Skip to main content

SUPER WOMAN: Diane Holdorf promotes sustainability to support smallholders

SUPPORTING THE CONNECTIVITY OF RESEARCH, EDUCATION AND OPPORTUNITIES

Diane-HoldorfInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, Amy Braun writes about her Super Woman of maize and wheat, Kellogg Company’s Diane Holdorf.

Diane Holdorf is a super woman and an inspiration to all of us at Kellogg Company. As Chief Sustainability Officer and Vice President of Environmental Stewardship, Health and Safety at Kellogg, Diane has been the inspiration and force behind the expansion of the company’s global sustainability commitments to include specific goals supporting smallholders around the world as part of new public commitments for 2020.

She has also been an ambassador for responsible sourcing and sustainable agriculture within the company, and has done a tremendous job raising awareness with Kellogg employees and leaders on the important role that smallholders, and women in particular, play in food security within their communities.

Under her leadership, Kellogg also commissioned a study in 2014 to assess how the company’s supply chain could improve the productivity and livelihoods of some smallholders around the globe. Soon afterwards, she traveled with Kellogg’s CEO, to attend the U.N. Secretary General’s Climate Summit in New York City to make a public statement committing to support 15,000 smallholders adopt climate-smart agriculture practices by 2020.

Climate-smart agriculture can help improve livelihoods and boost climate resiliency.

Kellogg currently supports 65,000 smallholder farmer livelihoods across their 10 priority ingredients through the market. Statistics show that women represent an average of 41 percent of workers on smallholder farms and 11 percent of farm managers or owners, according to a 2015 report.

Diane is a passionate leader for sustainability. With her muddy boots, she spreads her passion to inspire an entire company. Her drive, communication skills and leadership has caused Kellogg not only to meet overall objectives, but she has also infected leaders and employees with a clear understanding that sustainability matters.

Diane has gone beyond the call of duty, demonstrating that a sound sustainability strategy is a tool that adds value to the company and consumers. Specifically, Diane has broadened Kellogg Company’s engagement on agricultural supply chains, with exceptional leadership related to wheat, maize and rice smallholders.

She has brought cross-functional teams to Thailand, Ghana, India and Mexico to learn about how these growers work – and to inspire us to find ways to work with research teams like the International Maize and Wheat Improvement Center (CIMMYT), the International Rice Research Institute (IRRI) and others to share our knowledge and technologies.

In fact, she led the team that brought quinoa growers from Bolivia to the United States to represent the only indigenous voice at the International Year of Quinoa Research Symposium.

As a member of the University of Michigan Graham Sustainability Institute‘s advisory board, she supports the connectivity of sustainability research, education and real-world opportunities.

Through various partnerships with CIMMYT, IRRI, Field to Market and industry associations, as well as with the United Nations, she fosters the collaboration needed to bring agriculture to the forefront of science and policy.

Well-respected by her peers in industry and non-governmental organizations, she is and will continue to be a super woman due to her dedication to sustainability and food.

Without her leadership, we would not be able to do the work we do with the thousands and thousands of smallholders around the world.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center.

SUPER WOMAN: Jessica Rutkoski conquers math demons, finds success as wheat breeder

JessicaRutkoski
Jessica Rutkoski at the CIMMYT research station in Toluca, Mexico. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) — In high school, Jessica Rutkoski was similar to many girls who suffer from the tedium and complexity of high school arithmetic – she avoided it.

However, after graduation she went to college and took a stab at it again, picking up a course in calculus and surprising herself by scoring top marks.

“I discovered I wasn’t bad at math, I was scared of it, had low confidence or maybe just a bad attitude,” laughed Rutkoski, whose first love has always been science.

“Don’t assume that what you think you’re good or bad at is set in stone because when you get to college you may just find out you are better at something than you thought.”

Rutkoski’s mathematical successes at university helped her become an even bigger whiz at science than she was in high school.

Her interest in genetics got her started helping out in a sweet maize breeding program while she was an undergraduate science student at the University of Wisconsin. Subsequently, she decided to study for a doctoral degree, and was attracted to the Durable Rust Resistance in Wheat project at Cornell University in New York.

At Cornell, she spent long hours in the greenhouse and field, learning about disease and disease resistance in wheat, focusing on stem- and leaf-rust pathology. Additionally, she learned how to program and analyze data using statistical and qualitative genetics.

A year after earning her Ph.D., Rutkoski’s focus is on improving all traits of wheat – she is widening her net to include crop-yield increases in her portfolio.

“I eventually want to use the available technology to predict all traits,” she said. “Data allows us to create prediction models based on genomic fingerprints, rather than using genes – we don’t necessarily have to know anything about genes or the underlying mechanisms of traits.”

Rutkoski is now an assistant professor at Cornell. She spends about three months a year teaching a course called “Selection Theory and Methods,” in which students learn how to maximize gain from selection in breeding programs. The rest of the year she spends working with the International Maize and Wheat Improvement Center.

“Women are doing this kind of work, but I haven’t really followed in anyone’s footsteps,” she said. “I was inspired to pursue post-graduate studies by colleagues who were frustrated that they found themselves in underpaid, dead-end jobs.”

Some women take another path, choosing to prioritize finding a spouse and having a family, Rutkoski said, adding: “If you’re really passionate about something, then don’t worry about that, it’ll happen on its own. If you’re really passionate about something then just follow it and the rest will fall into place.”

SUPER WOMAN: Julieta Salazar boosts nutritional profile of maize in Guatemala

CHAMPIONING THE NUTRITIONAL VALUE AND ANCESTRAL ORIGINS OF MAIZE

julieta-SalazarInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or or wheat. In the following story, Michele Monroy-Valle writes about her Maize Super Woman, Julieta Salazar, head of the comprehensive research unit of studies on indigenous foods of the region at Universidad de San Carlos de Guatemala.

Maize is the most consumed staple food in Guatemala.

As a researcher and professor of food science, Professor Julieta Salazar encourages students to learn how to exploit the nutritional benefits of this wonderful grain.

She teaches them how to prepare it through alkaline cooking, a process known as nixtamalization, so that it becomes an important source of protein, calcium and niacin, while improving balance and bioavailability of its amino acids.

