, for informed public debate on benefits and risks, and how to mitigate risks. For example, research has shown the economic and environmental benefits of transgenic insect-resistant maize which eliminates pesticide use. This shows that transgenics can be deployed to solve problems that conventional means are at present unable to solve. One of these is the need to produce more food for an ever-increasing global population. To achieve this goal, we need to deploy all the technologies at our disposal, including transgenics.”

And switching emphasis from maize and headquarters to wheat and the field, Dr Kireger’s next stop in Mexico this week is Obregon, to get first-hand experience on CIMMYT’s work on this other crop that both institutes work on – not very common in Africa, as most of CIMMYT’s partnerships there focus exclusively on maize. Watch this space for more updates including videos!

And may this fruitful and mutually beneficial collaboration endorsed at the highest levels continue to grow from strength to strength!

Links:

SIMLESA’s seamlessly integrated solution to a perennial problem, but…

A maize–legume rotation exploratory trial in Tete Province, Mozambique.
A maize–legume rotation exploratory trial in Tete Province, Mozambique.

And what solution is this? That Southern Africa smallholder farmers can attain food security and more income through sustainable intensification of maize-based farming systems. This was revealed during recent field learning tours in Malawi and Mozambique.

The annual field tours, which ran from February 9–19, 2015, were organized by CIMMYT’s Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project. A total of 224 people (147 men and 77 women) visited 11 sites. The objectives of the field tours were twofold: to examine how the new experiments under SIMLESA Phase II were progressing, and to gather farmers’ feedback on some of the sustainable intensification research interventions.

SIMLESA’s farmer-tested improved maize–legume technologies were showcased during the learning tours. Smallholder farmers interacted with non-governmental organizations (NGOs) and private-sector partners who have shown a great interest in the SIMLESA outscaling approach using lead farmers and learning sites. Some of the sites promote smallholder agriculture development by linking farmers with buyers and agrodealers, and by providing access to credit and technical training.

SIMLESA tours key pointsIn Malawi, the field visits began at Kasungu District, with 16 farmers and technical staff from Mozambique who were on an exchange visit also participating. The group visited outscaling initiatives by the National Association of Smallholder Farmers of Malawi (NASFAM), in which maize–groundnut rotations and maize–pigeonpea systems are being implemented through lead farmers. More than 120 households per field learning site are participating in the demonstrations on each of the five NASFAM sites visited.

In the mid-altitude agro-ecological region of Malawi, new maize varieties have been introduced under SIMLESA Phase II as well as new groundnut and cowpea varieties, in addition to the previously tested soybean varieties in the core on-farm exploratory trials.

Conservation agriculture (CA) exhibited mixed fortunes and presented more opportunities for learning and information sharing. Due to the excessive rains experienced in January, maize on the conventional ridge and furrow farming systems was generally greener and taller than on the CA plots, although the positive rotation effects in CA were clearly evident from the healthy maize crop following soybeans. Also, some maize varieties under CA were more susceptible to diseases such as leaf rust and suffered more from pests such as white grubs which attacked maize roots.

The next stop in Malawi was Mitundu, Lilongwe District, with new crop establishment trials. Here, various new hand-planting tools were being tested, such as jab planters, the Li seeder or planting hoe and the Oklahoma State University (USA) green seeder – all in comparison to the conventional dibble stick and traditional hoe.

The use of a Li seeder has a lot of advantages, including enabling farmers to work faster and therefore saving time, and it does not strain the back,” said Mr James Segula, a smallholder farmer. The Li seeder simultaneously opens a hole in the ground, drops seed and fertilizer, and covers the hole.

Key lessons for the Mozambique and Malawi groups were timely weeding, right maize–legume crop varieties, correct use of fertilizers, residue application and appropriate and safe use of agrochemicals.

Transforming agriculture through technology: Mrs Grace Chitanje,one of the farmers in Mitundu District, Malawi, demonstrates how to use the Li seeder.
Transforming agriculture through technology: Mrs Grace Chitanje,one of the farmers in Mitundu District, Malawi, demonstrates how to use the Li seeder.

Crossing borders to Mozambique’s Angonia District, the group visited exploratory trials which included farmer-preferred maize varieties and the new maize–soybean intercrop system being tested for the first time. In SIMLESA Phase 1, common beans intercrop failed, hence the switch to soybeans. In the central region, members of the national innovation platform which brings on board NGOs such as Total Land Care, Manica Small-Scale Farmers and the Agência de Desenvolvimento Económico de Manica (ADEM) showcased the importance of partnerships. Innovation platforms are fora for information and knowledge sharing on agricultural development. Interesting differences in the tested maize hybrid and open pollinated varieties (OPV) included better leaf diseases tolerance from the hybrid Pristine, in contrast to early maturity characteristics from the OPV.

SIMLESA’s innovation platform is working with partners such as ADEM to facilitate farmers’ access to inputs, link them to financial institutions to access credit and connect them to markets for their produce. Mr Domingos Dias, SIMLESA–Mozambique National Coordinator, said: “We commend this approach of linking farmers to input suppliers and credit providers. Lessons learned, and experience gained over the years, indicate that training alone without market links is not profitable.”

Links: More on SIMLESA – in slides | project website

Happy Seeder, happy farmers: tillage in a single pass

Gulshad Nabi (Chand) is a progressive farmer from Chak Dahir, Tehsil Muridke in the Sheikhupura District of Punjab Province, Pakistan. He cultivates wheat and basmati rice, which constitute his family’s only source of livelihood. Heavy tillage and burning of rice residues are the common practices for growing wheat in the region, resulting in the loss of soil nutrients, air pollution and poor food security and livelihoods for farmers like Gulshad.

Farmer Chand sharing his experience with Sikandar Hayat Bosan (left), Pakistan’s Federal Minister of Food Security & Research.Photo: Amina Nasim Khan
Farmer Chand sharing his experience with Sikandar Hayat Bosan (left), Pakistan’s Federal Minister of Food Security & Research.
Photo: Amina Nasim Khan

The Agricultural Innovation Program (AIP), led by CIMMYT and funded by USAID, has begun testing with Punjab farmers the Zero-Tillage Happy Seeder, which sows wheat seed with fertilizer directly into the residues of the preceding rice crop in one pass and without tillage. “This practice offers a more sustainable and productive way to manage rice residues and raise wheat yields,” said Imtiaz Hussain, CIMMYT cropping systems agronomist. “It allows earlier sowing of wheat, which increases yields, and dramatically cuts the time, labor and fuel needed to plant wheat, which normally requires as many as seven tractor passes. Because the rice residues decompose on the soil rather than being burned, there is less pollution.”

In Sheikhupura District and in partnership with Engro EXIMP AgriProducts Private Limited, CIMMYT has promoted the seeder with 13 progressive farmers, including Nabi, who also received technical training in its use and in conservation agriculture practices and benefits.

After the training, Nabi used the seeder to sow wheat on just over three hectares without burning rice residues and saving more than 260 liters of diesel. At the Pakistan Agriculture Conference and Expo in Islamabad, Nabi described his experience to Mr. Sikandar Hayat Bosan, Federal Minister of Food Security & Research. “CIMMYT helped me improve my farming practices. The crop growth is great. Planting wheat with the Zero Tillage Happy Seeder is a new experience – a very modern practice that saves my time and resources,” said Nabi.

Gravity water flow project aids farmers in Ethiopian village

Photo credit: WaterAid/Guilhem Alandry
Photo credit: WaterAid/Guilhem Alandry

Farmers face a range of challenges related to crop production. Nguse Adhane, a smallholder farmer who lives in a small village in Ethiopia, collects his water from a spring source, which runs dry for months at a time.

Charity WaterAid and its partner Development Inter Church Aid Commission are building a gravity flow scheme, which will mean the 875 village residents will not have to depend on an unreliable water source.

Adhane, shown in this picture taken by Guilhem Alandry, has cattle and grows tomatoes, pepper, maize, teff, wheat, lentils and onions on his small farm.

“When I collect water from here for my crops, the roots become dry,” he said.

“There are worms in the water and this impacts on the crops. The cattle become distended after they drink the water as there are worms in it.

“Because there is no water, we cannot water our crops. We have a shortage of water. Our irrigations have been dry for a month now. The rains start in June.”

“If we have water, we will be very happy,” he said.

For more information, follow @WaterAid on Twitter

CGIAR gender specialists talk International Women’s Day

CGIAR gender specialists met at CIMMYT El Batán last week, 26 February – 1 March, to discuss the next steps in the global comparative field study of gender norms, agency and agricultural innovation. This team of principal investigators from MAIZE and WHEAT will conduct more than 70 cases globally by the close of 2015.

Gender specialists Dina Najjar (DN) of ICARDA, Amare Tegbaru (AT) of IITA and Anuprita Shukla (AS) of Glasgow Caledonian University discuss the cross-CRP gender study, International Women’s Day and women’s rights in the field and the work place.

 

Why do you think we still celebrate International Women’s Day today, and why do you think that it is still relevant?

AT: International women’s day is one of the greatest milestones—it’s a cry for justice, for fairness, for equality (as we articulate it), endorsed by the United Nations member states. The celebration is not only to show solidarity but also to remind us to renew our commitments—to make relevant the work and research we are doing in science to women, who are in fact constitute over 75% of the labor force in agriculture. It’s a way of questioning ourselves and what we’ve done so far and what we need to do in the future.