Her efforts have been focused on preserving the traditional recipe of Guatemalan tortillas, and how this preparation has advantages over the consumption of white bread, due to its lower caloric density and glycemic index.

For Guatemala, Salazar’s efforts to educate future nutritionists and the general population on the value of combining corn and beans to improve protein consumption, based on the concept of “vegetable mix,” has a big impact. The nutritious dish is almost the only source of quality protein in poor households with low consumption of animal protein.

Salazar is a pioneer as a public speaker, championing the nutritional value of maize and the ancestral origins of its preparation into tortillas, tamales, atole and other traditional uses in food consumption.

Her area of study has also focused on how maize preparations are integrated into fast food “franchise” restaurants as side dishes or meals.

She has achieved all these accomplishments because she has been devoted for almost 20 years to the study of the chemical composition of maize in its many different forms, including tamales, atole and tortilla chips, among others.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center.

How do you use maize and wheat in your favorite recipe?

EL BATAN, Mexico (CIMMYT) – Globally, an estimated 800 million people do not get enough food to eat and more than 2 billion suffer from micronutrient deficiency, or “hidden hunger,” according to U.N. food agencies.

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to two-thirds of the world’s food energy intake, and contributing 55 to 70 percent of the total calories in the diets of people living in developing countries, according to the U.N. Food and Agriculture Organization.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) are working to ensure the ongoing production of high-yielding, disease-resistant varieties of maize and wheat to improve both the quantity and nutritional quality of these key crops.

These measures include biofortification, a process by which scientists combine conventional plant breeding and lab work to improve the micronutrient content of maize and wheat. At CIMMYT, this process is being used to boost pro-vitamin A and zinc levels in maize and iron and zinc concentrations in wheat.

Boosting the micronutrient content of crops through biofortification can help tackle hidden hunger, simultaneously improving human health and economic growth leading to improved international development.

In order to shed light on the important role maize and wheat play in global nutrition, CIMMYT is celebrating the dietary value of these food staples — and we need your help.

Send us your favorite wheat or maize-based recipe. We’ll feature original recipes on our website and in our “A Grain a Day” cookbook to be published this summer.

Be sure to provide us with information about the dish, in addition to the recipe itself. What is its country of origin? When and how is it eaten? Does it have any cultural or historical significance? Has climate change or other external factors affected the ingredients?
If your recipe isn’t your own concoction, but has nutritional benefit, we’ll share the link on Twitter.

Please submit your recipe by June 15, 2015, to be included in the cookbook.

Looking to participate but lacking an original recipe? Tweet a picture or a copy of your recipe to @CIMMYT using the #GrainaDay hashtag Any questions? Write to Brittany Pietrzykowski (b.pietrzykowski@cgiar.org)

Seeds for needs in Malawi

On May 6, the United States Agency for International Development (USAID) and the Government of Malawi jointly launched five projects on food security, fisheries and environment. The USD-141-million-worth projects will be implemented by USAID in 13 districts over a five-year period.

These complementary projects are designed to work together to strengthen resilience to climate change, increase production and improve nutrition in targeted communities. The projects also connect with other USAID–Malawi activities in these areas.

More than 1,000 people attended the launch, representing farmer associations, USAID, local communities, non-governmental organizations, research institutions, Malawi government departments, seed companies, and CGIAR.

Officiating the launch held in Machinga District were Ms. Virginia Palmer, the United States Ambassador to Malawi; Dr. Allan Chiyembekeza, the Minister of Agriculture, Irrigation, and Water Development; and Mr. Bright Msaka, the Minister of Natural Resources, Energy and Mining.

Ms, Virginia Palmer (left), US Ambassador to Malawi, and Dr Peter Setimela (CIMMYT–SARO), with the Feed the Future Malawi Improved Seed Systems and Technologies Project certificate of launch. Malawi heavily relies on agriculture for economic growth, with 80 percent of the country’s population engaged fulltime in agriculture.
Ms, Virginia Palmer (left), US Ambassador to Malawi, and Dr Peter Setimela (CIMMYT–SARO), with the Feed the Future Malawi Improved Seed Systems and Technologies Project certificate of launch. Malawi heavily relies on agriculture for economic growth, with 80 percent of the country’s population engaged fulltime in agriculture.

Through the USD-21-million Feed the Future Malawi Improved Seed Systems and Technologies project, a consortium of agricultural research centers led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is working to increase the supply and distribution of quality seed for maize, groundnuts, pigeonpeas, soybeans and sweet potatoes, and on developing an aflatoxin control product in seven focus districts in South-central Malawi. Other members of this consortium are CIMMYT, the International Potato Center, and the International Institute of Tropical Agriculture.

Partnerships for progress

Feed the Future is the U.S government’s global hunger and food security initiative.

ICRISAT and its partners are working closely with the Ministry of Agriculture, Irrigation, and Water Development. USAID support will promote the production and multiplication of breeder, basic and certified seed by skilled seed growers to ensure smallholder farmers have greater access to improved seed.

Winds of change in a changing world
Much of southern Malawi can no longer depend on traditional rain cycles in the face of climate change. Some districts, such as Machinga in the Southern Region, live under rain shadows – areas on the leeward side of the mountains where winds push the dry heat upward and drive promising rain clouds away, resulting in chronic droughts.

Ambassador Palmer’s speech focused on integrating development programs to enhance community resilience and lead to better outcomes. “We think this strong focus on co-location, coordination and collaboration will allow us to advance sustainable livelihood opportunities at a greater scale – and with greater impact – than would otherwise be possible.”

She also said this integration of USAID development projects in Malawi might soon become a model for development worldwide.

Seeds for needs, now and in the future
Dr. Peter Setimela, CIMMYT–Southern Africa Regional Office Seed Systems Specialist, observed: “To popularize drought-tolerant maize varieties, CIMMYT will support pre-basic and basic seed production, field days and demonstration plots to benefit smallholder farmers. We will support capacity building of both private-sector seed companies and government seed inspectors to improve overall quality and seed marketing in Malawi.”