 

What obstacles do you see for women in the field in agriculture?

AS: I haven’t started field work yet, but from my previous experiences in Southeast Asia it is an extremely patriarchal society. The structural discrimination of women will be the hardest problem to address and it might take some time for women to internalize they have a right to the same products and services as men. This is why it is important we create enough opportunity of space for dialogue. Women have been restricted as a whole in society. If there is an opportunity to have dialogue, they will demand their rights.

 

Is gender just about the women?

DN: It is very important to target both men and women when studying gender. Men hold the social approvals in these communities; if you hold a training for women and their husbands do not allow them to go, then you have a problem. In many of the regions we work in, men hold the power and are the decision makers. You have to involve the men in empowering the women. It is not enough to only target any woman as it depends on the generation and social class of the woman. A woman who is divorced has completely different needs and aspirations than a woman who has children or a woman who is single or has a child in school or a child with no education. It’s not that simple, it’s not just about a woman.

 

Have you seen a change in women entering the field of science or agriculture?

AS: There are many factors explaining why women didn’t go into these programs but now do. Before, there were no quotas, no incentive for women to join. Speaking from the developing nation perspective, globalization has had a liberalizing effect. It is a gradual change but it is taking place, and hopefully it will become the norm that women are joining science and agriculture programs in equal number to men.

 

Who is your maize or wheat Superwoman?

DN: My wheat superwoman is a woman named Nafisa from Upper Egypt. She gained land after she was widowed, leaving her with two sons. She cultivates the wheat and manages the land all on her own. Through this land ownership she was selected to serve on committees and became a decision maker in her community. She took on an entirely new role in her community, which was for a female to manage a farm.

She is an amazing woman, just the things she had to endure and the resistance she faced from her family and neighbors. No one supported her, but she stood up to that, because of her desire for a better future for her children. If she does not farm the land it will get taken from her, and if she gets married, the land will be taken from her. This is something unheard of in this very conservative community where it is typically too dangerous for a woman to farm land. She is a pioneering, determined and strategic thinking woman. Many would describe her as a warrior; I personally admire her persistence and courage. She is definitely a wheat hero.

 

Do you think gender will be more on the agenda in CRP phase 2?

AT: Yes, it should. Firstly because there is strong political support, not only because donors are asking for it, demanding it, putting more money for it, but also because now we are not only talking about gender, we have started delivering on gender as well. So there are results—the number of global gender studies which we have collected in over 70 places would tell how this could be integrated into the next phase of the CRP.

Conservation agriculture viable, say Ethiopian farmers, as curtain comes down on CASFESA pilot project

Only those of us bold enough to try conservation agriculture technologies like zero tillage and intercropping benefited a lot, while all others were left behind.” – Hunegnaw Wubie, farmer, South Achefer District, Amhara Region, North Ethiopia

As the curtain comes down on CIMMYT’s Conservation Agriculture and Smallholder Farmers in East and Southern Africa (CASFESA) pilot project, participating farmers in project demonstration sites have said that conservation agriculture (CA) practices have proven to be a viable means of improving their productivity and livelihoods, and need to be scaled up across the nation.

A farmer speaks: ‘farmer-researcher’, clergyman Enkuhanhone Alayu, said people laughed at him for expecting to cultivate crops without plowing. Now they call him even at night seeking advice.
A farmer speaks: ‘farmer-researcher’, clergyman Enkuhanhone Alayu, said people laughed at him for expecting to cultivate crops without plowing. Now they call him even at night seeking advice.

The farmers made these remarks at a one-day workshop on February 23, 2015, convened to take stock of the CASFESA experience after three years of implementation in South Achefer and Jebitehnan Districts of Amhara Region, Northern Ethiopia. The project began in June 2012 and will end in March 2015. Funded by the European Union through the International Fund for Agricultural Development, CASFESA aimed at increasing food security and incomes of poor smallholder farmers through sustainable intensification of mixed, cereal-based systems.

The project will leave a rich legacy, including:

  • adaptation and demonstration of CA-based technologies on selected farmer plots;
  • enhancing pro-poor and gender-sensitive targeting of CA-based interventions;
  • improving the delivery of information, including on technologies and market opportunities to smallholders, as well as developing policy options and recommendations that favor these technologies; and,
  • enhancing the capacity of research, and development interventions, for project stakeholders.