Dr. Peter Setimela (wearing fleece), CIMMYT–SARO Seed Systems Specialist, explains CIMMYT's work on drought-tolerant maize. In the next three years, CIMMYT hopes to reach 50,000 households in Malawi with drought-tolerant maize varieties to help smallholder farmers adapt to the impacts of climate change.
Dr. Peter Setimela (wearing fleece), CIMMYT–SARO Seed Systems Specialist, explains CIMMYT’s work on drought-tolerant maize. In the next three years, CIMMYT hopes to reach 50,000 households in Malawi with drought-tolerant maize varieties to help smallholder farmers adapt to the impacts of climate change.

At only 25 percent, use of improved seeds is still very low among smallholders in Malawi. Maize yields are below 2 tonnes per hectare, whereas there are varieties available that can yield as much as 10 tonnes per hectare.

Over the next three years, CIMMYT hopes to reach 50,000 households with drought-tolerant maize varieties. This will ultimately reduce poverty and help farmers adapt to the impacts of climate change.
A seed system in a well-linked value chain is very important and had been missing in previous development efforts in the country.

“The design of the Improved Seed Systems and Technologies Project addresses these issues. My ministry is also keen to further work with the US government to ensure that these research activities reach Malawi’s smallholder farmers,’’ said Dr. Chiyembekeza.

In a country where more than half the population lives below the poverty line, the Southern Region has the highest percentage of poor households. Malawians are mainly farmers, and with 85 percent of the population depending on rain, these recurring droughts make it harder to feed the family – nearly one-quarter of Malawians cannot meet their daily food needs.

“In Mozambique, you cannot talk about food security without talking about maize”

IIAM's site for confined field trials at Chokwe.
IIAM’s site for confined field trials at Chokwe.

Good news from Africa! Policy breakthroughs on transgenic research in Mozambique and Tanzania have led to approval of confined field trials (CFTs) and a more research-friendly regulatory framework, respectively.

Mozambique’s CFTs will be at the Instituto de Investigação Agrária de Moçambique (IIAM; Agricultural Research Institute of Mozambique) research station at Chokwe, some 200 kilometers north of the country’s capital, Maputo.

Next door in Tanzania, an erstwhile stringent policy that was prohibitive in terms of the onerous liability it placed on researchers has been favorably revised. What all this means is that the two countries – which have been somewhat lagging behind on account of policy constraints – can now more substantively engage in the Water Efficient Maize for Africa (WEMA) project to a fuller extent, and be more in step with other WEMA partners.

images_research_gmp_projects_WEMA_Inacio_Maposse_w These momentous breakthroughs were revealed at the 7th WEMA Project Review and Planning Meeting in Maputo, Mozambique, which took place February 8–12, 2015. In his opening remarks, Dr. Inacio Mapossé (pictured left), IIAM’s Director General, said that Mozambique’s Ministry of Agriculture had been renamed to the Ministry of Agriculture and Food Security. This, he emphasized, was not just an exercise in words, but also underscored the importance of projects such as WEMA. In his words, “In Mozambique, you cannot talk about food security without talking about maize.” True. Statistics show that nearly all (95 percent) of Mozambique’s smallholders grow maize (report forthcoming), and that maize covers nearly half (40 percent) of the land devoted to annual crops. Hence, the ministry could well have been renamed to ‘The Ministry of Maize’ and the cap would have fitted!

But back to policy and regulatory frameworks, despite the recent breakthroughs, more remains to be done. In Kenya, the 2012 ban on importation of genetically modified organisms is still in force. And while there has been remarkable progress in Tanzania and the policy is less stringent on transgenic research, there is still more ground to be covered. Uganda is yet to pass the Biosafety Bill.

The CIMMYT team at the WEMA meeting. Back row, left to right: Yoseph Beyene, Kassa Semagn, Lewis Machida, Jarett Abramson, Mosisa Regasa, Tadele Tefera, Bruce Anani and Amsal Tarekegne. Front row, left to right: Vongai Kandiwa, B.M. Prasanna, Stephen Mugo and James Gethi.
The CIMMYT team at the WEMA meeting. Back row, left to right: Yoseph Beyene, Kassa Semagn, Lewis Machida, Jarett Abramson, Mosisa Regasa, Tadele Tefera, Bruce Anani and Amsal Tarekegne. Front row, left to right: Vongai Kandiwa, B.M. Prasanna, Stephen Mugo and James Gethi.

The menace posed the maize lethal necrosis (MLN) disease was high and hot on the agenda, given its threat to Africa’s food security. MLN diagnostics and management call for concerted action by all players in the maize value chain, with regulatory frameworks playing a key role. CIMMYT has an open call for MLN screening for the cropping season starting at the end of this month.

CIMMYT participants at the WEMA annual meeting included, among others, Dr. B.M. Prasanna, CIMMYT’s Director of the Global Maize Program and a member of WEMA Executive and Advisory Board, and Dr. Stephen Mugo, Coordinator of CIMMYT activities in WEMA.

Led by the African Agricultural Technology Foundation, the WEMA project is now in its second phase, which will end in 2017. Aside from WEMA, CIMMYT has had a long and fruitful engagement with Mozambique, as this brief dating back to 2008 attests.

Maize lethal necrosis: a serious threat to food security in eastern Africa and beyond

MLN_WS_participants_w
Participants are shown how to inspect maize fields for MLN symptoms and how to collect samples for laboratory analysis.

Maize lethal necrosis (MLN) has rapidly emerged as one of the deadliest maize diseases in eastern Africa capable of causing complete yield loss under heavy disease pressure. This means that Kenya and neighboring countries which largely depend on maize as their main staple food and source of income are on the verge of a looming food and economic crisis.

The disease is difficult to control for two reasons: firstly, it is caused by a combination of viruses; secondly, it can be spread through seed and by insect vectors that may be carried by wind over long distances. Affected crops suffer various symptoms such as severe stunting, tassel abnormality, small ears with poor seed set, chlorotic leaf mottling, leaf necrosis and premature plant death.

Much more than CIMMYT and East Africa

Sixty phytosanitary regulators and seed industry scientists from 11 countries in eastern and southern Africa attended an MLN diagnostics and screening workshop from March 17–19, 2015, in Naivasha, Kenya. The objective of the workshop was to train scientists on the latest MLN diagnostics and screening methods and to share knowledge on how to control the spread of MLN. Besides DR Congo, Ethiopia, Kenya, Rwanda and Tanzania where the disease has been reported, other participants were from South Sudan and southern Africa (Malawi, Mozambique, South Africa, Zambia and Zimbabwe) that have no confirmed cases of MLN, but where maize is an important crop.

CIMMYT organized the workshop in response to the high demand for development of appropriate diagnostics methods and harmonization of regional protocols. Hence, facilitation by agencies like the Food and Agricultural Organization provided a much-needed regional overview of the MLN threat, in addition to perspectives from the International Centre of Insect Physiology Ecology and the Kenya Plant Health Inspectorate Services (KEPHIS) on MLN insect vectors and diagnostics methods respectively.

The workshop was conducted at the MLN screening facility in Naivasha, the largest of its kind established in response to the MLN outbreak in eastern Africa in 2013. It supports countries in the sub-Saharan region to screen seeds under artificial inoculation. The facility is managed jointly by the Kenya Agricultural and Livestock Research Organization (KALRO) and CIMMYT, and was established with support from the Bill & Melinda Gates Foundation and the Sygenta Foundation for Sustainable Agriculture. Biswanath Das, a maize breeder at CIMMYT, noted that “the site has evaluated more than 20,000 accessions since its inception in 2013 from over 15 multinational and national seed companies and national research programs.” This, he added, “has become a primary resource in the fight against MLN regionally.”

Collective pre-emptive actions for prevention: seeds of hope
Participants received hands-on training to identify symptoms of MLN-causing viruses and how to score disease severity by screening germplasm at the site. For some participants, this was a first. “This is my first time to see an MLN-infected plant. Now I understand the impact of MLN on maize production and the need to set up a seed regulatory facility. South Sudan has no laboratory to test planting materials. My first step will be to talk to my counterparts in the ministry to set up one,” said Taban James, a regulator from the Ministry of Agriculture in South Sudan.

DAS-ELISA_demo_w.jpg
CIMMYT staff demonstrate DAS–ELISA method used for detecting MLN-causing viruses.

The tragic reality is that almost all commercial maize varieties in East Africa are highly susceptible to MLN, based on evaluations done at the screening facility. Therefore, stronger diagnostic and sampling capacity at common border-points was agreed to be a key step towards controlling inadvertent introduction of MLN through contaminated seeds. This was particularly important for participants from southern Africa countries who noted an urgent need for surveillance at seed import ports and border areas to contain the spread.

Currently, Kenya, Uganda and Zimbabwe are the only countries that require imported seed to be certified as free of MLN-causing viruses. KEPHIS and CIMMYT have worked closely to restrict movement of germplasm from Kenya to countries in East Africa with reported MLN cases. Seed production fields are inspected thrice by KEPHIS, in addition to analysis of final seed lots. Plans are underway for CIMMYT in collaboration with the ministries of agriculture in Mexico and Zimbabwe to establish quarantine sites to ease germplasm movement in and out of these countries. Speaking on KEPHIS’ role, Francis Mwatuni, the officer-in-charge of Plant Quarantine and Biosecurity Station said, “We ensure all seed fields are inspected and samples tested for MLN resistance including local and imported seed lots from seed companies, to ensure that farmers get MLN-free seeds.”

The latest trends and options for diagnostics on MLN-causing viruses were covered as well, giving participants hands-on training using ELISA diagnostics systems. They were also briefed on polymerase chain reaction based diagnostics and the latest lateral flow diagnostic kits that are under development that will enable researchers to obtain diagnostic results in the field in minutes.

What next for MLN?
The rapid multiplication of the disease coupled with uncertainties over its spread is the biggest hurdle that scientists and other stakeholders are grappling with. KALRO Chief Researcher, Anne Wangai, who played a key role in discovering the disease in Kenya in 2011 observes that “The uncertainties over the transmission of MLN is a worrying phenomenon that requires stakeholders to urgently find a control point to manage and ensure seeds being given to farmers are MLN-free.”

Breeding remains a key component in the search for long-term solution for MLN, and several milestones have been covered to develop MLN-resistant varieties in East Africa. “CIMMYT has developed five hybrids with good MLN tolerance under artificial inoculation, which have either been released or recommended for release in Kenya, Uganda and Tanzania. Thirteen hybrids are currently under national performance trials in the three countries,” noted Mosisa Regasa, a maize seed system specialist at CIMMYT. He further added that it is critical for the MLN-tolerant hybrids to also have other traits important to farmers, so farmers accept these new hybrids.

Open information sharing forums like the diagnostics workshop are an important step to raise awareness and seek solutions to manage the disease. Sharing best practice and lessons learnt in managing the disease are major steps towards curbing MLN. In pursuit of this end, a major international conference on MLN opens next week.

Links: Slides from the workshop | Workshop announcement |Open call for MLN screening – May 2015

Making more from less: matchmaking maize to poor soils

WHEN FERTILIZER IS LIMITED, BREEDING SOLUTIONS FOR THE STAFF OF LIFE IN AFRICA

A farmer applying a solution only very few can afford in adequate amounts: nitrogen fertilisers for poor soils in Africa
A farmer applying a solution only very few can afford in adequate amounts: nitrogen fertilisers for poor soils in Africa

Among the major crops produced and consumed in sub-Saharan Africa (SSA), maize leads, consumed by more than 650 million Africans. Therefore, maize and Africa’s food security and socioeconomic stability are inseparably intertwined. Poor maize productivity has contributed to food shortages, high prices and has pushed more Africans to extreme poverty. Low-fertility soils are part of the problem, and maize varieties specially bred for poor soils offer a partial solution.

Maize and Soil—Chemical Solution, Socioeconomic Problem, Nitrogen in Sips Not Gulps
After water, poor soil nitrogen is the single most critical constraint for Africa’s maize production. Lack of, or inadequate, soil nitrogen leads to low yields and crop failure. Farmers therefore need nitrogen fertilizers to improve yields when soils are depleted or infertile. However, for most smallholder farmers, the harsh reality is that chemical fertilizers—or adequate amounts of them—remain out of their reach, unaffordable owing to the high costs.

To address this, the International Maize and Wheat Improvement Center (CIMMYT) and its partners are working through the Improved Maize for African Soils (IMAS) Project to develop maize varieties that are more efficient at using the small quantities of fertilizer that smallholder farmers can afford, typically less than 30 kilograms per hectare. This means that farmers obtain up to 50 percent more from the limited fertilizer applied.