Attending the project closing workshop at the Amhara Region Agricultural Research Institute, Bahir Dar, in northwestern Ethiopia, were Regional Bureau of Agriculture officials; Directors of the Ministry of Agriculture Extension Process and the Ethiopian Agricultural Transformation Agency’s Climate and Environmental Sustainability Program; agronomists; representatives of relevant governmental and non-governmental and research organizations; and, above all, farmers. Keynote presentations included The Economic and Environmental Benefits of Sustainable Intensification Practices by Dr. Menale Kassie, while Dr. Mulugetta Mekuria and Mr. Yeshitla Merene presented the experience and research results from the Sustainable Intensification of Maize–Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA).

Reaping where you do not harrow
Farmers spoke passionately on how CA technologies proved profitable for them and their families “in beating the odds”. Most reported harvests of six or more tonnes per hectare of maize from the CA plots – relatively better harvests than with conventional plowing methods, plus the added benefits of reduced use of oxen and labor, and attendant advantages. They also called upon officials responsible to undertake corresponding measures to ensure that CA technologies are sustainably implemented and adopted on a wider scale.

One of these ‘farmer-researchers’, clergyman Enkuhanhone Alayu, narrated how people at first ridiculed him when, three years ago, he volunteered to demonstrate CA practices on his meagre plot of land. They laughed at him “for expecting to cultivate crops without plowing” – a reference to minimum tillage practices that the project advocates as a central element of conservation agriculture.

“But when they later saw that we were cultivating more quantity of maize per unit of land, they were surprised and people who had called me a fool began calling me even at night seeking advice on how they can replicate CA practices on their plots and gain the benefits,” Alayu said. “Zero tillage practices, which require considerably less labor, are even more relevant at this time when oxen are increasingly becoming very expensive and most farmers are not able to afford them.”

Another farmer speaks at the meeting.
Another farmer speaks at the meeting.

Unto the next generation…
Another farmer, Ato Hunegnaw Wubie, said he was so pleased with CA technologies that he also taught his children how to do it on a portion of his land allotted to each of them. “One of my six children was so successful that this year he was able to reap 66 kilos of maize from a 10 by 10 meter plot. He sold his harvest at the market, and, with some additional money from me, bought a bicycle that he uses for transport to and from school. Only those steadfast enough and willing to learn new things will reap the benefits from such novel practices,” he added with pride.

And the farmers were not alone. Speaking at the workshop, the Deputy Head of Amhara Region Bureau of Agriculture, Dr. Demeke Atilaw, noted that maize production in the region stands at a meagre 3.2 tonnes per hectare, and that one reason for this is that “our agricultural practices didn’t include conservation agriculture. This needs to change both at the regional and national levels.” He further pledged that the bureau will work towards sustainably implementing these technologies with a view to increasing maize yields to eight tonnes per hectare.

Roadmap to national goals: “… projects alone cannot bring about significant change…”
In addition to CASFESA, CA technologies are being implemented in the region by SIMLESA, a CIMMYT project in Ethiopia, as well as in Kenya, Malawi, Mozambique and Tanzania. Presenting the experience of SIMLESA thus far, project leader, Dr. Mekuria told the participants that “the experience of both these CIMMYT projects, promising as they are, cannot alone bring about significant change unless they are scaled out using more new varieties of maize and sustained through meaningful institutional involvement – especially that of agencies at all levels of government.”

CIMMYT Agricultural Economist and CASFESA project coordinator, Dr. Moti Jaleta, also said that the experience of CASFESA has demonstrated that CA technologies are economically viable and thus worth pursuing on a wider scale and in a sustainable way. He particularly commended those farmers who volunteered to provide portions of their land as demonstration plots for CA technologies. “Their efforts and dedication have now paid off,” he noted, adding that project end does not mean that CASFESA will leave precipitously: there are still monitoring and evaluation and other wind-up tasks before project exit.

Participants of the CASFESA closure workshop in Ethiopia.
Participants of the CASFESA closure workshop in Ethiopia.

The Deputy Director General of the Amhara Regional Agricultural Research Institute, Dr. Tilaye Teklewold, summed up the mood of the day when he said that CASFESA’s experience in Amhara Region has shown that conservation agriculture is an ideal way of increasing the productivity of maize in the region, and that “concerted efforts are needed to raise the awareness and dedication of all actors involved in the region to implement these technologies and ensure lasting food security in the region and beyond.”

Links

Men’s roles and attitudes are key to gender progress, says CIMMYT gender specialist

PaulaKantor.jpg
Photo: Xochiquetzal Fonseca/CIMMYT

Gender research and outreach should engage men more effectively, according to Paula Kantor, CIMMYT gender and development specialist who is leading an ambitious new project to empower and improve the livelihoods of women, men and youth in wheat-based systems of Afghanistan, Ethiopia and Pakistan.

“Farming takes place in socially complex environments, involving individual women and men who are embedded in households, local culture and communities, and value chains — all of which are colored by expectations of women’s and men’s appropriate behaviors,” said Kantor, who gave a brownbag presentation on the project to an audience of more than 100 scientists and other staff and visitors at El Batán on 20 February. “We tend to focus on women in our work and can inadvertently end up alienating men, when they could be supporters if we explained what we’re doing and that, in the end, the aim is for everyone to progress and benefit.”

Funded by Germany’s Federal Ministry for Economic Cooperation and Development, the new project will include 14 village case studies across the three countries. It is part of a global initiative involving 13 CGIAR research programs (CRPs), including the CIMMYT-led MAIZE and WHEAT. Participants in the global project will carry out 140 case studies in 29 countries; WHEAT and MAIZE together will conduct 70 studies in 13 countries. Kantor and Lone Badstue, CIMMYT’s strategic leader for gender research, are members of the Executive Committee coordinating the global initiative, along with Gordon Prain of CIP-led Roots, Tubers and Bananas Program, and Amare Tegbaru of the IITA-led Program on Integrated Systems for the Humid Tropics.

“The cross-CRP gender research initiative is of unprecedented scope,” said Kantor. “For WHEAT, CIMMYT, and partners, understanding more clearly how gendered expectations affect agricultural innovation outcomes and opportunities can give all of our research more ‘ooomph’, helping social and biophysical scientists to work together better to design and conduct socially and technically robust agricultural R4D, and in the end achieve greater adoption and impact.”

To that end, outcomes will include joint interpretation of results with CRP colleagues and national stakeholders, scientific papers, policy engagement and guidelines for integrating gender in wheat research-for-development, according to Kantor. “The research itself is important, but can’t sit on a shelf,” she explained. “We will devise ways to communicate it effectively to partners in CGIAR and elsewhere.”

Another, longer-term goal is to question and unlock gender constraints to agricultural innovation, in partnership with communities. Kantor said that male migration and urbanization are driving fundamental, global changes in gender dynamics, but institutional structures and policies must keep pace. “The increase in de facto female-headed households in South Asia, for example, would imply that there are more opportunities for women in agriculture,” she explained, “but there is resistance, and particularly from institutions like extension services and banks which have not evolved in ways that support and foster the empowerment of those women.”

“To reach a tipping point on this, CGIAR and the CGIAR Research Programs need to work with unusual partners — individuals and groups with a presence in communities and policy circles and expertise in fostering social change,” said Kantor. “Hopefully, the case studies in the global project will help us identify openings and partners to facilitate some of that change.”

Kantor has more than 15 years of experience in research on gender relations and empowerment in economic development, microcredit, rural and urban livelihoods, and informal labor markets, often in challenging settings. She served four years as Director and Manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU) in Kabul. “AREU has influenced policy, for example, through its work on governance structures at the provincial and district levels,” Kantor said. “They will be a partner in the Afghan study.”

She added that working well in challenging contexts requires a complex combination of openness about study aims and content in communities, sensitivity and respect for relationships and protocol, careful arrangements for logistics and safety, diverse and well-trained study teams and being flexible and responsive. “Reflections on doing gender research in these contexts will likely be an output of the study.”

After her first month at CIMMYT, Kantor, who will be based in Islamabad, Pakistan, said she felt welcome and happy. “My impression is that people here are very committed to what they do and that research is really a priority. I also sense real movement and buy-in on the gender front. An example is the fact that, of all the proposals that could’ve been put forward for funding from BMZ, the organization chose one on gender. That’s big.”

Maize and wheat Super Women campaign highlights diversity

IWDbuttonEL BATAN, Mexico (CIMMYT) – A social media crowd sourcing campaign initiated to celebrate the achievements of women has led to more than a dozen published blog story contributions about women in the maize and wheat sectors.

Each year, International Women’s Day gives the world a chance to inspire women and celebrate their achievements. This year, the International Maize and Wheat Improvement Center (CIMMYT) put out a call asking for blog contributions from the social media community.

CIMMYT asked readers to submit stories about women who have made a difference in the maize and wheat sectors, including women involved in conservation agriculture, genetic resources, research, technology and related socio-economics.

The “Who is Your Maize or Wheat Super Woman?” stories are featured on the CIMMYT website from Monday, March 2, 2015 in the lead up to International Women’s Day on Sunday, March 8, 2015.

Contributions include blog stories about women from Britain, Canada, Guatemala, India, Indonesia, Kenya, Mexico, and the United States. Their stories will also be made available in Spanish-language.

SUPER WOMEN BLOG POSTS:

CIMMYT

Opportunity: integrating gender in crop research today!

CIMMYT Gender Specialist Lone Badstue attended a CGIAR Gender Network meeting in the Philippines during 19-23 January. Participants discussed CGIAR’s progress and results in gender research, along with plans for collective, cross-program activities that contribute to CGIAR innovation.