From problems to solutions: everybody wins!
IMAS focuses on improving the genetics of maize varieties to better match the typical soil profiles of smallholder maize farms in eastern and southern Africa. Different maize varieties respond very differently to soil nitrogen stress. ‘In complement to improved agronomy and soil management, selection of appropriate maize varieties for specific soil conditions can play an enormous role in improving productivity and food security in Africa,’ observes Biswanath Das, a maize breeder at CIMMYT. By packaging nitrogen-use efficiency in the seed, IMAS hopes to improve maize yields efficiently and economically for small holder farmers in Africa.

At this year’s Global Soil Week (GSW) running from April 19–23 in Berlin, Germany, it is important that tangible solutions be formulated for farmers to nurture and sustain healthier soils. Engagement and dialogue forums like GSW and the recent #TalkSoil tweet chat initiated by the International Center for Tropical Agriculture and Shamba Shape Up (a Kenyan television show targeting smallholder farmers) are critical for inclusive discussions to help farmers in Africa.

Such dialogues must continue throughout 2015—the UN International Year of Soils—but also beyond. Why? Because soil is the staff of life, and the Substance of Transformation, as the Global Soil Week theme this year reminds us.

Links

The journey of a seed

Photo credit: CIMMYT
Photo credit: CIMMYT

CIMMYT Day activities included a session on seed preparation and distribution, including standard procedures of CIMMYT’s Seed Inspection and Distribution Unit (SIDU), which shipped over 45 tons of seed in the last year.

Preparing seed for distribution is a multi-step process. First, the seed must undergo rigorous testing in CIMMYT’s Seed Health Laboratory (SHL). This testing ensures that seed distributed by CIMMYT is disease free, and of exceptional quality. Once the seed is approved, it is then prepared for distribution.

Photo credit: CIMMYT
Photo credit: CIMMYT

Before packing, the seed is washed in a sterilizing solution in preparation for its treatment. For maize, the treatment consists of both a fungicide and an insecticide, which prepare the seeds to thrive under diverse environmental conditions. For wheat, the treatment is just a fungicide. Once the seeds have been treated and dried, they are ready to be packaged for shipment.

The next step in the seed preparation process consists of labeling and packaging. Machines automatically print the packet labels and measure the seed required for each package. Maize seeds are counted individually with a counting machine (pictured), wheat seeds are measured by weight.

Photo credit: CIMMYT
Photo credit: CIMMYT

Next, boxes containing the seed packets, legal paperwork and field books are prepared. According to Efren Rodriguez, Head of Data Processing and Seed Distribution, field books are the “gold” that CIMMYT reaps through its efforts. CIMMYT requests that seed recipients utilize the field books to record data, which helps CIMMYT to continuously better the quality of its seeds.

CIMMYT welcomes new board members

CIMMYT Board of Trustees April 2015
Photo credit: CIMMYT

How are New Board Members Appointed?

CIMMYT’s Board of Trustees is composed of 13 experts appointed in their individual capacity and not as a representative of any outside entity.

The process to appoint new members to the Board is conducted by the Nominations Committee, whose sole duty is to ensure a mix of skills on the Board at any one time, based on a skills matrix of CIMMYT’s required expertise. As a result, the Board will represent expertise in science (CIMMYT’s key areas of research), finance, audit, risk management, governance, international partnerships and gender and diversity. Board members are also appointed with consideration of their geographical origins. Each member is appointed for a three-year term, with a maximum limit of two terms.

The chair of the Nominations Committee leads the search for new Board members. This is done through a referencing system, rather than a formal and advertised search. Prospective candidates are approached formally and then interviewed by the Board. Newly-appointed Board members undergo an induction program conducted by CIMMYT and the CGIAR and attend their first meeting as an observer.

Dr. Feng Feng

Dr. Feng Feng
Photo credit: CIMMYT

Dr. Feng is currently the director of the Chinese Bureau of International Cooperation, NSFC. He is responsible for developing international cooperation channels with foreign partners, making policy for international research cooperation in NSFC, and setting the budget for the different research areas for international cooperation. He received his B.Sc. in plant genetics and breeding, and M.Sc. and Ph.D. in plant pathology from the Agricultural University of China.

Dr. Luis Fernando Flores Lui

Flores Lui
Photo credit: INIFAP

Dr. Flores Lui is General Director of the Mexican Institute of Forestry, Agriculture, and Livestock (INIFAP). Over the last 25 years he has held numerous positions within the organization. At an international level he has coordinated the biotechnology group at the Asia-Pacific Council (APEC); worked with the Japan International Cooperation Agency (JICA); and has taught undergraduate and graduate courses in different universities. He received his B.Sc. in Agricultural Engineering from the Antonio Narro Agrarian Autonomous University, his M.Sc. from Irrigation Water Use and Management in 1974 from the Monterrey Institute of Technology and Higher Education and his Ph.D in Soil Sciences from the University of California, Davis.

Dr. Raul Obando Rodriguez
Photo credit: INIFAP

Dr. Raúl Gerardo Obando Rodríguez
Dr. Rodriguez is the Coordinator for Research and Innovation at the National Institute of Forestry, Agriculture and Livestock (INIFAP). He is an Agricultural Engineer by trade with a PhD in Plant Nutrition at the University of California, Davis. He has held various positions in in INIA, INIFAP, the National Coordinator of the Produce Foundation (COFUPRO), the National System for Research and Technology Transfer (SNITT) and the Graduate College (COLPOS), to name a few.

Bongiwe Nomandi Njobe

Bongiwe Nomandi
Photo credit: CIMMYT

Bongiwe Njobe is Executive Director (founder and sole proprietor) of ZA NAC Consulting and Investments. Over the past 20 years she has held numerous positions in the Fast Moving Consumer Goods Sector (FMCG) sector and the Agricultural Public Sector including Group Executive: Corporate Sustainability at Tiger Brands Limited, Corporate Affairs Director at South African Breweries Limited and Director General at the South African National Department of Agriculture. She currently serves as a Director on the Vumelana Advisory Fund, Independent Board Member on the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) and as a Trustee at the Kagiso Trust. She is also a member of the High Level Advocacy Panel for the Forum for Agricultural Research in Africa (FARA) and a member of the Institute of Directors (Southern Africa) Sustainability Development Forum.