 

Q: How do you think we can inspire project leaders, farmers, scientists, and others to view gender as an integral part of CGIAR projects?

A: When you want to introduce something different and new, you’re going to have varying levels of acceptance and pushback. Integrating gender is a change process, and it isn’t something that happens fast.

Ultimately we want to help as many people as we can, everyone agrees on that. We should bring forward our gender agenda as something that will help us reach that common goal, with the end benefit being worth the change and investment. This is why evidence is so important – if there’s anything researchers and scientists respect it’s evidence, and that is why gender researchers from 12 different CGIAR Research Programs (CRP) have embarked on a global study of gender norms to increase the development impact of research programs.

 

Q: Speaking of the CGIAR Global Study on Gender, could you discuss the goals and outcomes?

A: This study will provide real life examples of processes on the ground.

The information will really help CGIAR Research Programs to hone their impact pathways — models of how projects see themselves achieving impact — because right now those pathways involve many theoretical assumptions. We want to show the value of qualitative research and how this complements quantitative research and reveals processes that the latter can’t. We’ll also learn how these processes matter in diverse locations and circumstances worldwide.

 

Q: The characteristics of a proposal where gender is mainstreamed were also discussed to see how they can make an integral part of project rsearch and activities. What would a gender-mainstreamed research proposal look like?

A: A gender mainstreamed, or gender responsive research proposal, reflects explicitly on the characteristics of its target beneficiaries and addresses their concerns and experiences as an integral dimension in the research design. This means knowing the context and ensuring that research outputs address the needs of the different groups you want to serve. To help scientists and research teams think about how to begin to address these issues when designing a new proposal, the CIMMYT gender unit has developed a brief guidebook.

 

Q: What are some overall conclusions that came out of the CGIAR Gender Network meeting?

A: We have a moment of opportunity. The meeting allowed us to share our experiences, identify key tools to promote gender mainstreaming (gender mainstreaming is a globally accepted approach to achieving gender equality) in CRP research and establish a collective vision of our gender research. We need to leverage this momentum and focus on the goal of establishing a solid evidence-base for gender research, thus integrating a gender-framework in all CGAR projects where it is relevant.

Photo: S. Mojumder/Drik/CIMMYT
Photo: S. Mojumder/Drik/CIMMYT

Prioritize food security, not conflict, wheat scientist advises

Heat and drought are a major cause of wheat yield losses worldwide, problems that scientists predict will worsen due to climate change.

As a wheat physiologist, Matthew Reynolds works to bolster crop yields and improve the capacity of wheat to survive stressful conditions, particularly in developing countries.

Wheat physiologist Matthew Reynolds[
Wheat physiologist Matthew Reynolds
“Climate change puts farmer livelihoods at risk and can lead to vast food-crop losses in vulnerable environments,” said Reynolds, who was recently named a distinguished scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Reynolds, who plays a leading role in several international wheat initiatives, including the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP), has developed new wheat lines based on combining complementary physiological traits.

Some of this work is detailed in a book entitled “Climate Change and Crop Production,” which he was commissioned to edit.

In addition to improving wheat drought resilience, Reynolds, who also serves as a consultant for Bayer Crop Science, has developed physiological approaches for improving the yield potential of wheat, work that will underpin the new IWYP initiative, which has so far attracted more than US $50 million in funding.

He shared his views in the following interview after being named distinguished scientist.

Q: What provides inspiration for your work?

What inspires me about working for CIMMYT is how we apply science to real life problems by participating in a very exciting chain of events that preferentially benefits many of the least privileged members of society. Because of CIMMYT’s multicultural character and because we’re a focal point of applied wheat and maize research in the world, scientists at CIMMYT understand the agricultural problems of the developing world in quite a unique way.

Q. What is your most significant achievement?

The achievement I’m most satisfied about is that we’ve been delivering improved wheat technologies to national governments using a physiological approach – that’s something that 25 years ago nobody would have believed was possible. Our first intervention was to show the value of measuring wheat canopy temperature and now it’s a tool that everyone is adopting. Thermal imaging is an offshoot – it’s a very robust tool for measuring plant temperature. It helps us determine whether a plant is adapted when it is “cool” or if there’s something wrong with it when it’s too “warm.” It’s a wonderful diagnostic tool, kind of like a doctor’s stethoscope, except we can even measure it remotely now from the air on thousands of plots at once.

Q: What role does agriculture play in poverty alleviation?

While we can do something about the fact that almost one billion people go hungry globally, agriculture is only a small part of that equation. There are a lot of other elements that we have no control over – market forces, foreign policy and natural phenomena like climate instability – all of which can neutralize our efforts. The overarching incentive for our work was defined by the late CIMMYT wheat breeder and Nobel Peace Prize winner Norman Borlaug, who famously said: “I cannot sit idly by in the midst of abject poverty and hunger and human misery.”

Q: What is the biggest challenge the world faces?

I think the challenge the world at large faces is to work towards greater unity and equality of opportunity. CIMMYT is in a sense the Red Cross of resources for farmers, but we try to pre-empt their problems and make an investment in their future. It’s been reaffirmed recently that the fundamental basis for sustainable economic growth is a vibrant agricultural sector. Our overarching aim is food security for all, focusing especially on resource-poor consumers and farmers. As a society, we expend enormous effort on controlling natural resources such as land, water, and minerals – irrespective of the cost and conflict that this causes, while, ironically, sustaining the planet’s resource base is secondary at best. That was perhaps justifiable before the advent of good communication and international cooperation, but it makes no sense anymore, especially with a crowded planet. I suppose it’s always much harder to get people to unite – something Borlaug was good at, although not without considerable effort.

Q: What is Borlaug’s legacy?

His main legacy in my opinion is making people conscious of humanitarian problems and implementing real solutions with absolute dedication. This is something most politicians and leaders only pay lip service to, to avoid upsetting the status quo, which is basically a massive and growing inequality in the world. While I was not raised a Catholic, I read a wonderful quote recently from Pope Francis that relates very much to CIMMYT’s mission. He said at his inauguration: “While the income of a minority is increasing exponentially, that of the majority is crumbling. This imbalance results from ideologies which uphold the absolute autonomy of markets and financial speculation, and thus deny the right of control to states, which are charged with providing for the common good.” At CIMMYT we are still — at least for now – charged with providing for the common good; let’s hope we can maintain that legacy.

Spreading innovation: new partnerships drive change in Odisha

The Cereal Systems Initiative for South Asia (CSISA) has collaborated with Digital Green (DG), the Department of Agriculture (DOA), Government of Odisha, Krishi Vigyan Kendras (KVKs) and Orissa University of Agriculture & Technology (OUAT) for a pilot project integrating information and communication technology (ICT)-based video-led dissemination models in 20 villages of Puri district in Odisha, India.

Farmers watch a video on disease control at a community video screening in Puri district, Odisha. Photo credit: Ashok Rai/CIMMYT
Farmers watch a video on disease control at a community video screening in Puri district, Odisha. Photo credit: Ashok Rai/CIMMYT

How the pilot works: DG trains and builds the skills of state agents to shoot and create videos with farmers on improved farming practices and then holds screenings for small groups of farmers using small-sized, low-cost, battery-run pico projectors. CSISA provides its technical inputs in video topic selection, content planning and story boarding. During the video screening, state agents keep track of the questions asked and have follow-up meetings with the farmers to check on the adoption of farming practices.

This CSISA–DG initiative has resulted in the production of videos on 10 technical themes reflecting the needs of local farming communities. Topics included the demonstration of new paddy, post-harvest and livestock management technologies and relevant successes by local farmers. So far, six videos on CSISA- promoted technologies have been produced. Ninety-one group screenings were held, with nearly 500 farmers in Puri district attending at least one of the video screenings. “Each video requires good planning, a good script and technical understanding of the subject,” said Sudhir Yadav, IRRI Irrigated Systems Agronomist and the CSISA Odisha Hub Manager.

“We aim at both increasing participation of the community and creating a two-way flow between research and extension,” said Rikin Gandhi, CEO of DG, during a presentation at the Borlaug 100 event organized by CIMMYT.

These videos inspire farmers to learn about and adopt new technologies and management practices. A video on the benefits of chopped straw as fodder in dairy management has helped farmers to enhance milk production, commented Suresh Parida, a farmer from one of the pilot villages. Farmers have also found it easier to identify pests and diseases in their crop after seeing a video of pest and disease management in paddies.

“As the actors in the video are local farmers from the area, it generates trust among the viewers to adopt a demonstrated practice,” said Avinash Upadhaya, Regional Manager of DG for Odisha, at a recent participatory stakeholder’s workshop in Puri. Farmers, mediators from KVK and project coordinators from DOA, CSISA and DG met to discuss the changes that the ICT model has brought and challenges in integrating it with traditional training methods. Ashok Lakra, a village agricultural worker of a pilot village highlighted the advantages of DG’s approach, stating “At a demonstration, we might miss some important information, but these videos deliver the entire package and cover all the points.”

“The best language that the farmer understands is the language of other farmers. This works as a good communication model to help in creating awareness and dissemination of improved technologies,” said Yadav.