Celebrating CIMMYT: what will the next 50 years hold?

CIMMYT_Ceremony_1
Photo credit: CIMMYT

A year of celebrations in honor of Dr. Norman Borlaug’s birth centennial was officially closed last Thursday 9 April in a ceremony at CIMMYT headquarters in Mexico.

“If he (my father) were here,” said Jeanie Borlaug Laube, who chairs the Borlaug Global Rust Initiative, “he would remind you that it is your moral imperative to speak up and protest for the world’s right to science-based innovation.” She was addressing an audience of government representatives, private sector partners, researchers, CIMMYT trustees, and diplomats including the Australian and Belgian ambassadors to Mexico.

The occasion also marked the celebration of a double achievement for CIMMYT: the 2014 World Food Prize being awarded to Dr. Sanjaya Rajaram, former global wheat program director, and the 2014 Borlaug Field Award to Dr. Bram Govaerts, leader of the Sustainable Modernization of Traditional Agriculture (MasAgro) project.

During his distinguished career, Rajaram led work that resulted in the release of more than “480 varieties of bread wheat in 51 countries, occupying more than 58 million hectares,” said Prof. John Snape, Chair of CIMMYT’s Board of Trustees. “A feat unlikely to ever be surpassed by another wheat breeder.”

Rajaram’s merits were also recognized by Mexican government representatives at the World Food Prize ceremony in Des Moines, Iowa, USA, on 16 October 2014. Enrique Martínez y Martínez, head of Mexico’s Agriculture Secretariat (SAGARPA), congratulated him for developing varieties and technologies that have helped boost wheat productivity in Mexico and the rest of the world.

Photo credit: CIMMYT
Photo credit: CIMMYT

During the ceremony, Martínez y Martínez signed and renewed SAGARPA’s technical collaboration agreement with CIMMYT for the implementation of MasAgro, CIMMYT’s major project in Mexico. “MasAgro boosts a new model of agricultural extension based on sustainable technologies and capacity building activities that match Mexico’s Farmer’s Confederation’s development vision,” said Mexican Senator Manuel Cota, who is also President of the Farmer’s Confederation and of the Senate Agriculture Committee.

By the end of 2014, there were over 200,000 farmers linked to MasAgro on more than 440,000 hectares across Mexico. “To address farmer’s needs we must pursue scientific excellence as Norman Borlaug did,” stressed Dr. Bram Govaerts, MasAgro leader. “We must go out to the field and get our hands dirty; take risks and be bold in our research; let innovation flow and get rid of false illusions of control,” Govaerts added.

After the ceremony, Dr. Borlaug’s family, government officials and CIMMYT laureate scientists unveiled a statue of Dr. Borlaug at the Center facilities.

“Next year CIMMYT will celebrate its 50th anniversary,” said Thomas Lumpkin, CIMMYT director general. “For 50 years Mexico has been the cradle of CIMMYT’s global agricultural innovation. Our challenge now is to ask what the next 50 years will hold.”

Innovation key to wheat yield potential advances, says in-coming CIMMYT DG

Photos: Alfredo Sáenz/CIMMYT
Outgoing CIMMYT Director General Thomas Lumpkin, incoming CIMMYT Director General Martin Kropff, Nynke Nammensma and Jeannie Laube Borlaug (L to R) chat during Visitors’ Week in Obregon, Mexico. CIMMYT/Alfredo Sáenz

CIUDAD OBREGON, Mexico (CIMMYT) — Martin Kropff, who will take the helm as director general of the International Maize and Wheat Improvement Center (CIMMYT) in June, joined scientists, and other members of the global wheat community at the CIMMYT experimental research station near the town of Ciudad Obregon in Mexico’s northern state of Sonora for annual Visitors’ Week.

Following a tour of a wide range of research projects underway in the wheat fields of the Yaqui Valley made famous around the world by the work of the late Nobel Peace Prize winner Norman Borlaug, who died in 2009 at age 95, Kropff shared his views.

Borlaug led efforts to develop high-yielding, disease-resistant, semi-dwarf wheat varieties in the mid-20th century that are estimated to have helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

“I’m very impressed by what I’ve seen in Obregon,” said Kropff, who is currently chancellor and vice chairman of the executive board of Wageningen University and Research Center in the Netherlands.

“From the gene bank in El Batan, the breeding and pre-breeding and the work with farmers on a huge scale, it’s extremely high quality and innovative,” added Kropff, who with his wife Nynke Nammensma also visited CIMMYT’s El Batan headquarters near Mexico City earlier in the week.

“The MasAgro program is very impressive because it takes the step of integrating scientific knowledge with farmers’ knowledge – it’s a novel way to aid farmers by getting new technology working on farms at a large scale. It is a co-innovation approach,” Kropff said.

The Sustainable Modernization of Traditional Agriculture, led by country’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and known locally as MasAgro, helps farmers understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields and sustainably increase profits.

“The program is an example of how farmers, scientists and other stakeholders can think about and create innovations through appropriate fertilizer applications, seed technologies and also through such instruments as the post-harvesting machines,” Kropff said.

“This is fantastic. That’s what the CGIAR is all about.”

Left to right: Tom Lumpkin, John Snape and Martin Kropff.
Thomas Lumpkin, John Snape and Martin Kropff (L to R). CIMMYT/Alfredo Sáenz

“The HarvestPlus program, which adds more zinc and iron into the crop through breeding, also plays a key role in CIMMYT’s research portfolio,” Kropff said.

Zinc deficiency is attributed to 800,000 deaths each year and affects about one-third of the world’s population, according to the World Health Organization. Enhancing the micronutrient content in wheat through biofortification is seen as an important tool to help improve the diets of the most vulnerable sectors of society.

The climate change adaptation work he observed, which is focused on drought and heat stress resilience is of paramount importance, Kropff said.

Findings in a report released last year by the Intergovernmental Panel on Climate Change state it is very likely that heat waves will occur more often and last longer throughout the 21st Century and that rainfall will be more unpredictable.

Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, the   report said.

“To safeguard food security for the 9 billion people we’re expecting will populate the planet by 2050, we need innovations based on breeding, and solid agronomy based on precision farming,” Kropff said.