 

“No burning in Chiapas” GCAP campaign

Crop residues burning in a farmer’s field, Chiapas. Photo: Rodolfo Vilchis

“To increase my production, I don’t burn residues; I use them. I practice conservation agriculture.” This slogan was promoted by CIMMYT’s Global Conservation Agriculture Program (GCAP) from March to May 2015 through a communications campaign in the state of Chiapas, Mexico. The campaign aimed to inform farmers and agronomists of the devastating effects of residue burning and its potential risks. It also focused on topics such as the benefits of residue retention, sustainable alternatives to conventional practices, and how burning contributes to global warming.

According to Mexico’s National Forestry Commission, 40% of forest fires start in farm plots, due mainly to residue burning and burning to clear land for farming. Forest fires release large amounts of carbon dioxide and other pollutants that contribute to global warming and climate change. Global warming has already affected several agricultural areas in Mexico. For example, in 2014, there was a severe drought in Chiapas that lasted 45 days and caused all agricultural production to be lost, reinforcing the importance of MasAgro’s mission to promote environmentally friendly agronomic practices.

MasAgro was able to interact with its users through its mobile information service, MasAgro Movil, to carry out a scoping exercise. The exercise helped MasAgro identify farmers’ problems concerning residue and agricultural burning. With input from several farmers, MasAgro crafted key messages directed at solving issues such as reducing weed incidence, fertilizer use and soil erosion and conserving soil moisture.

Residue burning contributes to global warming by increasing the greenhouse gases released into the atmosphere.
Residue burning contributes to global warming by increasing the greenhouse gases released into the atmosphere.

The campaign also dealt with topics such as the perceived benefits of burning versus sustainable alternatives that generate long-term benefits; the benefits of retaining residues in farm plots; residue burning and its contribution to global warming, and technical tips for handling residues. Finally, testimonials were gathered from farmers who have already experienced the benefits of retaining residues in their plots.

These key messages were transmitted through MasAgro’s communication outlets, such as using the hashtag #ChiapasNoQuema and MasAgro Movil in social media. In addition, four farmer interviews were broadcast on the regional radio station of the National Commission for the Development of Indigenous Peoples, and a series of articles were published in MasAgro’s online magazine EnlACe.

The campaign reached farmers in all corners of the state of Chiapas thanks to the strong support of many institutions, organizations, regional offices and service providers. Through the No Burning in Chiapas campaign, CIMMYT spearheaded the drive to promote sustainable practices while providing relevant information and technical assistance.

Index insurance to safeguard farmers from climate change

We’ve got the germplasm and improved varieties, but what can we do to overcome the hurdle of farmer adoption of these technologies?” Jon Hellin, value chain and poverty specialist for CIMMYT’s Socioeconomics Program presented this challenge and how crop-index insurance may be part of the solution, at a high-level Climate Change, Agriculture and Food Security (CCAFS) webcast event Wednesday, 28 January in London. The event covered innovations in index insurance and how Nigeria can implement them, as part of a plan to safeguard its farmers from climate change effects.

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies”

– Jon Hellin

CIMMYT’s Socioeconomics Program

 

Benefits of Index Insurance

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies,” said Hellin. Traditional crop insurance gives payouts that are explicitly determined on measured loss for a specific client. Index insurance allows farmers to purchase coverage based on an index that is correlated with those losses, such as average yield losses over a larger area or a well-defined climate risk, e.g. erratic rainfall, that significantly influences crop yields.

This approach can address many of the problems that limit the application of traditional crop insurance, including lower transaction costs and eliminating the need for in-field assessments. In addition, because the insurance product is based on an objective index it can also be reinsured, allowing insurance companies to efficiently transfer part of their risk to international markets. This makes index insurance financially viable for private-sector insurers and affordable for small-scale farmers.

CIMMYT is involved in a CCAFS-supported crop index insurance project. One focus is to determine how crop index insurance can enhance adoption of drought tolerant maize varieties. CIMMYT, along with international partners and scientists, has been developing many such varieties under the Drought Tolerant Maize for Africa (DTMA) initiative. “When it comes to these varieties and exciting initiatives like crop index insurance, that’s where we can come together and get great win-wins,” Hellin stated.

 

Challenges and Opportunities

Scientifically-validated crop-index insurance schemes need indices that are affordable and attractive to stakeholders, particularly farmers and the insurance industry and other refinements. However, as demonstrated by examples from Ethiopia, Kenya, Rwanda and Senegal, if implemented correctly index insurance can build resilience for smallholder farmers not only by ensuring a payout in the event of a climate shock, but also by giving farmers the freedom to invest in new technology and inputs, such as seed.

“The Nigerian government’s interest in crop insurance will allow us to test different approaches for bundling insurance with technologies, making it attractive to farmers and private sector actors,” Hellin proposed.