“There’s no other organization in the world that is so well designed as the CGIAR to do this type of work. CIMMYT is the crown jewel of the CGIAR together with the gene banks. No other organization can do this.”

“We’ve done a lot of work in getting higher yields, but not much through increased yield potential, and that’s what we have to work on now,” he added.

“If you raise the yield through agronomy, you still need to enhance yield potential and there’s very good fundamental work going on here.”

“The partnerships here are excellent – scientists that are here from universities are as proud as CIMMYT itself about all the work that is being done. I’m really honored that from 1 June, I have the opportunity to be the director general of this institution. I cannot wait to get started working with the team at CIMMYT and I’m extremely grateful for the warm welcome I’ve received – a smooth transition is already underway.”

Follow Martin Kropff on Twitter @KropffMartin

Mother-baby trials promote conservation agriculture in Manica, Mozambique

A testament to increased climate variability and risk for farming systems already operating on the razor’s edge, the 2014-15 cropping season will be recognized as a sad write-off by most farmers in Central Mozambique. The rains started six weeks late and most of the rainfall fell in only two months (normally it’s distributed over four), followed by a long drought and some few showers at the end.

But with funds from the CGIAR Research Program on Maize, partners from the Instituto de Investigação Agrária de Moçambique (IIAM) and CIMMYT are working with farmers in Manica Province, Mozambique, to test and promote conservation agriculture practices that better capture and retain precious precipitation, among other advantages.

As part of this, they have revived “mother-baby” trials, a participatory methodology pioneered over a decade ago by CIMMYT for testing drought tolerant maize in Africa and which was subsequently adapted for diverse agronomic practices and is used by researchers worldwide.

Drought-stricken maize: For most farmers around Machipanda village, Manica Province, Mozambique, the situation this season is bleak, auguring complete crop failure or a harvest of a few small maize cobs. Photos: CIMMYT
Drought-stricken maize: For most farmers around Machipanda village, Manica Province, Mozambique, the situation this season is bleak, auguring complete crop failure or a harvest of a few small maize cobs. Photos: CIMMYT

Comprising field experiments grown in farming communities, mother-baby trials feature a centrally-located mother trial that is set up with researchers’ support. Baby trials, which contain subsets of the mother-trial treatments, are grown, managed and evaluated by interested farmers.

Moving from “business as usual” to innovation

In Machipanda, a small village in Manica on the border with Zimbabwe, IIAM maize breeder Dr. David Mariote established three mother trials, each with two conservation agriculture-based systems and a conventional control plot, combined with four maize varieties from the Drought Tolerant Maize for Africa (DTMA) project, which is funded by the Bill & Melinda Gates Foundation, and a traditional variety, in full rotation with cowpeas.

Farmers then put up the baby trials from a menu of practices that included direct seeding with no tillage, crop rotations, residue retention, herbicide applications, fertilizer use and improved varieties. Interest was high: 54 farmers grew baby trials and some even extended their plots beyond the designated areas, in the excitement of trying something new, according to Mariote.

“Conditions are changing fast; business as usual is no longer an option,” Mariote said. “We have to offer improved technologies that farmers can use to mitigate negative effects from climate change and improve their lives.”

Mariote witnessed first-hand the synergistic benefits of combining conservation agriculture and drought tolerant maize, as part of work in the Platform on Agriculture Research and Technology Innovation (PARTI), a project funded through the US Agency for International Development (USAID) via Feed the Future and implemented by CIMMYT in Central and northern Mozambique.

IIAM researcher David Mariote (right) with farmers of Manica Province, Mozambique.
IIAM researcher David Mariote (right) with farmers of Manica Province, Mozambique.

With training from CIMMYT’s global maize program and technical backstopping from the CIMMYT global conservation agriculture program, Mariote sought new and stronger ways to spread these technologies. That’s when he hit upon mother-baby trials, which had never been used before with drought tolerant maize and conservation agriculture in tandem.

Farmers who grew baby trials unanimously agreed that new ways of farming are needed and that the trials had been eye-openers. In a community meeting, some said: “We often do not have money to buy expensive fertilizers but we have seen that with good agronomic practices and good maize varieties we can already increase our maize yields.”

More farmers in Machipanda have signed up for future baby trials and, as a clear indication of commitment and excitement about conservation agriculture and improved maize, they will use their own inputs to grow them.

Global partnership propels wheat productivity in China

Benefits of three decades of international collaboration in wheat research have added as much as 10.7 million tons of grain – worth US $3.4 billion – to China’s national wheat output, according to a study by the Center for Chinese Agricultural Policy (CCAP) of the Chinese Academy of Science.

Described in a report published on 30 March by the CGIAR Research Program on Wheat, the research examined China’s partnership with CIMMYT and the free use of CIMMYT improved wheat lines and other genetic resources during 1982-2011. The conclusions are based on a comprehensive dataset that included planted area, pedigree, and agronomic traits by variety for 17 major wheat-growing provinces in China.

“Chinese wheat breeders acquired disease resistant, semi-dwarf wheat varieties from CIMMYT in the late 1960s and incorporated desirable traits from that germplasm into their own varieties,” said Dr. Jikun Huang, Director of CCAP and first author of the new study. “As of the 1990s, it would be difficult to find anything other than improved semi-dwarf varieties in China. Due to this and to investments in irrigation, agricultural research and extension, farmers’ wheat yields nearly doubled during 1980-95, rising from an average 1.9 to 3.5 tons per hectare.”

The new study also documents increasing use of CIMMYT germplasm by wheat breeders in China. “CIMMYT contributions are present in more than 26 percent of all major wheat varieties in China after 2000,” said Huang. “But our research clearly shows that, far from representing a bottleneck in diversity, genetic resources from CIMMYT’s global wheat program have significantly enhanced China varieties’ performance for critical traits like yield potential, grain processing quality, disease resistance and early maturity.”

WILL CHINA WHEAT FARMING RISE TO RESOURCE AND CLIMATE CHALLENGES?

Photo: Mike Listman/CIMMYT
Photo: Mike Listman/CIMMYT

The world’s number-one wheat producer, China harvests more than 120 million tons of wheat grain yearly, mainly for use in products like noodles and steamed bread. China is more or less self-sufficient in wheat production, but wheat farmers face serious challenges. For example, wheat area has decreased by more than one-fifth in the past three decades, due to competing land use.

“This trend is expected to continue,” said Huang, “and climate change and the increasing scarcity of water will further challenge wheat production. Farmers urgently need varieties and cropping systems that offer resilience under drought, more effective use of water and fertilizer, and resistance to evolving crop diseases. Global research partnerships like that with CIMMYT will be vital to achieve this.”

Dr. Qiaosheng Zhuang, Research Professor of Chinese Academy of Agricultural Science (CAAS) and a Fellow of Chinese Academy of Science, called the new report “…an excellent, detailed analysis and very useful for scientists and policy makers. CIMMYT germplasm and training have made a momentous contribution to Chinese wheat.”

“First Lady of Wheat” in Mexico to celebrate her father, Norman Borlaug

The late wheat breeder Norman Borlaug was so dedicated to his work that he was away from home 80 percent of the time, either travelling or in the field, recalls his daughter, Jeanie Borlaug Laube.

Photo: Alfredo Sáenz/CIMMYT

Scientist Borlaug, who died in 2009 at age 95, led efforts in the mid-20th century to develop high-yielding, disease resistant, semi-dwarf wheat varieties that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

Wheat breeders, scientists and members of the global food security community celebrated his birthday at a week-long meeting hosted by CIMMYT in the vast wheat fields of the Yaqui Valley near the town of Ciudad Obregón in Mexico’s northern state of Sonora.

Each year, CIMMYT Visitors’ Week serves as an opportunity to brainstorm, exchange ideas and celebrate Borlaug’s legacy on the anniversary of his birthday.

Borlaug, who would have been 101 this year, started work on wheat improvement in the mid-1940s near CIMMYT headquarters outside Mexico City.

He was awarded the Nobel Peace Prize in 1970 partly for his experimental work, much of which took place in the hot, dry conditions of Obregón, which resemble conditions in many developing countries where CIMMYT works.

This year, his daughter, who is co-chair of the Borlaug Global Rust Initiative, a partnership to study and and control devastating stem, yellow and leaf wheat rust disease, spoke on women and agriculture at the event. She is also involved with the Jeanie Borlaug Laube Women in Triticum Mentor Award, which honors mentors of both genders who aid women working in Triticum species and near relatives. Additionally, she sits on the board of directors of the Borlaug Training Foundation, established to provide agricultural education and guidance to scientists from developing nations.

She shared her views in the following interview.

Q: What is your current involvement in agriculture?

I’m not officially in agriculture – I’m a Spanish teacher. I taught for 40 years in high school until I retired three years ago. In the last 25 years of my career I had started a community service program at two different schools in Dallas and ran it. This involves 750 kids a year out doing community service. I still taught one Spanish class but my basic job was community service director. I haven’t been involved in agriculture directly. Indirectly, I have been because I was Norman Borlaug’s daughter so I’ve been around it, but I wasn’t raised on a farm, never lived on a farm, didn’t study agriculture or science in school.

What is your current involvement with wheat?

I’m co-chair of the Borlaug Global Rust Initiative – I go to the conferences once a year where all the wheat scientists of the world get together. I go to all the conferences and sit and listen and try to learn and follow what is going on with rust and the different problems they are having with wheat. I’m involved with the Women in Triticum Award. I visit and follow up with them and they are the ones who are out in the field learning how to become scientists and continue the profession. That’s how I’m involved in wheat.

Q: What are your views on women in agriculture?

I was in Pakistan last year and the U.S. Department of Agriculture set up a meeting with women who were all scientists working on their doctoral degrees – or already had a Ph.D. in agriculture. The discussions were very interesting as far as the difficulties that women find in this field and the pluses and minuses that are involved with that. It was interesting to hear different aspects of what they were feeling. The academic studies were not a difficult thing for them, but the reality of raising a family and keeping a profession going and taking care of a husband or children at the same time as being away from home presented problems.

No matter what profession women are in, challenges confront them because we have to multi-task. It doesn’t matter whether you are an accountant, a geneticist or a teacher – as a mother or trying to run a family and a profession, I think it’s challenging for a lot of women.

Q: What impresses you about women in agriculture?

I’m always amazed at the women scientists who are out there working at these wheat conferences and out in the in the field and taking care of their families from afar or even before they get married or have children, just the dedication they have to helping feed the world.

Q: What are your views on food security?

I don’t think the general population has any clue as to what goes on with agriculture. As my dad used to say, everybody just thinks the food comes from the grocery store and that’s where it is – it just pops in there. The average person doesn’t have a clue about that.

Q: What has changed since your father’s time?

I imagine he’d be facing the same challenges. I think it would be really interesting if he were still around because he’d be going crazy right now with all of this fighting about gluten-free and over genetically modified plants. He was so dedicated. His mission was to feed the world.

I think it is still the same mission. I think it is probably just a little harder because you have more public opinion and lack of info for what you need. He was changing genes and they are still doing that and they need to because they need to find plants that require less fertilizer and less water and provide more protein. What is amazing to me is to think about how they are working with computers now and he did all this in his head with notebooks.

He’d leave home at five in the morning and get home at eight at night. When he was in town he was gone about 80 percent of the time. When he first started this shuttle breeding program he’d come to Sonora. That was in the 40s – he had to go up through Arizona and back down at first because there were no roads. He’d be up here for three months, then he’d go back down, then he’d go to Toluca and South America, then he started going to India and Pakistan. In later years he was going Africa, so he was never home.

Q: Where did you grow up?

I was raised in Mexico City. My brother was born in Mexico and I came here when I was 14 months old. I lived here until I went to college. I did my schooling down here.

 

Q: Did your father try and encourage women in science and agriculture?

Yes he did. Back then there weren’t very many women in agriculture and scence. I think he’d be very pleased to see the turn with what’s happening with women in agriculture.

Q: What is it like celebrating your father?

It’s really neat. When my dad realized that he was going to die he asked me to bring ashes back to Mexico so I did. The last two years we came before he died, we came in a private jet because he couldn’t travel. It was so hard to get here. I remember I looked at his face as we were approaching Obregón. His face was just pure relief. He loved this place and he’d see the wheat fields and it was magical for him. Coming back is kind of bittersweet, realizing how much he loved the farmers too as they loved him.